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Abstract: Behavioral analysis of animals in the wild plays an important role for ecological research
and conservation and has been mostly performed by researchers. We introduce an action detec-
tion approach that automates this process by detecting animals and performing action recogni-
tion on the detected animals in camera trap videos. Our action detection approach is based on
SWIFT (segmentation with filtering of tracklets), which we have already shown to successfully de-
tect and track animals in wildlife videos, and MAROON (mask-guided action recognition), an action
recognition network that we are introducing here. The basic ideas of MAROON are the exploitation
of the instance masks detected by SWIFT and a triple-stream network. The instance masks enable
more accurate action recognition, especially if multiple animals appear in a video at the same time.
The triple-stream approach extracts features for the motion and appearance of the animal. We evalu-
ate the quality of our action recognition on two self-generated datasets, from an animal enclosure
and from the wild. These datasets contain videos of red deer, fallow deer and roe deer, recorded
both during the day and night. MAROON improves the action recognition accuracy compared to
other state-of-the-art approaches by an average of 10 percentage points on all analyzed datasets and
achieves an accuracy of 69.16% on the Rolandseck Daylight dataset, in which 11 different action
classes occur. Our action detection system makes it possible todrasticallyreduce the manual work of
ecologists and at the same time gain new insights through standardized results.

Keywords: wildlife monitoring; deep learning; video instance segmentation; mask-supported action
recognition; triple-stream convolutional neural network; action detection for deer

1. Introduction

Understanding animal behavior is a fundamental component of conservation biology [1].
Consequently, action detection for wild animals has become an essential task for ecologists to
assist conservation efforts [2]. However, quantifying the behavior of wild animals presents
significant challenges and is often neglected as a result of the tremendous work-load that is
needed to analyze all collected data.

Camera traps have become an ubiquitous tool in ecology and conservation that offer a
reliable, minimally invasive and visual means of surveying wildlife [2–4]. Over the last few
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decades, camera traps have been adopted for various ecological tasks, including abundance
estimation [5–7], the quantification of species diversity [8], the detection of rare species [9],
the investigation of animal activity patterns [10], and the analysis of species replacement
processes [11]. Automatic analysis using artificial intelligence is absolutely necessary to
deal with the vast amount of collected camera trap data [12,13]. Currently, many AI models
are created that enable the management and processing of camera trap images and videos,
facilitate the categorization of camera trap images, or are able to classify species within
these images [14]. Although a few AI models exist that allow the classification of species in
camera trap videos, a tool for the automatic quantification of animal behavior is still lacking.

Action recognition or action classification describes the task of assigning an action label
to a (short) video sequence [15,16]. In that video sequence, only one actor is performing
one action. In contrast, action detection is the combined task of detecting an object in a
video and then performing action recognition on the found object. Therefore, with action
detection it is possible to describe different actions from different actors at the same time
in a video. Sometimes, however, the term action detection is used not only in a spatial
context but also in a temporal context, meaning that it is not the person or animal that is
spatially detected in a video but the start and end point of an action within a video that is
determined. In this case, (temporal) action detection again refers to a single individual in a
video and not to multiple actors.

Action recognition and action detection for wildlife monitoring are still relatively
unexplored research areas. The following approaches represent all the important work
in the field of action recognition and action detection in wildlife monitoring. General
action recognition and action detection approaches are presented in Section 2. In our
previous work [17], we considered action recognition for different European animals with
just three simple action categories (walking, standing and eating). The work of [18] creates a
neural network for the action recognition of great apes based on a self-created dataset. The
Animal Kingdom Dataset is introduced in [19] and comprises action clips of a huge variety
of animal species. The authors also propose an action recognition network, CARe, that
recognizes the actions of unseen animal species. In the paper [20], the authors introduce a
metric learning system with a triple-stream embedding network using RGB and optical
flow features for the action recognition of great apes.

This paper presents the first action detection approach for camera trap videos. We
combine our successful instance segmentation system SWIFT (segmentation with filtering
of tracklets; see Section 3 for more detail) [21] with our newly developed action recognition
network MAROON (mask-guided action recognition). The two most important innovations
in our action recognition network are (1) the use of masked input frames and (2) the
triple-stream approach for the spatio-temporal feature extraction. We evaluate our action
recognition network on three different datasets and compare it to the state-of-the-art
networks SlowFast [22] and MViT [23].

2. Related Work

In recent years, many action recognition and action detection approaches have been
developed, which can be found in the surveys [15,16,24–26].

