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Abstract: One key challenge within the domain of network science is accurately finding important
nodes within a network. In recent years, researchers have proposed various node centrality indicators
from different perspectives. However, many existing methods have their limitations. For instance,
certain approaches lack a balance between time efficiency and accuracy, while the majority of research
neglects the significance of local clustering coefficients, a crucial node property. Thus, this paper
introduces a centrality metric called DNC (degree and neighborhood information centrality) that
considers both node degree and local clustering coefficients. The combination of these two aspects
provides DNC with the ability to create a more comprehensive measure of nodes’ local centrality.
In addition, in order to obtain better performance in different networks, this paper sets a tunable
parameter α to control the effect of neighbor information on the importance of nodes. Subsequently,
the paper proceeds with a sequence of experiments, including connectivity tests, to validate the
efficacy of DNC. The results of the experiments demonstrate that DNC captures more information
and outperforms the other eight centrality metrics.

Keywords: key nodes; complex network; robustness; local clustering coefficient

1. Introduction

As science and technology have advanced, it has become clear that numerous natural
phenomena can be effectively described using network models [1]. Various systems in the
physical world, such as interpersonal relationships on social media [2], protein–protein
interactions within biological organisms [3], and even road network [4], can be abstracted
as complex networks.

Identifying key nodes in a network holds significant practical relevance [5]. For
instance, in social networks, certain individuals may serve as crucial mediators for informa-
tion propagation. In transportation networks, specific intersection points can significantly
influence the entire network’s fluidity. In the context of disease spread research, identifying
key propagators can aid in controlling the diffusion of infectious disease [6]. In urban plan-
ning, uncovering key nodes within transportation networks can enhance a city’s resilience
and sustainability [7]. Furthermore, in the realms of social media and Internet advertising,
determining key nodes in advertising dissemination can assist in optimizing advertising
strategies [8].

Different types of networks and physical systems necessitate different approaches to
determining node importance. A number of traditional algorithms have been proposed
by researchers. These classical centrality algorithms have found widespread applications.
Over the past few decades, many efficient methods have been developed to assess the
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nodes’ importance by leveraging both local and global information, along with other
relevant attributes. For example, EnRenew [9] utilizes local entropy to pinpoint key nodes
within networks; Spon [10] assesses node importance using information from neighboring
nodes; VoteRank [11] employs a voting mechanism to recognize significant disseminators
in networks; and FINDER [12] utilizes reinforcement learning to identify crucial nodes
within networks.

Current investigations into extracting critical information from complex networks
have frequently presented researchers with the challenge of reconciling method efficiency
with precision [10]. Therefore, based on degree and neighbor node information, this paper
introduces an innovative approach to identify crucial nodes within networks, referred to as
the degree and neighborhood information centrality (DNC). DNC contends that a node’s
importance within the network relies on its personal information and the information
provided by adjacent nodes. The node’s individual information is its degree, while the
information from neighboring nodes is determined by the combined local clustering coeffi-
cients of its neighbors. The following are the primary advantages of our proposed DNC:

(1) Low time complexity: Since it only utilizes a node’s degree and first-order information,
DNC only necessitates the computation of first-order neighbor information, leading
to a temporal complexity of O(|E|) , allowing DNC to be effectively applied to large-
scale networks.

(2) High accuracy: DNC surpasses existing baseline methods in terms of accuracy.
(3) Parameter setting: DNC can be parameterized to adapt to different networks for

optimal performance.

The sections of this paper that follow are ordered in a logical order. Section 2 includes
a synopsis of relevant work, encompassing classical node importance algorithms and recent
advancements. Following this, in Section 3, we introduce our baseline methods and proceed
with an in-depth presentation of our proposed algorithm, including a demonstration using
a small dataset. Section 4 outlines the comprehensive procedure and specifics of our
experiments. Finally, we conclude with an overview of the topics covered in this paper.

2. Related Works

In the past few years, critical nodes in complex networks have received special atten-
tion from researchers. We present a quick review of current algorithms in this section.

Researchers have presented a variety of classical centrality measurements based on
diverse concepts and ideas. Degree centrality [13] quantifies the number of neighbors a
node has. Although degree centrality calculations are straightforward, they frequently
overlook the overall structure of complex networks, resulting in diminished accuracy.
Eigenvector centrality [14] computes a node’s score by considering the centrality of its
neighbors. Closeness centrality [15] evaluates the average distance from the present node
to all other nodes along the shortest paths. Betweenness centrality [13] measures a node’s
significance by allying shortest paths that traverse through it, reflecting its significance as a
bridge node. The VoteRank algorithm [11] employs a voting mechanism to assign scores
to nodes.

