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Abstract: Estimating 360◦ depth from multiple cameras has been a challenging problem. However,
existing methods often adopt a fixed-step spherical sweeping approach with densely sampled spheres
and use numerous 3D convolutions in networks, which limits the speed of algorithms in practice.
Additionally, obtaining high-precision depth maps of real scenes poses a challenge for the existing
algorithms. In this paper, we design a cascade architecture using a dynamic spherical sweeping
method that progressively refines the depth estimation from coarse to fine over multiple stages. The
proposed method adaptively adjusts sweeping intervals and ranges based on the predicted depth and
the uncertainty from the previous stage, resulting in a more efficient cost aggregation performance.
The experimental results demonstrated that our method achieved state-of-the-art accuracy with
reduced GPU memory usage and time consumption compared to the other methods. Furthermore,
we illustrate that our method achieved satisfactory performance on real-world data, despite being
trained on synthetic data, indicating its generalization potential and practical applicability.

Keywords: omnidirectional depth estimation; cascade architecture; dynamic spherical sweeping

1. Introduction

Estimating 360° depth information from images is a fundamental task in computer
vision. In recent years, image-based depth estimation techniques have made significant
progress. These methods, including binocular stereo matching and multi-view dense
reconstruction, use deep learning to analyze images with a limited field of view, restricting
the output depth to a specific view. However, omnidirectional depth estimation ability is
required for applications including autonomous driving and robot navigation, to perceive
the surrounding environment. One potential approach is to apply binocular stereo matching
to images captured at different views, thereby estimating scene depth individually for each
view. Similarly to the process of panoramic image stitching, we can perform depth image
stitching by combining images captured from various perspectives to create a panoramic
depth image. However, the depth at the stitching seam is discontinuous and requires
additional post-processing for smoothing. This approach increases the complexity, as it
requires many sets of binocular cameras and also requires stereo rectification. To tackle
these challenges, several omnidirectional depth estimation algorithms have been proposed.

Unlike traditional methods limited to a narrow FOV, omnidirectional depth estimation
aims to overcome this limitation by generating surround depth. Several existing methods [1–4]
adopt ideas from monocular depth estimation, directly predicting depth from individual
panoramic images. While simplifying system hardware requirements, the limited input
information risks inaccurate results in certain contexts, particularly those involving distant
or heavily occluded objects. Other methods [5–7] incorporate conventional binocular stereo
matching constraints and epipolar geometry into panoramic image pairs, predicting more
reliable depth. Nevertheless, the practical applicability remains limited due to challenges in
obtaining such panoramas and additional calibration requirements.
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Some methods [8,9] use fisheye images to directly estimate omnidirectional depth
by performing spherical sweeping. As shown in Figure 1, the input comprises wide FOV
images from four fisheye lenses facing different directions, yielding a panoramic depth map
and a panoramic image. Spherical sweeping assumes that objects are situated on a series
of hypothetical spheres, thereby constructing spherical cost volumes for depth estimation.
However, to achieve high accuracy, a large number of densely sampled hypothetical spheres
are required. Such fixed-interval sweeping treats all pixel points equally, which not only
increases GPU memory usage, but also slows down inference speed.

Figure 1. Omnidirectional depth estimation. (Left Top): The structure of the system with fisheye
images as input. (Left Bottom): Real camera rig. (Right Top): Panoramic image. (Right Middle):
Panoramic inverse depth map. (Right Bottom): Point cloud image.