Three-dimensional convolutional neural networks (3D CNNs) are a famous approach
to extract spatio-temporal features from videos to classify actions [27–31]. They outperform
2D convolutional approaches for action recognition [32,33]. The so-called X3D approach [34]
forms a network architecture between 3D and 2D CNNs by extending 2D convolutional
networks in space, time, width and depth to extract spatio-temporal features for action
recognition. The most successful 3D CNNs are two-stream approaches, which were first
introduced by [35]. SlowFast [22] represents one of the most successful two-stream con-
volutional neural networks by extracting primarily spatial features in one stream and
temporal features in the other. The approach of [36] introduces a three-stream network
using different amounts of frames in each stream. The combined features are fed into
an LSTM (long short-term memory) network for action prediction. Another three-stream
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convolutional neural network (3SCNN) that performs action recognition in 3D using the
skeleton information of the actors is presented by [37] .

Several approaches exist that introduce modules that extend upon existing CNNs
and improve the ability to extract spatio-temporal features. Examples are the Temporal
Relation Network (TRN) [32], SpatioTemporal Module (STM) [38], Temporal Shift Module
(TSM) [39], Temporal Excitation and Aggregation (TEA) [40], MotionSqueeze [41] and
TokenLearner [42]. In addition, the Contrastive Action Representation Learning (CARL)
framework [43] specializes in learning long-term action representations from videos over a
very long time.

Transformer architectures have also become very popular for performing action recogni-
tion [44–46]. A very successful variant is the Multiscale Vision Transformer (MViT) [23], which
combines the transformer architecture with the hierarchical multiscale feature extraction.

Using instance masks to support action recognition has been a poorly explored area.
A few approaches exist, but these are either specialized to one specific application area
or are limited in other aspects. SegCodeNet [47] uses a Mask R-CNN [48] to generate
instance masks and combines them with the input frames in a two-stream approach to
recognize different activities of wearables. The work of [49] uses a Mask R-CNN to extract
the instance masks of one single actor in a video sequence and mask the frames accordingly.
The masked frames are then fed into a single-stream CNN for action recognition. The work
of [50] uses RGB frames overlaid with human pose information in a two-stream network to
predict actions in the context of table tennis.

Action detection approaches are usually a combination of a detector and an action
recognition network. However, because these two tasks are typically evaluated and an-
alyzed separately, there is little work that presents comprehensive designs for action
detection. Moreover, the quality of the action recognition network heavily depends on the
quality of the detector when both are evaluated as one approach. Nevertheless, there are a
few relevant action detection approaches in the literature. The Asynchronous Interaction
Aggregation network [51] focuses on interactions between persons. The work of [52] in-
troduces a baseline approach for weakly supervised action detection with multiple actors.
The Efficient Video Action Detector (EVAD) [53] uses a transformer architecture to localize
actors and classify the actions. The previously mentioned SlowFast network [22] is also
able to perform action detection. The authors integrate a detector similar to Faster R-CNN
in their architecture for detecting the actors and then perform action recognition on the
found actors. The approach of [54] combines a SlowFast network with a human detector
for action detection of persons.

Our action detection approach uses SWIFT as the detector and tracker. The functional-
ity of SWIFT in the application area of wildlife monitoring is shown in our publication [21].
Our newly introduced action recognition network MAROON builds on SlowFast [22].
Therefore, we include the SlowFast approach in our evaluations. Moreover, it is a successful
representative of the convolutional neural network approaches. We also analyze MViT [23],
because transformer architectures are the other main approach to action recognition and
MViT is one of the most successful networks.

3. Materials and Methods
3.1. Datasets

Annotated datasets in the context of action detection for wildlife monitoring are rare.
Moreover, to the best of our knowledge, datasets that are suitable for instance segmenta-
tion, tracking and action recognition do not yet exist. To evaluate our action recognition
network MAROON, we use three different self-created and annotated wildlife datasets: the
Rolandseck Daylight, Bavarian Forest Daylight and Bavarian Forest Nighttime datasets.