The fundamental concept behind the K-Shell algorithm involves identifying core nodes
within a network by iteratively eliminating nodes with the lowest degrees [16]. Yet, the K-
Shell algorithm grapples with several limitations; it predominantly focuses on node degrees,
disregards other pertinent network attributes, and is unable to differentiate the score of
nodes within the same layer. Based on the K-Shell concept, Zareie et al. [17] suggested a
customized hierarchical method, augmenting it with more topological information. Wang
et al. [18] proposed an enhanced K-Shell algorithm that identifies important nodes from
higher-level K-Shells to lower-level K-Shells using node information entropy. A mixed-
degree decomposition approach was developed by Zeng et al. [19]. This method integrates
the concept of depletion degree to assess the impact of eliminated nodes on a specific node,
as well as remaining degree to assess the impact of remaining nodes on that specific node.
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Furthermore, methods for identifying important nodes based on improved gravity
models have also gained significant attention [20–24]. Inspired by the gravity model,
node degrees are considered as masses, and the distance is represented by the shortest
path between two nodes. The importance score of nodes is then calculated using the
formula for universal gravitation [20]. However, in practical usage, the gravity model is
associated with high time complexity, and using node degree as mass often lacks accuracy
due to the limited information node degrees represent [21]. Liu et al. introduced weighted
gravity centrality [22], which combines eigenvector centrality with the gravity model,
integrating global and local information. Yang et al. introduced KSGC, which added an
attraction coefficient to the K-Shell-based generalized gravity model [21]. Li et al. proposed
MCGM [23], considering more node information and combining node degree, K-Shell, and
EC as node masses. Recently, Xu et al. proposed a novel communication-based adaptive
gravity model, CAGM, an innovative communication-based adaptive gravity model that
assesses each node’s score by using the likelihood and intensity of influence from nearby
nodes within its impact radius [24].

Researchers have also been devoted to using deep learning to identify important
nodes in complex networks [12,25,26]. Yu et al. proposed employing graph convolutional
networks to locate key nodes [25]. Using graph convolutional networks, Ou et al. [26]
developed a method for finding critical nodes while accounting for different levels of net-
work structural features. Fan et al. introduced FINDER, a strategy based on reinforcement
learning for finding key nodes [12].

3. Causality in Complex Networks

Measuring causality in complex networks is crucial for understanding system be-
havior, optimizing network design, and addressing practical challenges. It helps reveal
mutual influences between nodes, providing profound insights into network dynamics,
robustness, and other properties, fostering the advancement of scientific research and
practical applications [27].

3.1. Limitations of Statistical Approaches in Unveiling and Discovering Causality in
Complex Networks

Understanding a system’s basic structure, dynamics, and relationships requires mea-
suring causality in a network. When dealing with causal interactions in complicated
networks, traditional statistical methods have several drawbacks. These methods often
rely on linear regression and correlation tests, both of which have modeling limitations.
Traditional causal inference methods rely primarily on probability distributions and may
produce incorrect conclusions. Traditional statistical methods sometimes encounter diffi-
culties with hierarchical organization and inductive reasoning [27]. Some classic methods
neglect non-statistical aspects, rely too heavily on randomness, and struggle to deal with
complex systems. These techniques frequently concentrate exclusively on correlations
between variables, which may not imply causation. Traditional techniques have major
hurdles when dealing with non-ordered data and large-scale high-dimensional data [28].

3.2. The Difference between DNC and Approaches That Try to Infer Causal Structures

DNC is mostly based on node topological characteristics, with an emphasis on mea-
suring a node’s connection and clustering in the network. Statistical models, probabilistic
graphical models, or causal inference methodologies are commonly used to infer causal
structure. These methods frequently take into account causal linkages between variables
rather than just topological structure. DNC’s purpose is to measure nodes, with a focus on
node centrality and social aggregation. Causal inference approaches seek to comprehend
the causal links between variables, that is, how changes in one variable cause changes in
another. DNC focuses on network topological structure analysis, whereas causal structure
inference methods are more concerned with understanding causal relationships between
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variables. These two approaches differ in problem orientation, data requirements, and
application domains.

3.3. Classical Entropy Measures in Networks

Entropy measurement in complex networks reveals the complexities of network topol-
ogy and information dispersion, providing insights into node relevance and network
dynamics. It provides critical data for network design and optimization.

Traditional entropy measurements are heavily influenced by the feature descriptions
used, such as adjacency matrices or degree sequences, limiting them to basic counting func-
tions and hindering independent assessments of object randomness. Entropy is extremely
sensitive to the observer’s point of view, which can result in differing values under different
descriptions, leading to misleading results. Entropy is largely dependent on probability
distributions, and different distribution choices might result in varying entropy values,
creating uncertainty when assessing network complexity. While entropy is a computa-
tional metric, it may not accurately reflect the underlying complexity of highly complex
network architectures. In comparison, algorithmic complexity measurement is more robust,
especially when describing non-random, recursively created networks. Entropy confronts
difficulties when it comes to capturing network uniqueness [29].

4. Proposed Method

In this section, we will begin by reviewing the centrality metrics related to the experi-
ments performed herein. Subsequently, we will present a full explanation of DNC.

4.1. Baseline Methods
4.1.1. Collective Influence (CI)

The fundamental concept behind collective influence (CI) is to evaluate the score of
a node by evaluating how its removal impacts the giant connected components of the
network [30]. CI can be represented as:

CI𝓁(i) = (ki − 1) ∑
j∈∂Ball(i,𝓁)

(k j − 1) (1)

where ki indicates node i’s degree, Ball(i,𝓁) signifies all nodes within a ball centered on
node i with a radius of 𝓁, and 𝓁 is a preset value.

4.1.2. K-Shell (KS)

Kitsak et al. [16] introduced the K-Shell, which estimates the relevance of nodes
based on their network placements. The following are the steps involved in K-Shell
decomposition: initially, delete all network nodes and edges with degrees less than or
equal to 1. Moreover, any subsequently generated nodes with a degree of 1, along with
their respective edges, are also removed. This cycle continues until no nodes with degrees
equal to or less than one remain. The nodes removed throughout this process constitute
the 1-shell layer. The method then iterates to remove those nodes with degrees less than or
equal to 2, resulting in the formation of the 2-shell layer. This procedure is performed until
all nodes are removed.