Inspired by the cascade cost volume construction in the multi-view plane
sweeping [10,11], we present a novel cascade, multi-stage omnidirectional depth esti-
mation algorithm with dynamic spherical sweeping. Our method involves predicting
depth in three stages, progressively refining the estimation from coarse to fine, as illus-
trated in Figure 2. In the initial stage, depth is predicted using a low-resolution spherical
cost volume, sweeping a large number of hypothetical spheres with a wide interval. In the
subsequent stages, the number and interval of hypothetical spheres decrease, while the
resolution of the spherical cost volumes increases. We introduce dynamic spherical sweep-
ing, which adaptively adjusts sweeping intervals and ranges based on the uncertainty and
the previous prediction. For pixel points with higher uncertainty, our method expands the
sweeping range to cover a wider range of hypothetical spheres (wider depth range), while
for lower uncertainty pixel points, it reduces the sweeping range. Our method reduces
the size of hypothetical spherical features during multi-stage processing. Compared to
the method of spherical sweeping in a global hypothetical spherical space, our method
only performs spherical sweeping in the local space with the highest probability of omni-
directional stereo matching, which is more efficient. Meanwhile, our method adaptively
adjusts the sweeping range of each pixel in the subsequent stages based on the uncertainty
of depth, which is beneficial for improving the accuracy of depth prediction.
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Figure 2. Network architecture overview. Our network is roughly divided into four parts: feature
extraction, spherical cost volume construction, cost regularization, and cost regression.

The contributions of this paper are summarized as follows:

1. We pioneer applying the cascade spherical cost volume to multi-view omnidirectional
depth estimation, achieving lower GPU memory usage, faster inference time, and
higher accuracy than alternative methods;

2. We develop a dynamic spherical sweeping technique where the network learns sweep-
ing intervals and ranges according to the uncertainty;

3. Comprehensive experiments showed that our method outperformed the others, which
also demonstrate promising performance on real-world data.

2. Related Works
2.1. End-to-End Deep Learning Methods for Stereo Depth Estimation

Stereo matching algorithms using deep learning have achieved surprising results.
MC-CNN [12] uses a convolutional neural network(CNN) to extract features, then regular-
izes the cost volume with a traditional SGM [13] algorithm. GC-Net [14] constructs the cost
volume by simply concatenating left and right feature maps, and uses 3D convolutions to
regularize it in an end-to-end manner without post-processing, which has had a profound
influence on subsequent research. PSMNet [15] based on [14] uses feature pyramids to
extract multi-scale features, further improving accuracy.

However, using 3D convolutions to process the cost volume leads to enormous re-
source consumption. Some methods attempt to avoid using 3D convolutions or to optimize
them. GA-Net [16] proposes a more efficient guided aggregation (GA) strategy to replace
costly 3D convolutions, while achieving higher accuracy. RAFT-Stereo [17] takes optical
flow as the control variable to tackle the depth estimation problem from input images
and effectively propagates information in images using multi-scale GRUs, thus enabling
real-time inference with high accuracy and robustness. CFNet [18] introduces a fused cost
volume to alleviate domain shifts for initial disparity estimation and constructs cascade cost
volumes using variance-based uncertainty estimation to balance disparity distributions,
which adaptively narrows down the pixel-level disparity search space in later stages.

Three-dimensional reconstruction from multiple views has also advanced rapidly in
recent years. MVSNet [19] introduces a differentiable homography-based cost volume for
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multi-view depth estimation. RMVSNet [20] replaces 3D convolutions with GRU recurrent
networks, to reduce the model size. PointMVSNet [21] predicts per-point depth, which is
then combined with images to form 3D point clouds, which are further optimized using
point cloud algorithms. MVSCRF [22] introduces conditional random fields (CRF) into
multi-view stereo matching. In the field of multi-view stereo matching, several methods are
based on cascade architectures and coarse-to-fine concepts, to optimize the processing of
cost volumes. CasMVS [11] proposes a cascade architecture, utilizing the depth prediction
from the previous stage as input to the next stage, which reduces the plane sweeping range.
UCS-Net [10] presents an approach using an adaptive resolution cost volume, where the
dynamic depth hypothesis space is derived from the uncertainty of the predictions in the
previous stage.