With permission of the Wildpark Rolandseck GmbH (Remagen-Rolandseck, Germany)
we captured video footage of fallow deer (Dama dama) and red deer (Cervus elaphus) in
their natural environment in the Wildpark Rolandseck (Germany) from November 2020 to
December 2021, resulting in over 6000 recorded videos. These videos were first viewed,
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and incorrect recordings (e.g., no animals are present, camera was tilted extremely) were
sorted out. This resulted in approximately 3000 videos. Because the data annotation forms
a bottleneck, we had to choose representative videos for different scenarios, backgrounds,
animals present and actions. Within the 3000 videos, there are often scenes that show
similar situations and behavior. Using similar videos is not helpful for training neural
networks. We used two Victure HC500 Trail Cameras (Victure, Shenzhen, China) and
placed them at varying sites to be able to test changing backgrounds and different settings.
The general site locations stayed the same, but we changed the exact position of the cameras
each months to prevent always showing the same background. The manual annotation was
performed with the VGG Image Annotator (VIA) Version 2.0.8 [55] and the annotation tool
of [56]. For each animal in a frame, a segmentation mask, a bounding box, a class label, a
track ID and an action label were assigned. All videos are 30 s long with 30 fps (frames per
second) and a high-definition resolution of 1728 × 1296 pixels. Some videos in the dataset
were shortened if there were no animals visible in the video anymore. Our annotated
Rolandseck Daylight dataset consists of 33 videos. These videos are all captured during
daylight. The following 11 different actions are present in the videos: foraging moving,
foraging standing, grooming, head lowering, head raising, resting, running, standing up,
vigilant lying, vigilant standing, and walking. A definition of all action classes is given
in Appendix A. With this dataset, we already evaluated the effectiveness of our instance
segmentation and tracking system SWIFT in our publication [21].

The Bavarian Forest Daylight and Bavarian Forest Nighttime datasets were captured in
the Bavarian Forest National Park. The videos show roe deer (Capreolus capreolus) and red
deer (Cervus elaphus). These videos were selected from a larger dataset based on the number
of individuals and different types of behavior present. The daylight videos are recorded with
15 FPS and a resolution of 1280 × 720. The nighttime videos have the same resolution but only
8 FPS. As the names of the datasets suggest, they are separated into daylight and nighttime
videos. In contrast to the Rolandseck Daylight dataset, these two datasets generally show a
lower number of individuals per video. This represents an important difference that will be
of interest when investigating the influence of instance masks for our system. The following
7 different action classes are represented in this dataset: foraging standing, grooming, head
lowering, head raising, vigilant standing, walking and sudden rush.

In Table 1, we provide an overview of the three datasets used. In this paper, we
evaluate the action recognition ability of MAROON with these three datasets. In Figure 1,
we show a exemplary frame from each of the datasets.

Table 1. Overview of the three datasets used.

Dataset No. of Videos Frames per
Second (FPS) Resolution

Avg. No. of
Animals per

Video

Different Action
Classes

Rolandseck Daylight 33 30 1728 × 1296 5.88 11
Bavarian Forest Daylight 54 15 1280 × 720 1.13 7
Bavarian Forest Nighttime 31 8 1280 × 720 2.15 7

Figure 1. From left to right, exemplary frames from Rolandseck Daylight, Bavarian Forest Daylight
and Bavarian Forest Nighttime datasets.
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Before it is possible to use the data to train and test models, some preprocessing of
the data is necessary. The videos from the datasets can contain multiple animals, and the
animals perform different actions throughout one single video. To be usable for action
recognition, each sequence must contain exactly one animal that performs only one action.
Therefore, we extract each animal individually from the videos using the given bounding
box information. We then split this video of the individual animal at the time points where
the animal’s action changes. Thus, from the complete videos of the datasets, many (action)
sequences are created, which show only one animal performing only one action during the
whole sequence. The length of the sequences can vary from a short section (1 s) to a total
video length (30 s). It depends only on how long an action is performed. In Figure 2, we
show the distribution of the action class sequences in our three datasets. As is common
in the field of action recognition, especially in the field of wildlife monitoring, long-tailed
distributions are present in all datasets [57]. This means that the action classes are not
evenly distributed in the dataset. For example, the classes walking, vigilant standing, and
foraging standing are more common than the classes grooming, resting, or sudden rush.
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Figure 2. Action class distribution of the three datasets.

3.2. Action Detection

In this section, we present our novel action detection system. We show the workflow
of our approach in Figure 3. First, our instance segmentation system SWIFT [21] detects
and tracks all animals in the video data. This represents the detection part of the action
detection. Based on the bounding boxes and the track IDs of the detected animals, we cut
them out from the video. These cutouts are always square so that they fit the following
action recognition and are not compressed or stretched. After that, we use the instance
masks found by SWIFT to cut out the exact contour of the animal. This is especially
important if several animals are close to each other and thus several individuals appear
within the cutout. But also in general it helps to cut out the animal, because this creates an
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independence from the background of the animal and the system can generalize better to
new unseen scenes. Then, the cutouts are resized to the same size as input to our novel
action recognition network MAROON. The action recognition predicts the action class
resulting in the final action detection result: the action class, instance mask, bounding box,
(animal) class, score and track ID.

Figure 3. Our action detection system, a combination of SWIFT and MAROON. Brown boxes
represent data, blue boxes describe neural networks and algorithms and yellow boxes represent
algorithmic instructions.