4.1.3. Closeness Centrality (CC)

The core idea of closeness centrality (CC) is that the influence of a node is related to
the shortest path length from it to other nodes, with smaller average shortest path lengths
indicating greater influence. CC can be represented as:

CC(i) =
N − 1

∑j ̸=i dij
(2)

where dij is the shortest path distance between node i to node j.
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4.1.4. K-Shell Gravity Centrality (KSGC)

Yang et al. introduced the KSGC algorithm, an enhanced version of the gravity model
algorithm rooted in K-Shell. This approach introduces a gravitational coefficient to depict
the interaction force between nodes, encompassing considerations of node position and
local and global information [21]. KSGC can be represented as:

F(i, j) = cij
ki ∗ k j

d2
ij

(3)

The variable cij = e
ks(i)−ks(j)

ksmax−ksmin , where ks(i) and ks(j) denote the K-Shell values of
the node, while ksmax and ksmin represent the maximum and minimum K-Shell values in
the network.

4.1.5. Local Version of GM (LGM)

Li et al. proposed LGM, which leverages neighborhood information and path details
and incorporates a localized gravity model featuring a truncation radius. This approach
aims to identify significant nodes within complex networks [31]. LGM can be represented as:

LGM(i) = ∑
dij⩽R,j ̸=i

ki∗kj

d2
ij

(4)

where R represents the truncation radius.

4.1.6. Laplacian Gravity Centrality (LGC)

Zhang et al. introduced LGC, which optimizes the initial gravity centrality by incorpo-
rating the Laplacian centrality as mass, taking into consideration the degrees of adjacent
nodes [32]. LC can be represented as:

LC(i) = k2
i + ki + 2 ∑

j∈Γi

k j (5)

where LC(i) represents the Laplacian centrality of node i and Γi is the set of nodes that are
neighboring node i.

Then, by adding Laplacian gravity within the cutoff radius of topological distance
pairs, LGC can be represented as:

LGC(i) = ∑
j ̸=i,dij≤⟨d⟩/2

LC(i)LC(j)
d2

ij
(6)

where ⟨d⟩ is the average topological distance between network nodes.

4.1.7. Social Capital (SC)

Zhou et al. introduced social capital (SC), suggesting that nodes with higher degrees
and the cumulative degrees of their neighbors hold crucial positions within the network [33].
It is defined as:

si = ki + ∑
j∈Γi

k j (7)

4.1.8. Improved Gravitational Centrality (IGC)

Wang et al. proposed improved gravitational centrality, which is an enhanced gravita-
tional centrality method that combines K-Shell values and degrees. This approach uses the
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node’s K-Shell value as mass and considers the degrees as mass for adjacent nodes [34].
The algorithm is defined as follows:

G+(i) = ∑
j∈Γi

∑
p∈Ψj

ks(j)∗kp

d2
jp

(8)

where Ψj adjacent nodes whose shortest path length is less than the specified length.

4.2. DNC Method
4.2.1. Local Clustering Coefficient

The local clustering coefficient of a node is an important metric that measures the level
of closeness between nodes in a network, delineating the density of connections among a
node’s neighboring nodes.

For unweighted graphs, a node’s local clustering coefficient is defined as the ratio of
actual existing edges between neighboring nodes to the potential number of edges between
them [35]. It is defined as follows:

Ci =
2·Ei

ki·(ki − 1)
(9)

where Ei denotes the number of edges connecting the node to its neighbor.

4.2.2. DNC Method

The DNC method consists of two main steps. First, it calculates the sum of the local
clustering coefficients of the first-order neighbors of a node, denoted as slci. Then, the
node’s DNC value is obtained by adding its degree to the sum of the first-order neighbor
local clustering coefficients. The slci is defined as follows:

slci = ∑
j∈Γi

cj (10)

where ci represents the local clustering coefficient of node i.
Subsequently, the DNC value of a node is computed as follows:

DNCi = ki + α ∗ slci (α > 0) (11)

where α denotes an adjustable parameter to control the effect of slc on the calculation
results. In this paper, α = 1 is used for the calculation.

DNC considers both the node’s own information and the node’s neighbors’ infor-
mation, that is, the sum of the local clustering coefficients of the first-order neighbors.
It measures the density of connections among its neighbors. By considering the sum of
first-order neighbor local clustering coefficients, this method can comprehensively capture
the local network structure between the node and its most immediate associates, providing
insights beyond the node’s individual information. By adding the node’s self-information,
it can more accurately estimate the node’s importance within its neighborhood. This
prevents highly connected nodes (those with numerous neighbors) from being overly
emphasized in importance assessment while underrating nodes with low degrees (having
fewer neighbors). A person’s influence in social networks is frequently connected to their
position in the social network and their ties with first-order neighbors. The sum of the
first-order neighbor local clustering coefficients can better reflect an individual’s influence
in the social network.

The pseudocode for DNC is provided in Algorithm 1:
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Algorithm 1: The proposed DNC method’s framework

Input: Graph G = (V, E), |V(G)| = N.
Output: Node importance ranking list: {DNC(u)|u ∈ V}

1: for u ∈ V do
2: Calculate C(u) using Equation (9)
3: end for
4: for u ∈ V do
5: FN← u. neighbor
6: for fn in FN do
7: slc(u)← sum(C(fn))
8: end for
9: DNC(u)← slc(u) + k(u)
10: end for
11: Sort the list {DNC(u)|u ∈ V} in descending order
12: return the ranking list of nodes

4.2.3. Example Analysis

We use the karate network [36] to illustrate the execution process of the DNC algorithm.
The karate network is made up of social contacts between Zachary Karate Club members,
as shown in Figure 1, and it is a network with 34 nodes and 78 edges. We initiate the
demonstration of the DNC by selecting node 8 as an example to showcase its execution
process. Subsequently, we compute the top ten nodes identified by DNC and perform a
comparative analysis with the baseline methods.
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Figure 1. Karate network. The numbers in the figure indicate the node numbers.