2.2. Omnidirectional Depth Estimation

Recently, many deep-learning-based approaches for omnidirectional depth estimation
have been proposed. CoordNet [5] uses additional coordinate features to learn contextual
information in the equirectangular projection (ERP) space [23]. BiFuse [24] estimates the
omnidirectional depth from a monocular image using both equirectangular and cubemap
projections, in order to overcome the distortion of panoramas. UniFuse [4] unidirectionally
feeds cubemap features to equirectangular features only at the decoding stage, which is
more efficient than [24]. OmniFusion [3] converts panoramic images into low-distortion
perspective patches, makes CNN-based patch-wise predictions, and merges them to obtain
the final output, handling spherical distortions that are difficult for CNNs. 360SD-net [6]
performs spherical disparity estimation on panoramic images from top-down viewpoints,
enabling 3D reconstruction of the entire perceived scene. CSDNet [25] presents an approach
for panoramic depth estimation using spherical convolutions and epipolar constraints.
MODE [7] uses Cassini [26] projection for spherical stereo matching.

Some methods take fisheye images as input and directly output omnidirectional
depth maps. SweepNet [9] uses a four fisheye omnidirectional stereo acquisition system
with a spherical sweeping method to project images onto concentric spheres centered
at the device origin for matching. OmniMVS [8] is the first end-to-end deep learning
method for directly estimating omnidirectional depth maps from multi-view fisheye images,
accomplishing cost computation, aggregation, and optimization within its 3D convolutional
network in an end-to-end manner without requiring separate pipelines. Crown360 [27]
proposes an icosahedron-based omnidirectional stereo matching algorithm, using spherical
sweeping and icosahedral convolutional networks to estimate panoramic depth maps from
multi-view fisheye images. UnOmni [28] proposes an unsupervised omnidirectional MVS
framework based on multiple fisheye images. However, the methods mentioned above
typically have a high resource utilization and slow inference speed, due to redundant dense
sampling of hypothetical spheres. OmniVidar [29] combines depth maps from multiple
traditional stereo pairs but requires additional binocular calibration, which may cause
discontinuity issues.

3. Method
3.1. Network Architecture

As presented in Figure 2, the proposed network consists of four parts: feature ex-
traction, spherical cost volume construction, cost regularization, and cost regression. A
three-stage cascade architecture is leveraged to construct the multi-scale spherical cost
volume for a coarse-to-fine depth estimation. Furthermore, the depth range of spheri-
cal sweeping is adjusted adaptively based on the prediction and uncertainty from the
previous stage.

Feature Extraction. We extract input image features using ResNet50 [30] and FPN [31],
specifically the top-level FPN features with shape 1

2 H × 1
2 W × C, where H and W are input

height and width.
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Spherical Cost Volume Construction. The sweeping parameters in stage t are
determined using Equations (10)–(13), where we project input image features onto equirect-
angular features based on the hypothetical spheres and camera parameters, to construct
the initial spherical cost volume. As the stages progress, the resolution of equirectangular
features increases, while the interval and number of hypothetical spheres decrease, as
shown in Table 1.

Table 1. Hyperparameter Settings. The width and height of the regularized spherical cost volume
from each stage is αt Houtput × αtWoutput.

Stage t αt Lt st λt wt

1 0.25 48 - 4.0 0.5
2 0.50 32 3 [1.0, 4.0] 1.0
3 1.00 8 1 [1.0, 2.0] 2.0

Cost Regularization. We regularize the initial spherical cost volume at each stage using
the cost regularization network from [11]. Each stage has a separate cost regularization
network.

Cost Regression. We use soft-argmin to predict the proper sphere index spred
t , which

is determined as
pt = so f tmax(SC∗

t )

=
{

pt,min, . . . , pt,j, . . . , pt,max
}

spred
t =

St,max

∑
j=St,min

pt,j ∗ j

(1)

where SC∗
t and pt are the regularized spherical cost volume and the probability for one of

the hypothetical spheres in stage t, respectively.
As shown in the light blue rectangular region in Figure 2, we utilize an upsampling

layer (shown in Figure 3a) to increase the resolution of the regularized spherical cost
volume. Then, the regression of the refined volume yields the basic sphere for sweeping,
and an uncertainty net (shown in Figure 3b) is used to predict the uncertainty, thereby
determining the sweeping interval and range for the next stage.

(a) (b)

Figure 3. Network submodules. Each stage has its own independent uncertainty net and upsampling
layer. (a) Upsampling layer; (b) uncertainty net.