3.2.1. Action Recognition with MAROON

Here, we explain in detail the architecture and idea of our action recognition network
MAROON—mask-guided action recognition. In Figure 4, we show the architecture of
MAROON. We highlight in blue the pathways and lateral connections that we newly
introduce in comparison to the base model of SlowFast [22]. The two most important
innovations in our network are (1) the use of masked input frames and (2) the triple-stream
approach. As described previously, the input frames of the action recognition network are
first cut out from the overall video frame using the bounding boxes detected by SWIFT and
then masked by the instance mask of the animal. This allows MAROON to focus entirely on
the actor during the feature extraction and not learn unnecessary background information.

Figure 4. Our action recognition network MAROON uses three streams and masked input frames.
The blue arrows represent the new third path and the new lateral connections in the MAROON
architecture compared to SlowFast.
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Our network architecture builds on the idea of SlowFast [22]. SlowFast introduces a
two-stream network, where two pathways exist, a slow pathway and a fast pathway. The
task of the fast pathway is to extract motion features (for example, the type of movement
and speed of the animal), and the slow pathway should concentrate on the appearance
features (for example, the color and the pose of the animal). To achieve this, they modify
the number of frames T that are fed into each of the two streams and the number of feature
channels C that the convolutional layers have in the respective streams. For this, the
parameters α and β are introduced. For MAROON, we extend this idea from a two-stream
approach to a triple-stream approach to extract motion and appearance features with
different granularities. In Figure 4, we show the architecture of MAROON. Accordingly,
we name the three pathways the MAROON slow pathway, MAROON medium pathway,
and MAROON fast pathway. We newly introduce the parameters γ and δ. With α and δ
(α, δ > 1), we steer the amount of frames for each of the three pathways. The MAROON fast
pathway receives the most densely sampled αT frames. The MAROON medium pathway
receives T frames, and the MAROON slow pathway receives only T/δ frames. A typical
distribution of frames, for example, if you consider a 16-frame input sequence, would be
16 frames for the fast pathway, 4 frames for the medium pathway, and 2 frames for the slow
pathway. The second aspect in which the three pathways differ is the channel capacity C,
which is controlled by the two parameters β and γ. A higher amount of channels allows for
the extraction of more detailed features. This is the case when the appearance of the animal
is in focus. The medium pathway has C channels. The parameters β and γ (β < 1, γ > 1)
steer the amount of channels for the other two pathways. With βC channels, the fast
pathway has less channels than the medium pathway to concentrate on the motion feature
extraction. The slow pathway has with γC channels the highest number of channels of all
three pathways. To summarize, the higher the number of frames fed into the pathway, the
lower the channel capacity and vice versa.

In addition to the two-stream architecture, the connection of both streams by lateral
connections is one of the crucial innovations of SlowFast [22]. Thus, the features extracted
from the fast pathway are regularly combined with the features of the other pathway. We
extend this idea to our third pathway by combining the features of the fast pathway with
the features of our slow pathway in the same way. The features from the three pathways
are combined in the prediction head that generates the final action class prediction.

4. Results

In this section, we show our evaluation results of MAROON and compare them with
the state-of-the-art approaches SlowFast [22] and MViT [23]. Moreover, we perform ablation
studies to prove our architecture’s functionality and the choice of our parameters.

4.1. Training and Testing Details

We choose SlowFast as a comparison model because it is a very successful CNN
approach and in particular because MAROON is inspired by SlowFast and extends upon its
ideas. MViT is a very prominent transformer model that performs well in action recognition
on person data. We choose the parameters for these models following the values proposed
by the respective papers and through various model tests.

We base the maximum length of the input sequences on the action classes, which
describe temporally short actions such as head raising or a sudden rush. For the Rolandseck
Daylight dataset, we choose an input length of 16 frames. Since this dataset has a high FPS
of 30, fast actions are also well covered. For the Bavarian Forest Daylight and Bavarian
Forest Nighttime datasets, we have to limit ourselves to eight frames.

As shown in Section 3, the action class distributions in our datasets are long-tailed dis-
tributions. This means that the underrepresented classes have to be specifically considered
to achieve good predictions due to the low number of samples during training. To achieve
better action recognition results on underrepresented classes, we perform oversampling
during the training process. In each epoch, we randomly sample from the smaller classes, so
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that each class represents at least 75% of the number of observations of the largest class. We
determine this parameter through experiments. We restrict the resampling to 75% because
our smallest classes only contain 5 samples and the largest class more than 100 samples.
Even with data augmentation strategies, these samples are presented to the network very
frequently. With this restriction, we try to prevent overfitting on the individual samples.