First, we calculate the degree of node k8, which is 5. Next, we identify the neighboring
nodes of node 8, which are its closest neighbors 0, 2, 30, 32, and 33.

Next, we calculate the local clustering coefficient (LCC) for each neighboring node.
Subsequently, we compute the slc of node 8. The LCC for the neighboring nodes of node 8
are as shown in Table 1.

Table 1. The LCC of the first-order neighbors of node 8 in the Karate network.

Node 0 2 30 32 33

LCC 0.15 0.24 0.50 0.20 0.11
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Finally, we obtain the DNC value of this node by adding its degree and the slc.

DNC(8) = k8 + ∑
j∈N8

cj = 5 + (0.15 + 0.24 + 0.50 + 0.20 + 0.11) = 6.2 (12)

We present the top ten ranked nodes using various methods, as shown in Table 2. The
first row represents the method names.

Table 2. Top ten nodes with DNC compared to baseline methods.

DNC CI KS CC KSGC LGM LGC SC IGC

33 0 0 0 8 33 33 0 0
0 33 1 2 13 0 0 33 33

32 32 2 33 30 32 32 2 2
1 2 3 31 7 2 2 32 32
2 1 7 8 3 1 1 8 1
3 31 8 13 19 31 8 13 3

31 3 13 32 31 8 13 1 8
13 8 30 19 19 13 31 31 13
23 13 32 1 23 3 23 3 31
5 30 33 3 27 23 3 30 30

33 0 0 0 8 33 33 0 0
0 33 1 2 13 0 0 33 33

32 32 2 33 30 32 32 2 2
1 2 3 31 7 2 2 32 32

From the table above, we can observe that the top three nodes ranked by DNC are
identical to those of LGM and LGC. There are slight variations in the ordering of the top five
nodes between DNC, CI, LGM, and LGC. In the following sections, we will use Kendall’s
Tau (τ) to quantify the associations between the sequences generated by different methods.

4.2.4. Time Complexity

When utilizing the DNC to compute the score of nodes in a network, it is necessary
to compute the degree of nodes as well as the sum of their first-order neighbors’ local
clustering coefficients. First, calculate the local clustering coefficient for all nodes in the
network. The computation of local clustering coefficients involves traversing the neighbors
of nodes and calculating their connections, making the time complexity for calculating the
local clustering coefficients for all nodes in a network O(|E|) . To calculate the importance
score for each node in the network, as it involves traversing the first-order neighbors of
nodes, the time complexity for this part is O(k̄), where k̄ is the average degree of nodes. In
a network, |E| is significantly larger than k̄, which results in the overall time complexity of
DNC being O(|E|) .

5. Experiment Conclusions
5.1. Datasets

We tested the performance of DNC using 12 empirical unweighted networks, including
the following:

(1) Dolphins: A record of interactions involving 62 dolphins [37].
(2) Polbooks: Political books associated with the 2004 presidential elections are available

for purchase on Amazon [38].
(3) Adjnoun: A network constructed by recording and analyzing relationships between

adjectives and nouns in text [39].
(4) Jazz: Jazz musicians collaborate, perform, record, and engage in compositional activi-

ties, forming a network that documents these interactions [40].
(5) C_elegans: Documenting and analyzing the neural system connections and interac-

tions of Caenorhabditis elegans, a type of roundworm [35].
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(6) USAir97: The network of the United States’ air transportation system [38].
(7) Vote: A social network dataset representing voting relationships among Wikipedia

users [41].
(8) Email: A communication network representing internal email exchanges at a univer-

sity [42].
(9) Yeast: Describing the interactions of proteins within yeast cells [43].
(10) Hamsterster: A website network that connects user friendships and family relation-

ships [38].
(11) Kohonen: A network based on the neural network model of self-organizing maps,

initially proposed for the citation network analysis in Pajek [44].
(12) Dmela: A network studying protein–protein interaction relationships and their impact

on the biological processes and functions in the fruit fly Drosophila melanogaster [38].

The basic topological features of the network number are shown in Table 3.

Table 3. The typical metric values for these 12 networks. The structural parameters and topological
properties of all of these networks, including the number of nodes N and edges E, average degree
< K >, maximum degree Kmax, clustering coefficient C, and assortativity coefficient r.