Loss Function. At each stage, all our network results are used for supervised training.
The loss function uses SmoothL1Loss, which is determined as

loss =
3

∑
t=1

wt × SmoothL1Loss
(

spred
t , sgt

t

)
(2)

sgt
t and wt are the ground truth (GT) sphere index and the weight corresponding to the loss

in stage t.

3.2. Spherical Cost Volume

Given the intrinsic and extrinsic matrices of a camera, we can project a point from the
camera coordinate system to the coordinate system located at the camera rig center. Thus,
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we can project the feature fi from the ith camera onto the central ERP view, which can be
written as

xc = [xc, yc, zc]
T, (3)

x = MEixc, (4)

Fi = Πi

(
MIi, fi, x = [x, y, z]T

)
, (5)

where Πi is the projection function, MIi and MEi are the camera intrinsic and extrinsic
(cam2rig) matrices, respectively, and xc is the coordinate of point P in the camera coordinate
system. x contains the 3D point coordinates in the ERP view, and Fi is the ERP feature.

As shown in Figure 4a, we can easily transform 3D coordinates into polar coordinates.
Let θ be the horizontal angle in the range [−π, π], ϕ be the pitch angle in the

[
−π

2 , π
2
]
, and

d be the radial distance from the point to the center. Equation (5) can be rewritten as

θ = arcsin
x√

x2 + z2

ϕ = arctan
y√

x2 + z2

d =
√

x2 + y2 + z2

Fi = Πi(MIi, fi, (θ, ϕ, d))

(6)

(a) (b)
Figure 4. (a) Illustration of the coordinate system. The color arrows indicate the three axes of the 3D
Cartesian coordinate system. The point P can be projected into the ERP view with the camera rig
center as the origin. P′ is the projection point of P on the XOZ plane. θ is the angle between O⃗P′ and
O⃗Z. ϕ is the angle between O⃗P and XOZ. (b) Illustration of multi-view spherical sweeping. We can
assume that Pj is in different hypothetical spheres Sj to construct a spherical cost volume.

The values of θ and ϕ can be readily derived from ERP images. Consequently, a
backward warp can be performed using θ, ϕ, and d to obtain the ERP feature. Varying d
yields different projection outcomes, enabling computation of the spherical cost volume.
We divide the inverse of the depth into a finite number of hypothetical spheres, which is
determined as

idx =
N − 1

d′
max − d′

min

(
d
′ − d

′
min

)
, (7)

where N is the total number of hypothetical spheres, d
′

is the inverse depth 1
d , d

′
max, d

′
min

are the maximum and minimum values, respectively, and idx represents the index of the
hypothetical sphere Sidx+1.

As shown in Figure 4b, given a series of hypothetical spheres
{

S1, S2, . . . , Sj, . . . , SL
}

,
we can obtain the ERP features at each index based on Equations (4), (6) and (7). By
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concatenating these features together, we form the spherical feature volume for the ith

camera, which is denoted as

SCi = concatenate
{

Fi,1, . . . , Fi,j, . . . , Fi,L
}

, (8)

where SCi is the spherical feature volume, and Fi,j is the feature of the hypothetical sphere
Sj. If the shape of Fi,j is H

′ × W
′ × C, then the shape of SCi is H

′ × W
′ × C × L, where H

′
,

W
′
, and C represent the height, width, and number of channels, respectively.

We can calculate the variance between the spherical feature volumes of different
cameras and take this as the initial spherical cost volume SC in the ERP view, which is
determined as

SC =
∑m

i=1 SC2
i

m
−

(
∑m

i=1 SCi

m

)2

, (9)

where m is the number of cameras. By performing cost regularization and regression, the
initial spherical cost volume enables identifying the proper sphere and corresponding
depth for each 3D point.

3.3. Cascade Spherical Sweeping

We propose a cascade spherical sweeping approach, enabling high accuracy, while
reducing resource use. The initial stage using the low-resolution spherical cost volume
sweeps more hypothetical spheres for a coarse estimate. Based on this estimation, in
the high-resolution space, we perform spherical sweeping with fewer but more accurate
hypothetical spheres, leading to better results.