During training, we use random horizontal flips as data augmentation. Moreover, we
perform temporal and spatial jittering. In general, the action sequences are longer than
the exact input length for the networks, in our case, 16 or 8 frames. For temporal jittering,
this desired sequence of fixed length is randomly sampled from the whole action sequence.
With temporal jittering, the model receives a different part of the entire action sequence
each epoch, avoiding overfitting. As described before, we cut out each animal by their
bounding box. For spatial jittering, the box is cut out a little bit larger than the desired
input size for the network. Then, the correct size is cut out randomly from this larger patch.
With this technique, the animal is not always at the center position and therefore there is
more variety in the training data. For comparable testing, the input must always be the
same. Accordingly, spatial jittering is not performed. However, in order to cover several
points in time of an action sequence, the sequence is divided into equal sections as test
sequences. This is called ensemble view testing. We use 10-view testing.

For evaluating the action recognition quality of networks, we use the common metric of
top-1 and top-5 accuracy. In general, top-k accuracy means that there is a correct prediction
for a sample if the k best predictions of the network include the correct action class of the
sample. There is no common metric for the task of action detection. However, the mean
average precision (mAP) is sometimes used (for example, in [52,53]). One problem with
this metric is that it only takes into account the bounding box accuracy of the detector (and
not instance masks, for example) and therefore creates a high dependency of the action
class prediction on the detection. By evaluating the detector and the action recognition
approach separately, both parts are evaluated more fairly, and at the same time it is easier
to decide whether a part of the overall system should be replaced.

We train all our models for 200 epochs. To ensure a fair comparison among the models,
we do not use pretrained weights for initialization. For MAROON and also for SlowFast,
we use the ResNet-50 as the backbone. For the Rolandseck Daylight dataset, the input
sequence length is 16 frames. We set the parameters for MAROON for all datasets as
α = 4, β = 1/8, γ = 4 and δ = 8. We determine these parameters through extensive
experiments. The parameters α and δ lead to the input sizes of 16 frames for the fast
pathway, 4 frames for the medium pathway, and 2 frames for the slow pathway for the
Rolandseck Daylight dataset and 8 frames for the fast pathway, 2 frames for the medium
pathway, and 1 frame for the slow pathway for the Bavarian Forest datasets.

4.2. Evaluation Results

We evaluate our models on all three presented datasets. We divide our datasets into
train and test sets, so that about 20% of each class is included in the test set. Due to the
small amount of data, we do not create a validation set. However, to show that our model
generally performs better than the comparison models, we perform a stratified 5-fold
cross-validation on all datasets. Stratified means that 20% of the data per class are selected
as test data in each fold. In this way, each test set represents the action class distribution
of the whole dataset. In Table 2, we show our evaluation results for the different models
and datasets.

MAROON outperforms the other models for all three datasets for the cross-validation.
On average, all models perform best on the Rolandseck Daylight dataset and worst on the
Bavarian Forest Nighttime dataset. This can be explained by the fact that the Rolandseck
Daylight dataset contains the most sequences and can therefore create the most diversity of
situations in training, whereas the Bavarian Forest Nighttime dataset contains the fewest
sequences. In addition, the nighttime dataset is more difficult than daytime datasets due to
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the lack of color information as infrared flashes are used for recording. The accuracies of
the two comparison models are approximately the same.

Table 2. Evaluation results of our model MAROON compared for the different Rolandseck Daylight,
Bavarian Forest Daylight and Bavarian Forest Nighttime datasets with 5-fold cross-validation. The
top-1 and top-5 accuracies are depicted. The best value for each dataset is marked in bold.

Dataset Model Top-1 Top-5

Rolandseck
Daylight

MAROON 69.16 96.31
SlowFast 42.05 89.66

MViT 43.13 85.18

Bavarian
Forest
Daylight

MAROON 46.39 97.24
SlowFast 35.40 95.88

MViT 35.05 94.17

Bavarian
Forest
Nighttime

MAROON 43.05 96.33
SlowFast 35.49 95.68

MViT 31.91 93.26

In Figure 5, we show the top-1 accuracies for all action classes of the 5-fold cross-
validation. In general, MAROON outperforms the other two models for all classes in
all three datasets. There are only a few exceptions in the Bavarian Forest Daylight and
Bavarian Forest Nighttime datasets for classes with few samples. MAROON achieves
similar top-1 accuracies for all action classes, which is especially visible in the Rolandseck
Daylight dataset. This ensures that the model does not focus on action classes with many
samples but also considers smaller action classes.
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4.3. Ablation Experiments

In this section, we evaluate the functionality of the different parts of our action recog-
nition network. We use the same 5-fold cross-validation as in the section before.