Network N E <K> Kmax C r

Dolphins 62 159 5 12 0.2590 −0.0436
Polbooks 105 441 8 25 0.4875 −0.1279
Adjnoun 112 425 7 49 0.1728 −0.1293

Jazz 198 2742 27 100 0.5203 0.0202
C_elegans 297 2148 15 134 0.3115 −0.1520
USAir97 332 2126 12 139 0.6252 −0.2079

Vote 889 2914 7 102 0.1528 −0.0288
Email 1133 5451 9 71 0.2200 0.0782
Yeast 2375 11,693 9 118 0.3100 0.4539

Hamsterster 2426 16,630 14 273 0.5375 0.0474
Kohonen 3772 12,718 5 740 0.2100 −0.1204

Dmela 7393 25,569 6 190 0.0118 −0.0465

5.2. Metrics
5.2.1. Robustness Metric

Connectivity testing stands as one of the classical validation methods for assessing
the importance of nodes within a network [10]. The importance sequence of nodes is
established through a designated algorithm, after which these nodes are systematically
removed one by one. The algorithm’s accuracy is measured by the extent of network
collapse after each node deletion. We use the robustness index R to describe the variation
in network collapse upon node removal [45], denoted as:

R =
1
N

N

∑
i=1

σ(i/N) (13)

N denotes the number of network nodes. Utilizing a normalization factor of 1/N
allows for the comparison of robustness across networks of different sizes. R values
range from 1/N to 0.5. Furthermore, σ(i/N) signifies the ratio of nodes within the largest
remaining connected component post node elimination in comparison to the overall number
of nodes in the graph. We measured the accuracy of DNC and the baseline methods by
plotting the change in σ(i/N) after node removal. The region enclosed by the X and Y
axes and the curve is used to determine the robustness index R. If the area enclosed by the
axes and the curve is minimized, and σ(i/N) decreases the fastest, this suggests that the
network crumbles the fastest and the sequence of important nodes ranked by this method
is the most accurate.
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5.2.2. Kendall’s Tau (τ)

Kendall’s tau (τ) is a statistical method for determining the relationship between two
permutations. It is commonly used to assess the consistency between different rank-
ing methods. Let us consider two sequences A and B, both containing N elements:
A = (a1, a2, . . . , aN) and B = (b1, b2, . . . , bN). For any pair of two elements (ai, bi) and(
aj, bj

)
(where i ̸= j), if ai > aj and bi > bj or if ai < aj and bi < bi, these two pairs are

referred to as concordant pairs. Conversely, if ai > aj and bi < bj or if ai < aj and bi < bi,
these two pairs are referred to as discordant pairs. Notably, if ai = aj or bi = bj, then
these two pairs are neither concordant nor discordant [46]. The formula for calculating the
Kendall’s tau (τ) between these two permutations is as follows:

τ =
2(n+ − n−)
N(N − 1)

(14)

where n− and n+ are the numbers of discordant and concordant pairs. Kendall’s tau
(τ) quantifies the similarity between node ranking sequences under various comparative
algorithms and DNC. A higher τ values signifies a stronger resemblance between the node
ranking sequences of the two methods.

5.2.3. Monotonicity

To further assess the accuracy of the ranking algorithm, we employ the monotonicity
index, denoted as M, to measure the monotonicity of the DNC method and compare it with
the monotonicity of the comparative methods [47]. The definition of ranking monotonicity
is as follows:

M(X) = [1− ∑r∈V Nr(Nr − 1)
N(N − 1)

]2 (15)

where X represents the node sequence, r is the ranking index, and Nr denotes the total
count of nodes in the sequence with a rank of r. When M(X) approaches 1, this indicates a
higher degree of monotonicity in the sequence, with all nodes having distinct rank values.
When M(X) approaches 0, the network has only one ranking value, implying that all nodes
have the same rank value. Additionally, we employed rank distribution plots to assess
DNC and the baseline methods.

5.3. Experimental Results and Analysis
5.3.1. Correlation Analysis

First, we utilized the Kendall’s tau (τ) correlation coefficient to assess the correlation
between DNC and the baseline methods. A high correlation between DNC and the baseline
methods indicates that the node importance ranking sequences produced by DNC are very
similar to those of the baseline methods. This suggests that DNC may be utilizing similar
information as the baseline methods to assess node importance. Figure 2 illustrates the
correlation coefficients between the node importance sequences computed by DNC and
the baseline methods in the Adjnoun, Celegans, Yeast, and Hamsterster networks. The
correlation results for other networks are presented in Appendix A.

From the abovementioned correlation matrices of different networks, we can observe
that the τ-values between the node importance rankings acquired from the CI and DNC
methods are consistently high in the majority of networks, generally exceeding 0.7. This
indicates a strong similarity between these two sequences. Furthermore, in most networks,
the correlation coefficients between KS and LGM with DNC are also relatively high, sug-
gesting a substantial similarity between the node importance rankings produced by DNC
and these two methods. A high level of correlation is also observed among the rankings
generated by the CI, KS, and LGM methods.



Appl. Sci. 2024, 14, 521 11 of 26
Appl. Sci. 2024, 14, 521 11 of 26 
 

  
(a) (b) 

  
(c) (d) 

Figure 2. Subfigures (a–d) represent the correlation matrices between DNC and the baseline meth-
ods in the Adjnoun, Celegans, Yeast, and Hamsterster networks. The correlation coefficients be-
tween the two methods are mathematically expressed by the corresponding rows and columns. The 
first row represents the correlation coefficients between DNC and the baseline methods, while the 
second row represents the correlation coefficients between CI and the remaining methods. The black 
numbers in the figure indicate that the two methods have low correlation. 

From the abovementioned correlation matrices of different networks, we can observe 
that the τ-values between the node importance rankings acquired from the CI and DNC 
methods are consistently high in the majority of networks, generally exceeding 0.7. This 
indicates a strong similarity between these two sequences. Furthermore, in most net-
works, the correlation coefficients between KS and LGM with DNC are also relatively 
high, suggesting a substantial similarity between the node importance rankings produced 
by DNC and these two methods. A high level of correlation is also observed among the 
rankings generated by the CI, KS, and LGM methods. 