As shown in Figure 5, the proposed cascade spherical sweeping consists of three
stages. Let Lt represent the number of hypothetical spheres in stage t. The shape of the
corresponding initial spherical cost volume is Ht ×Wt × C × Lt, with the sweeping interval
λt. ht is a parameter defined by Equation (12), which is used to determine the sweeping
range. In stage 1, we construct the spherical cost volume over the entire hypothetical
spherical space at a low resolution, where λ1 = N

L1
. In the subsequent stages, each stage

utilizes the outcome of the previous one as the basic sphere npred
t to initiate sweeping, with

the range determined by applying offsets based on ht, which is determined as

St,min =


0 if npred

t − ht
Lt
2 < 0

N − htLt if npred
t + ht

Lt
2 ≥ N

npred
t − ht

Lt
2 otherwise

, (10)

St,max =


htLt − 1 if npred

t − ht
Lt
2 < 0

N − 1 if npred
t + ht

Lt
2 ≥ N

npred
t + ht

Lt
2 otherwise

, (11)

where St,min and St,max denote the lower and upper limits of the sweeping range in stage t,
respectively. npred

t is obtained using Equation (1) but using the upsampled SC∗
t .
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Figure 5. Cascade spherical sweeping in different stages. In the three stages, our method’s prediction
becomes closer to the ground truth.

3.4. Dynamic Sweeping Range with Uncertainty

In stages 2 and 3, we upsample the regularized cost volumes and use them to obtain the
sweeping interval and range based on Equations (10) and (11). The interval is computed as

ht = 1.0 + st × σt, (12)

λt =
(St,max − St,min + 1)

Lt
, (13)

where st is a hyperparameter in stage t, serving to restrict the range of the interval, and
σt ∈ [0, 1] is the uncertainty predicted by a dedicated subnetwork (called uncertainty net).
If the uncertainty of a pixel is high, the range of spherical sweeping performed at that point
will also expand to find the best matching sphere.

The uncertainty signifies the deviation between the predicted and ground truth
spheres. High uncertainty requires expanding the sweeping range due to the large bias.
In contrast, low uncertainty allows narrowing the range as the result approaches the true
value. Our method adaptively adjusts the sweeping range and interval based on a per-pixel
point uncertainty to dynamically determine a reasonable scope. This method searches for a
sphere within the hypothetical region where each pixel is most likely to be located.

4. Experiments
4.1. Implementation Details

We trained the full network end-to-end using an Adam optimizer on 8 RTX3090
GPUs, with a batch size of 2 per GPU. We set N = 192 and C = 32, with d

′
min = 1

1000m
and d

′
max = 1

1.65m . In all experiments, the output and GT depth maps were cropped to
Houtput = 160 (−π

4 ≤ ϕ ≤ π
4 ) and Woutput = 640 to exclude regions near the poles that were

highly distorted and less informative. The hyperparameter details mentioned in Section 3
are described in Table 1.

We trained on OmniThings for 30 epochs with an initial learning rate l = 0.001,
decayed by a cosine scheduler after 6 warm up epochs. We then fine-tuned on Urban and
OmniHouse for 20 epochs, with l = 0.001 for the first 10 epochs and l = 0.0001 after.

4.2. Quantitative Evaluation

To evaluate our method, we conducted a comparative analysis with several publicly
available methods. The resource usage of the different models during the inference pro-
cess and the datasets used for training are summarized in Table 2. The results clearly
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demonstrate that our method exhibited the lowest GPU memory utilization and the fastest
inference time. All models used training weights provided by the authors.

For quantitative evaluation, we calculated the error by converting the predicted sphere
indices into absolute depth values using Equation (7). We used metrics such as MAE (mean
absolute error), RMSE (root mean square error), AbsRel (absolute relative error), and SqRel
(squared relative error), as presented in Table 3. As shown in Table 4, the error was also
measured using the percent error [8] of the estimated sphere index compared to all possible
spheres, which is defined as

Errorindex =

∣∣∣spred
3 − sgt

3

∣∣∣
N

× 100, (14)

The quantitative results demonstrated that our method achieved the best performance
compared to the other methods. The depth range for the evaluation metric was [1.65 m, 100
m]. As shown in Table 2, we also evaluated the GPU memory usage and inference speed,
and the results showed that our method was more efficient.