In Table 3, we show the impact of the masked input. We use the masked input
frames as input for SlowFast and MViT and also use regular (non-masked) input frames
for MAROON. The mask information improves the results for all models on all datasets
by 10 percentage points on average. However, our action recognition network MAROON
achieves the best (or at least an equally good) result compared to the other approaches, both
with and without masks. Particularly, for the Rolandseck Daylight dataset, where the mask
information has the greatest influence, the result of MAROON is more than 11 percentage
points better than those of SlowFast and MViT. On all datasets, the MViT transformer
model benefits the least relatively from the addition of the mask information. This can
be explained by the way transformers work. Transformers use an attention mechanism
and therefore look at small image sections. The masking results in larger, uniformly black-
colored areas that look the same or contain only little image information of the animal
when entered into the transformer.

Table 3. Analysis of the impact of masked input frames. The best value for each dataset is
marked in bold.

Dataset Model
Top-1

(without
Mask)

Top-5
(without

Mask)

Top-1 (with
Mask)

Top-5 (with
Mask)

Rolandseck
Daylight

MAROON 54.65 90.96 69.19 96.31
SlowFast 42.05 89.66 57.67 92.48

MViT 43.13 85.18 49.41 89.57

Bavarian
Forest
Daylight

MAROON 36.44 94.85 46.39 97.24
SlowFast 35.40 95.88 45.35 96.57

MViT 35.05 94.17 42.63 95.54

Bavarian
Forest
Nighttime

MAROON 35.04 91.42 43.05 96.33
SlowFast 35.49 95.68 42.93 93.86

MViT 31.91 93.26 40.62 92.03

Furthermore, we analyze the importance of the lateral connection between the MA-
ROON slow pathway and the MAROON fast pathway. In Table 4, we show the results for
different possible connections. The authors of [22] also determine the importance of the
lateral connection between their SlowFast slow pathway and SlowFast fast pathway. In
our evalution, we consider four different possibilites: the connection between the fast and
slow pathways (that is the final choice for MAROON), the connection between the medium
and slow pathways (before and after merging with the fast pathway), and no connection
at all. For the Rolandseck Daylight and Bavarian Forest Nighttime datasets, the fast to
slow connection performs best. For the Bavarian Forest Daylight dataset, the fast to slow
connection is the second-best choice after the medium (before merging) to slow connection.
Overall, the introduction of the third pathway in particular seems to be helpful, and the
type of connection is not so decisive. However, since the no connection option is never
the best choice, combining the features from the other streams with the new MAROON
slow pathway seems to be a promising option. This also corresponds to our theoretical
considerations in Section 3.2.1.
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Table 4. Analysis of the lateral connections to the new MAROON slow pathway. The best value for
each dataset is marked in bold.

Dataset Type of Lateral Connection Top-1 Top-5

Rolandseck
Daylight

fast to slow 69.16 96.31
no connection 65.50 95.70
medium (before merging) to slow 66.74 94.32
medium (after merging) to slow 68.26 96.00

Bavarian
Forest
Daylight

fast to slow 46.39 97.24
no connection 45.71 97.94
medium (before merging) to slow 51.89 96.21
medium (after merging) to slow 46.38 96.92

Bavarian
Forest
Nighttime

fast to slow 43.05 96.33
no connection 42.35 96.93
medium (before merging) to slow 39.18 95.10
medium (after merging) to slow 41.70 95.09

5. Discussion

Our evaluation results show that MAROON outperforms other state-of-the-art ap-
proaches for the different datasets. Our three datasets cover various situations and scenes.
In the Rolandseck Daylight dataset, groups of animals are often present, where a distinction
of individual animals through instance masks is very important to obtain reliable action pre-
dictions. The Bavarian Forest Daylight dataset includes videos with only a few animals and
additionally has a lower resolution and FPS rate. The Bavarian Forest Nighttime dataset
shows that MAROON is also able to predict actions on videos without color information
and with a very low FPS rate. In general, an easy solution to improve the accuracy of all
models for the different datasets would be to increase the number of videos and therefore
increase the data material for training and testing. However, the annotation process of
the videos is very time-consuming and rare action classes are often underrepresented in
the data. It is a common phenomenon in wildlife ecology [18] and in computer vision as
a whole [57] that action classes occur very unevenly and are represented by long-tailed
distributions. If the (very) rare action classes could be supplemented by further examples,
this would improve the accuracy of the models. However, this is limited not only by the
annotation but also by the rareness of the camera trap recordings of these actions. Often,
these actions are of special interest to researchers. Therefore, we apply oversampling, one
of the most widely used techniques to train long-tailed distributions more efficiently. Due
to the very small number of some actions, undersampling is not useful in order not to
restrict the data diversity for the more frequent classes too much. In order to generate a
larger variety of data during training, we use the data augmentation techniques already
explained in Section 4.1, such as horizontal flips, temporal jittering and spatial jittering.