In summary, the node importance rankings yielded by DNC closely resemble those 
produced by CI, KS, and LGM. DNC likely utilizes comparable information to these met-
rics for assessing node importance. The SC method also exhibits a relatively high correla-
tion with DNC in most networks, with a few exceptions. Conversely, the correlation coef-
ficients between DNC, CC, as well as KSGC, are generally low in most networks, indicat-
ing significant differences between the node importance rankings obtained by DNC and 
these two methods; DNC may have incorporated more information. At the same time, the 
correlations among these metrics are additionally influenced by the network’s underlying 
structure. 

Figure 2. Subfigures (a–d) represent the correlation matrices between DNC and the baseline methods
in the Adjnoun, Celegans, Yeast, and Hamsterster networks. The correlation coefficients between the
two methods are mathematically expressed by the corresponding rows and columns. The first row
represents the correlation coefficients between DNC and the baseline methods, while the second row
represents the correlation coefficients between CI and the remaining methods. The black numbers in
the figure indicate that the two methods have low correlation.

In summary, the node importance rankings yielded by DNC closely resemble those
produced by CI, KS, and LGM. DNC likely utilizes comparable information to these
metrics for assessing node importance. The SC method also exhibits a relatively high
correlation with DNC in most networks, with a few exceptions. Conversely, the correlation
coefficients between DNC, CC, as well as KSGC, are generally low in most networks,
indicating significant differences between the node importance rankings obtained by DNC
and these two methods; DNC may have incorporated more information. At the same
time, the correlations among these metrics are additionally influenced by the network’s
underlying structure.

5.3.2. Connectivity Test

Figure 3 displays the robustness testing process of the real networks, where the
collapse is simulated by successively removing the nodes of utmost importance within the
network using the DNC method as well as the eight other node importance methods. In
the experimental procedure, node importance values are computed using the DNC method
and several other node importance identification methods; nodes are ranked based on these
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values. After that, the nodes are deleted in declining order of importance. Figure 3 depicts
the trends in σ(i/N) for the Dmela, Kohonen, Vote, and Yeast networks, while the trends
for the remaining networks are incorporated into Appendix B.
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Figure 3. Subfigures (a), (b), (c), and (d) respectively represent the performance of DNC and the
baseline methods in terms of accuracy on the Dmela, Kohonen, Yeast, and Vote networks. The
x-axis of each subfigure represents the sequential removal of nodes according to DNC or the baseline
methods. The y-axis measures the degree of network collapse, with a faster descent indicating greater
accuracy for the method.

From the results in Figure 3 and Appendix B, it is obvious that the robustness curve for
DNC, with nodes removed in the order determined by the DNC algorithm, is positioned at
the bottom, resulting in the smallest area with the x-axis. This suggests that removing nodes
via the DNC method hastens network breakdown. Table 4 provides specific robustness
values for DNC and the comparative algorithms. In summary, DNC outperforms the
baseline methods in terms of accuracy.



Appl. Sci. 2024, 14, 521 13 of 26

Table 4. The robustness values (R) of DNC and the baseline methods across the different datasets
show that, in the majority of networks, DNC exhibits the least robustness. The smallest R values in
the different networks are shown in bold.

Network DNC CI KS CC KSGC LGM LGC SC IGC

Dolphins 0.2862 0.2882 0.2947 0.3548 0.3005 0.3033 0.3153 0.3122 0.3124
Polbooks 0.2604 0.2669 0.3481 0.3341 0.2787 0.2796 0.3042 0.3146 0.2994
Adjnoun 0.2913 0.3025 0.3308 0.3260 0.3096 0.3050 0.3252 0.3276 0.3166

Jazz 0.4399 0.4384 0.4559 0.4201 0.4459 0.4438 0.4470 0.4463 0.4488
C_elegans 0.3311 0.3480 0.3689 0.3960 0.3534 0.3563 0.3849 0.3849 0.3646
USAir97 0.1230 0.1300 0.1546 0.1367 0.1379 0.1414 0.1508 0.1525 0.1562

Vote 0.1781 0.2188 0.2200 0.2954 0.3000 0.2169 0.2623 0.2418 0.2641
Email 0.2573 0.2702 0.2935 0.2893 0.2699 0.2710 0.2846 0.2828 0.2890
Yeast 0.2203 0.2368 0.2833 0.2500 0.2414 0.2452 0.2772 0.2704 0.2953

Hamsterster 0.1487 0.1422 0.1760 0.1605 0.1997 0.1461 0.1621 0.1604 0.1624
Kohonen 0.1085 0.1424 0.1708 0.2683 0.3908 0.1676 0.2722 0.2661 0.1674

Dmela 0.1293 0.1423 0.1681 0.1746 0.1463 0.1486 0.1789 0.1774 0.1673

5.3.3. Monotonicity

We assessed the monotonicity of DNC compared to the other comparative methods
using the M and rank distribution charts. Table 5 presents the specific results of M for DNC
and the baseline methods. Figure 4 depicts the rank distribution charts for various methods
on the Dmela, Email, Yeast, and Hamsterster networks. As observed in Figure 4 and
Appendix C, in all rank distribution plots, the DNC method consistently forms a straight
line towards the lower end, indicating the excellent monotonicity of the DNC method. From
the above monotonicity index M values and rank distribution plots, it can be observed that
LGC exhibits the best monotonicity, with an average value closest to 1. However, LGC has
a high time complexity. The next best in terms of monotonicity are KSGC, LGM, and DNC,
while K-Shell demonstrates the weakest monotonicity. LGC considers the cumulative total
of the Laplacian centrality scores for nodes within half the distance of the node’s truncation
radius as an attraction model’s mass, leading to its high time complexity. Similarly, the time
complexity of KSGC and LGM based on the gravity model is also high. DNC, on the other
hand, takes into account only a node’s degree and its local clustering coefficient within the
first-order neighbors. Unless a node’s values for these two factors are identical, DNC can
effectively differentiate the importance of different nodes. Furthermore, DNC has a time
complexity of O(|E|) and exhibits strong monotonicity. Consequently, when considering
all factors, DNC’s performance is relatively superior.