Table 2. Summary of model information. ‘-ft’ represents the fine-tuned model. The best results are in
bold. ‘✓’ indicates that the dataset is used for training.

Models GPU Memory
Utilization (MiB)

Inference
Time (Seconds)

Training Data

OmniThings [8] OmniHouse [8] Urban [8]

Crown360 [27] 3772 ∼0.231 ✓
OmniMVS-ft [8] 7720 ∼0.320 ✓ ✓ ✓

CasOmniMVS (ours) 3022 ∼0.085 ✓
CasOmniMVS-ft (ours) 3022 ∼0.085 ✓ ✓ ✓

Table 3. Quantitative results (depth) on the synthetic datasets. The metrics refer to depth errors. The
best results are in bold. ‘↓’ indicates that the smaller the value, the better.

Datasets Methods
Metrics

MAE (↓) RMSE (↓) AbsRel (↓) SqRel (↓)

OmniThings

Crown360 [27] 1.788 5.307 0.161 5.554
OmniMVS-ft [8] 2.363 7.883 0.283 15.169
CasOmniMVS 0.604 1.420 0.045 0.227
CasOmniMVS-ft 0.949 2.018 0.060 0.454

OmniHouse

Crown360 [27] 1.694 4.141 0.102 1.535
OmniMVS-ft [8] 0.631 2.292 0.044 0.582
CasOmniMVS 0.807 1.889 0.049 0.222
CasOmniMVS-ft 0.497 1.321 0.029 0.118

Sunny

Crown360 [27] 4.244 10.707 0.180 5.091
OmniMVS-ft [8] 1.772 6.979 0.083 2.807
CasOmniMVS 2.750 8.042 0.119 2.577
CasOmniMVS-ft 1.471 5.736 0.051 1.162
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Table 4. Quantitative results (index) on the synthetic datasets. The qualifier ‘>n’ refers to the pixel
ratio (%) whose error is larger than n. The best results are in bold. ‘↓’ indicates that the smaller the
value, the better.

Datasets Methods
Metrics

MAE (↓) RMSE (↓) >1 (↓) >3 (↓) >5 (↓)

OmniThings

Crown360 [27] 2.566 4.900 48.051 21.648 13.410
OmniMVS-ft [8] 3.330 6.949 43.811 24.603 17.512
CasOmniMVS 1.156 3.016 23.355 7.664 4.363
CasOmniMVS-ft 1.516 3.610 31.262 11.309 6.373

OmniHouse

Crown360 [27] 1.399 2.921 29.947 8.905 5.036
OmniMVS-ft [8] 0.618 1.626 9.698 3.436 2.055
CasOmniMVS 0.793 1.777 15.178 4.490 2.321
CasOmniMVS-ft 0.451 1.075 7.164 1.841 1.029

Sunny

Crown360 [27] 1.352 2.896 33.407 9.253 4.971
OmniMVS-ft [8] 0.597 2.453 7.766 3.700 2.504
CasOmniMVS 1.216 3.205 23.269 8.469 4.808
CasOmniMVS-ft 0.446 1.570 6.807 2.191 1.277

4.3. Qualitative Evaluation

Figure 6 illustrates the qualitative results of our and other methods on the synthetic
datasets. Our method outperformed the other methods in areas such as detail (the area
surrounded by the short green line), glass reflections (the area surrounded by the short
blue lines), and translucent material objects (the area surrounded by the short yellow lines).
Furthermore, as illustrated in Figure 7, our model achieved impressive results even in
real-world scenarios, despite only being trained on synthetic data.

Figure 6. Qualitative results on the synthetic datasets. Visualizing the inverse of the depth, with a
minimum depth of 1.65 m.
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Figure 7. Qualitative results on the real data. Visualizing the inverse of the depth, with a minimum
depth of 1.25 m.