If sufficient time and resources are available for a study, it is also possible to make
additional video recordings in zoos or wild animal enclosures in order to generate data
material for rare behavior. Another way to supplement data from rare behaviors is to
generate artificial data. Even if the results of today’s artificially generated images are already
very high, it is still problematic to transfer a network trained on artificially generated images
to real images when considering such complex scenes as wildlife videos with changing
weather conditions, different exposures and day and night recordings. However, with
further optimization of the generation of artificially generated data material, this is a
promising possibility to supplement the data material in the future.

Our action recognition network is limited to the detection of actions of single animals,
i.e., no interactions between animals can be detected. In our recorded data, this case
was extremely rare and therefore neglected. Furthermore, most of the action recognition
approaches concentrate on the identification of actions of one actor. But there are certainly
other species and datasets where actions between different animal individuals are also of
interest. The action detection approaches as shown in [51,52] determine actions between
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humans. Our approach would need to be adapted so that multiple animals are masked
as input and entered into the action recognition network to also describe interactions
between animals.

The application of our action detection system to other animal species, especially to
other similarly sized animals, is easy to implement in principle. Data material for the
desired animal species and the corresponding actions must first be available and annotated
in the same way. SWIFT and MAROON must then be trained for the new animal species
and action classes. As the detection by the Mask R-CNN in SWIFT is very reliable and can
be used for many objects, a transfer is easily possible in most cases. If small animals such
as birds are to be examined, it must be taken into account that the animals may only be
represented by a very small region within the video (e.g., a size of less than 50 × 50 pixels).
This can be problematic for the detection and even more problematic for action recognition
due to the missing visual details. Care should therefore be taken to ensure that a correct
camera setting is used when recording data.

In general, the resolution of the video recordings is important for recognizing the
animals. It is easier for instance segmentation with SWIFT to segment more object details
if the animal is closer to the camera and therefore has more pixels. As a result, a better
image resolution also means easier recognition of the action classes in the action recognition
part. However, the action recognition ability also depends on the action classes under
consideration, i.e., how many details of the animal are necessary to recognize the action
and whether there are similar actions with which it could be confused. If our approach
is to be transferred to other animal species, the video resolution must also be taken into
account. If our system is to be used for smaller animals or for birds, for example, they
would probably be too small in our camera setting to distinguish between several actions.
The recordings from the Rolandseck dataset already have a very high resolution. It is
difficult to increase the video quality further because of storage restrictions on the camera
trap devices. Therefore, the recording settings should be adapted to the desired animal
classes and action classes. The recording setting (including the proximity of the camera to
the animals or the location of the recording) should be adjusted accordingly.

Extending the idea of SlowFast [22] and using three pathways for MAROON improves
the action recognition accuracy. A drawback from the expansion of the model is that it now
has more parameters than SlowFast and therefore takes more time to train. Thus, if very
large datasets are used, either longer training times must be scheduled or more hardware
must be used for the training process.

The introduction of masked input sequences has improved our action prediction
accuracy by an average of 10 percentage points. However, this also means that an instance
mask must be available for the different animals. Action recognition datasets usually
contain only video sequences focused on the actor. Action detection datasets usually use
only bounding boxes and no instance masks to localize the different actors, for example,
the person action detection dataset AVA [58]. Since we use SWIFT as a reliable instance
segmentation and tracking tool in our action detection system, an application to fallow deer,
red deer and roe deer is not problematic. However, if other animal species or humans are
to be examined, SWIFT must first be trained with appropriate instance masks. If no dataset
with instance masks is available, this means that annotations with instance masks must
be created for the desired new animal species. In principle, this is more time-consuming
than an annotation with bounding boxes. However, as annotation tools with AI support
are constantly being developed further [56,59] and foundation models such as Segment
Anything [60] are emerging at the same time, this may become an easier task in the future
than it is today.