Table 5. The M value of DNC and the baseline methods. The largest M values in the different
networks are shown in bold.

Network DNC CI KS CC KSGC LGM LGC SC IGC

Dolphins 0.9958 0.9613 0.3769 0.9737 0.9852 0.9821 0.9979 0.9675 0.3124
Polbooks 1.0000 0.9993 0.4949 0.9847 0.9985 0.9967 1.0000 0.9887 1.0000
Adjnoun 0.9994 0.9846 0.5990 0.9837 0.9981 0.9961 1.0000 0.9920 0.9997

Jazz 0.9993 0.9980 0.7944 0.9878 0.9994 0.9991 0.9996 0.9983 0.9994
C_elegans 0.9977 0.9949 0.6094 0.9893 0.9974 0.9972 0.9979 0.9955 0.9977
USAir97 0.9951 0.9433 0.8114 0.9892 0.9935 0.9933 0.9981 0.9928 0.9951

Vote 0.9956 0.9100 0.7265 0.9988 0.9994 0.9993 0.9999 0.9887 0.9997
Email 0.9993 0.9649 0.8088 0.9988 0.9982 0.9977 0.9999 0.9943 0.9999
Yeast 0.9856 0.9111 0.7737 0.9988 0.9988 0.9986 0.9996 0.9873 0.9992

Hamsterster 0.9819 0.9641 0.8714 0.9851 0.9848 0.9844 0.9957 0.9829 0.9857
Kohonen 0.9954 0.9332 0.7306 0.9980 0.9965 0.9960 0.9997 0.9943 0.9984

Dmela 0.9491 0.8583 0.7083 0.9996 0.9996 0.9995 0.9999 0.9905 0.9998
Average 0.9914 0.9533 0.6883 0.9908 0.9957 0.9950 0.9988 0.9879 0.9414
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the Python programming language, version 3.9.0, and employed the same coding style for 
execution on an identical computer. Figure 5 illustrates a comparison of CPU running time 
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Figure 4. Subfigures (a), (b), (c), and (d) respectively depict the rank distribution plots of DNC and
the baseline methods on the Dmela, Email, Yeast, and Hamsterster networks. The x-axis of each
subfigure represents the ranking of nodes, while the y-axis represents the count of nodes with the
same ranking.

5.3.4. CPU Time

The time complexity of DNC is O(|E|) . However, solely comparing time complexity
may have limitations in some networks. Therefore, this paper also compares the CPU
running time of DNC and the baseline methods. To facilitate a better comparison of the
CPU running time of DNC and other comparative algorithms across various networks, we
used the Python programming language, version 3.9.0, and employed the same coding
style for execution on an identical computer. Figure 5 illustrates a comparison of CPU
running time for Adjnoun, Jazz, Dolphins, and USAir97. Table 6 displays the runtime
comparison between DNC and the baseline methods across various networks.

The data presented in Figure 5 and Table 6 make it clear that, across all networks, the
K-Shell algorithm exhibits the highest efficiency. K-Shell only requires iteratively removing
nodes with a degree less than or equal to k, which is the most efficient operation in this
situation. However, the accuracy of K-Shell is quite low. The DNC and SC algorithms also
exhibit relatively high efficiency and require minimal CPU running time. This is because
SC only involves a simple addition of first-degree and second-degree values. Although the
CPU running time for DNC and SC is quite comparable, DNC’s accuracy is significantly
higher than that of K-shell and SC. Therefore, our proposed DNC algorithm combines both
time efficiency and accuracy.
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Figure 5. Subfigures (a), (b), (c), and (d) respectively illustrate the CPU time comparison between
DNC and the baseline methods on the Adjnoun, Jazz, Dolphins, and USAir97 networks.

Table 6. CPU running time of DNC and the baseline methods across different datasets.

Network DNC CI KS CC KSGC LGM LGC SC IGC

Dolphins 0.0008 0.0012 0.0002 0.0016 0.0136 0.0131 0.0733 0.0006 0.0126
Polbooks 0.0020 0.0039 0.0004 0.0043 0.0419 0.0412 0.3333 0.0034 0.0442
Adjnoun 0.0022 0.0054 0.0004 0.0052 0.0479 0.0469 0.2430 0.0017 0.0837

Jazz 0.0175 0.0368 0.0015 0.0359 0.3764 0.4438 1.0518 0.0063 0.3777
C_elegans 0.0110 0.0413 0.0015 0.0457 0.4396 0.4176 2.4965 0.0078 0.7293
USAir97 0.0195 0.0520 0.0050 0.1501 1.3578 1.1940 6.6021 0.0084 1.1002

Vote 0.0206 0.0964 0.0046 0.6506 5.6010 5.5481 115.3479 0.0186 4.4040
Email 0.0294 0.1170 0.0045 0.6634 5.7952 5.7732 130.6723 0.0225 6.0688
Yeast 0.0736 0.1971 0.0105 3.1377 27.2292 27.7196 1832.8288 0.4662 9.3199