4.4. Ablation Studies

Evaluation of Dynamic Spherical Sweeping. We compared the performance of the
proposed method with and without dynamic spherical sweeping (dss). VAR represents
using the variance used in [10,18] to estimate the uncertainty σt. All networks had data
augmentation disabled during training. Table 5 shows the ablation studies of the proposed
dynamic spherical sweeping. For the non-dynamic spherical sweeping method, h2 and h3
were set to 2.0 and 1.0, respectively. The variance was defined as

vart =
St,max

∑
j=St,min

(spred
t − j)2 × pt,j, (15)

where vart is the variance in stage t. The results demonstrated the superiority of our
method over the fixed-interval and variance-based uncertainty prediction approaches.

Table 5. Quantitative results (index) on the omnithings dataset with dynamic spherical sweeping.
The best results are in bold. ‘↓’ indicates that the smaller the value, the better.

Network Setting MAE (↓) RMSE (↓) >1 (↓) >3 (↓) >5 (↓)

w/o dss 1.1803 3.3381 20.7600 7.8810 4.6502
w/dss(VAR) 1.2627 3.1713 25.6427 9.3490 5.1254
w/dss 1.0676 2.9761 20.2148 6.8897 3.8971

Evaluation of Cascade Strategy. We used the fine-tuned model to test the results
of different stages and conducted a quantitative comparison, as shown in Table 6. The
results demonstrated that our cascade strategy could progressively improve the prediction
accuracy. Figure 8 illustrates that the network predictions were continuously refined from
coarse to fine as the stages advanced.
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Table 6. Quantitative results(index) of different stages. The error was measured using Equation (14).
‘↓’ indicates that the smaller the value, the better.

Datasets Stage t MAE (↓) RMSE (↓) >1 (↓) >3 (↓) >5 (↓)

OmniThings
1 2.5987 5.4940 47.6431 19.3850 12.1928
2 1.8062 4.2154 35.5856 13.0703 7.8032
3 1.5157 3.6077 31.2624 11.3088 6.3731

OmniHouse
1 0.7597 1.7285 15.4238 3.3810 1.8910
2 0.5407 1.3086 8.7325 2.2392 1.2954
3 0.4508 1.0750 7.1639 1.8408 1.0288

Sunny
1 1.1544 2.7189 32.8847 4.9705 3.2113
2 0.6490 1.9355 9.4358 2.9383 1.8798
3 0.4459 1.5696 6.8069 2.1911 1.2773

Figure 8. Qualitative results (index) of multiple cascade stages. For each image group, from left to
right, the first row displays the input image, ground truth, and colors corresponding to the different
sphere indices. The second row shows the visualization of sphere indices (maximum sphere indices
were set to 95 and 125, respectively), and the third row presents the error maps (maximum sphere
index error was set to 5) for the three stages.

5. Conclusions, Limitations, and Future Work

In this work, we proposed an end-to-end cascade omnidirectional depth estimation
algorithm with dynamic spherical sweeping. It begins with a low-resolution spherical cost
volume, then progressively refines the resolution, while adaptively adjusting sweeping
intervals and ranges. The experimental results demonstrated that our method significantly
reduced the GPU memory usage and sped up the inference time, outperforming various
existing publicly available omnidirectional depth estimation algorithms. Furthermore,
without fine-tuning, our method also produced promising results in real-world scenarios,
showing a high generalizability and practicality.

Our method relies on the feature matching in the overlapping regions between camera
views, leading to a less accurate performance in non-overlapping regions. When con-
structing the spherical cost volume, we simply calculated the variance between multi-view
features, without explicitly differentiating overlapping and non-overlapping regions. In
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future work, we will focus on how to effectively leverage features from overlapping versus
non-overlapping areas, to optimize cost volume generation. Furthermore, optimizing the
division of hypothetical spheres based on the different depth distribution of various scenes
(i.e. indoor and outdoor) is also an exciting research direction. We will also explore the
application of self-supervised learning, to improve our method.
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