In Section 4.2, we present the class-specific action recognition accuracies for our models
and datasets. There are two reasons why both our MAROON approach and the other two
action recognition networks achieve lower accuracies on some classes than on others. One
simple reason is that some classes (like resting, standing up or a sudden rush) occur less
frequently than others, as already discussed. Even if this problem is partially compensated
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for by the introduced oversampling, it may still happen that the training data are not
diverse enough to generalize successfully. A targeted enlargement of the dataset with
regard to these classes (given that there are sufficient recordings that show this behavior) is
therefore a possibility to improve the prediction accuracy. The second reason why some
action classes are difficult to predict is that they can be performed differently and also may
be similar to other classes. Examples of this are the classes foraging moving and walking.
Foraging moving differs from the action class walking only in the aspect that the animal
searches for food. For example, it is characteristic that the animal’s head is lowered in
comparison to walking. The action classes foraging standing and vigilant standing can
also be very similar, as the animal’s head is not lowered, particularly when it is searching
for food, for example, at a bush. Here, too, increasing the amount of samples can make
it easier to distinguish between the classes. But, in general, it can be seen that the action
recognition accuracies for these classes are higher than for the classes belonging to the first
reason mentioned.

When an action detection system is applied to a video where animals change their
behavior (which is a normal case), there are transition areas between two behaviors. In
these, the prediction changes from one behavior to the next. The findings of the analysis of
behavioral sequences from ethology [61–63] could be helpful in the future to support the
action prediction process. In addition, these studies can also be used for persons [64]. For
example, there are behaviors that are more likely to follow other behaviors. This initially
has no effect on the evaluation of the action recognition approaches, as only one sequence
in which only one behavior occurs is considered here. However, this could be helpful when
applying the system to unseen recordings. This additional information could make the
prediction by action recognition even more accurate or verify its results.

6. Conclusions

In this work, we present our novel action detection system that can be applied within
wildlife ecology, especially the new action recognition network MAROON. In detail, we
combine our already successful instance segmentation and tracking system SWIFT with
MAROON to perform action detection. We evaluate the functionality of MAROON on
three different wildlife datasets containing fallow deer, roe deer and red deer. MAROON is
the first action recognition approach that combines instance mask information for the input
sequences with a feature extraction in a triple-stream approach for action recognition. The
automated action detection of animals forms an important basis for behavioral studies.

In our experiments, we have shown that MAROON improves the action recognition
accuracy on all three datasets compared to other state-of-the-art approaches. For the
Rolandseck Daylight dataset, MAROON achieves a top-1 accuracy of 69.19% in comparison
to 43.13% from MViT and 42.05% from SlowFast. Also, on the Bavarian Forest datasets our
action recognition network achieves a 10 percent point higher top-1 accuracy compared
to the other approaches. We perform a 5-fold cross-validation to show that our approach
generally works better than the other approaches.

We believe that the use of our action detection approach in wildlife ecology will be
beneficial for ecologists by eliminating the need to analyze all video data material from
camera traps visually while enabling new insights through application to even larger
datasets. In the future, we plan to evaluate our action detection system on more datasets
showing different action classes. Moreover, we plan to expand our action recognition
network so that it can also describe interactions between animals. However, this will first
require appropriate data material.
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Appendix A. Description of Action Classes

We briefly define the action classes that we use in this study:
Foraging moving: The animal is moving or walking while the head is held towards
the ground or towards a food source (bushes, young trees) with eyes opened. The
mouth is near (and eventually touching) the ground or the food source, and the jaws
are eventually moving.
Foraging standing: The animal is standing while the head is held towards the ground or
towards a food source (bushes, young trees) with eyes opened. The mouth is near (and
eventually touching) the ground or the food source, and the jaws are eventually moving.
Grooming: The animal is standing while scratching or licking itself. The animal’s mouth is
touching a random body part while the head is moving slightly.
Head lowering: The animal’s head is moved from the raised (parallel line with the body or
higher) position to the lowered (head nearer towards the ground up to nearly parallel line
with the body) position within a short time period.
Head raising: The animal’s head is moved from the lowered (head nearer towards the
ground up to nearly parallel line with the body) position to the raised (parallel line with
the body or higher) position within a short time period.
Resting: The animal’s body is on the ground. The torso is in a slightly lateral position. At
the same time, the legs can be stretched off the body or bent underneath and besides the
body. The head is placed down on the ground. The animal’s eyes can be either closed
or opened.
Running: A faster target-oriented forward movement than walking. The posture is rela-
tively strained with the animal’s head raised and eyes opened. Two or more hooves do not
touch the ground. It contains everything from trot to full speed.
Sudden rush: The animal goes from standing to running without walking in between and
within 1 s.
Standing up: The animal changes its position from lying to standing.
Vigilant lying: Lying with the head held high and occasional turning of the head and with
ear twitching.
Vigilant standing: Standing with a strained posture and with the head held parallel to body
or higher. The animal is looking around and/or twitching the ears occasionally.
Walking: A relatively slow, target-oriented forward movement while not feeding or chew-
ing. The posture is relaxed with the animal’s head parallel to the body or higher and eyes
opened. One hoof does not touch the ground.
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