Hamsterster 0.1881 1.0533 0.0157 6.7333 44.7648 45.4922 3458.4607 0.6355 27.4336
Kohonen 0.3810 3.7765 0.0425 23.3436 137.8985 139.2541 138,334.9177 0.5790 243.8257

Dmela 0.1596 3.0046 0.1210 141.5445 615.0009 597.0216 342,162.0082 0.1133 268.1242

6. Comparative Analysis of DNC Performance in Small World, Erdős–Rényi, and
Scale-Free Networks

The Watts–Strogatz small world network (WS) is renowned for its high local clustering
and short average path length, making it suitable for simulating social networks. The Erdős–
Rényi random graph (ER) provides a simple randomly connected network structure. The
Barabasi–Albert scale-free network (BA) better characterizes the power-law distribution
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of node degrees. By validating the DNC method in these three types of networks, we can
comprehensively illustrate its performance characteristics in diverse network environments.
We constructed networks for these three models, setting the number of nodes to 889 and
approximately 2914 edges. We evaluated DNC’s effectiveness in identifying crucial nodes
based on robustness, monotonicity, and CPU time.

Figure 6 depicts the variation trends of the DNC method and baseline methods in the
BA network. Figure 7 illustrates the variation trends of the DNC method and the baseline
methods in the ER graph. Figure 8 showcases the variation trends of the DNC method and
the baseline methods in the WS network.
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From these three figures, it is evident that removing crucial nodes identified by the
DNC method leads to the fastest network collapse.

The robustness results ‘R’ compared with eight other algorithms are presented in
Table 7. This comparison is presented for academic accuracy.

Table 7. Robustness of DNC and the baseline methods on the BA, WS, and ER networks.

Network DNC CI KS CC KSGC LGM LGC SC IGC

BA 0.1973 0.2323 0.2937 0.3323 0.2937 0.2410 0.3209 0.3094 0.2467
WS 0.4385 0.4395 0.4867 0.4595 0.4831 0.4438 0.4532 0.4538 0.4562
ER 0.3771 0.3989 0.4305 0.4239 0.4390 0.3914 0.4053 0.4061 0.4157

From Table 7, it can be observed that the robustness value of the DNC method is
the lowest. Therefore, in the aforementioned three networks, DNC demonstrates higher
accuracy compared to the baseline methods.

Figure 9 presents the rank distribution of the DNC method and baseline methods in
the BA network. Figure 10 displays the rank distribution of the DNC method and baseline
methods in the ER graph. Figure 11 illustrates the rank distribution plot on the WS network.
From these three rank distribution graphs, it is evident that the DNC method is capable of
drawing a nearly flat line at the bottom.
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Table 8. Monotonicity indices M of DNC and the baseline methods on BA, WS, and ER networks.

Network DNC CI KS CC KSGC LGM LGC SC IGC

BA 0.9810 0.9983 0.3183 0.9972 0.9944 0.9895 1.0000 0.9762 1.0000
WS 0.9999 0.9977 0.0438 0.9956 0.9873 0.9775 1.0000 0.9641 1.0000
ER 0.9691 0.9980 0.0579 0.9973 0.9937 0.9893 1.0000 0.9751 1.0000

Subsequently, we conducted an analysis of CPU running times, as shown in Table 9. It
is evident that methods based on the gravity model, while exhibiting good monotonicity,
have significantly higher time complexity. For DNC and CI, in most network structures
and special networks, the robustness of DNC is lower than that of CI, indicating that DNC
has a higher accuracy in identifying crucial nodes in the network. Although DNC slightly
lags behind CI and K-Shell in terms of CPU running time, its accuracy surpasses both CI
and K-Shell, and its time complexity is reasonable.

Table 9. CPU running time of DNC and the baseline methods on BA, WS, and ER networks.

Network DNC CI KS CC KSGC LGM LGC SC IGC

BA 0.1627083 0.0640015 0.0034087 0.3464144 2.9167356 2.9463526 55.3866124 0.0902765 3.7456719
WS 0.1311109 0.0437059 0.0031796 0.3523955 3.2523763 3.2334455 66.9728192 0.1548067 2.9645162
ER 0.1070077 0.0406134 0.0034559 0.3901652 3.4885044 3.5960308 59.9473234 0.0861778 2.3780626

In summary, DNC demonstrates excellent performance in WS, ER, and BA networks.
This is presented for academic precision.

7. Conclusions

In summary, this paper introduces the DNC method, which is based on both the
intrinsic characteristics of nodes and the information from their neighboring nodes. DNC
computes a node’s importance score as the sum of its degree and the local clustering
coefficient of its first-order neighbors, so its time complexity is very low. Comparative
experiments involving eight different centrality metrics on various real networks were
conducted. The experimental results highlight DNC’s strong performance concerning
accuracy, monotonicity, and time efficiency. Nevertheless, despite these strengths, DNC
exhibits certain limitations. It focuses solely on local network information and could be
extended to consider global network attributes to enhance its performance. Additionally,
DNC has the potential for extension to weighted and directed networks. The insights
gained from this research will play a pivotal role in advancing the development of efficient
techniques for identifying and protecting critical nodes within network systems.
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Figure A3. Subfigures (a–l) represent the rank distribution plots of DNC and baseline methods on
Adjnoun, Dmela, Celegans, Dolphins, Email, Hamsterster, Jazz, Kohonen, Yeast, Polbooks, USAir97,
and Vote networks, respectively.
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