
Citation: Tursunalieva, A.; Alexander,

D.L.J.; Dunne, R.; Li, J.; Riera, L.; Zhao,

Y. Making Sense of Machine Learning:

A Review of Interpretation

Techniques and Their Applications.

Appl. Sci. 2024, 14, 496. https://

doi.org/10.3390/app14020496

Academic Editor: Mohamed

Benbouzid

Received: 6 October 2023

Revised: 24 November 2023

Accepted: 25 November 2023

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

Making Sense of Machine Learning: A Review of Interpretation
Techniques and Their Applications
Ainura Tursunalieva , David L. J. Alexander , Rob Dunne , Jiaming Li, Luis Riera and Yanchang Zhao *

Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601, Australia;
ainura.tursunalieva@data61.csiro.au (A.T.); david.alexander@data61.csiro.au (D.L.J.A.);
rob.dunne@data61.csiro.au (R.D.); jiaming.li@data61.csiro.au (J.L.); luis.rieragarcia@data61.csiro.au (L.R.)
* Correspondence: yanchang.zhao@csiro.au

Abstract: Transparency in AI models is essential for promoting human–AI collaboration and ensuring
regulatory compliance. However, interpreting these models is a complex process influenced by
various methods and datasets. This study presents a comprehensive overview of foundational
interpretation techniques, meticulously referencing the original authors and emphasizing their pivotal
contributions. Recognizing the seminal work of these pioneers is imperative for contextualizing
the evolutionary trajectory of interpretation in the field of AI. Furthermore, this research offers
a retrospective analysis of interpretation techniques, critically evaluating their inherent strengths
and limitations. We categorize these techniques into model-based, representation-based, post hoc,
and hybrid methods, delving into their diverse applications. Furthermore, we analyze publication
trends over time to see how the adoption of advanced computational methods within various
categories of interpretation techniques has shaped the development of AI interpretability over time.
This analysis highlights a notable preference shift towards data-driven approaches in the field.
Moreover, we consider crucial factors such as the suitability of these techniques for generating local or
global insights and their compatibility with different data types, including images, text, and tabular
data. This structured categorization serves as a guide for practitioners navigating the landscape of
interpretation techniques in AI. In summary, this review not only synthesizes various interpretation
techniques but also acknowledges the contributions of their original authors. By emphasizing
the origins of these techniques, we aim to enhance AI model explainability and underscore the
importance of recognizing biases, uncertainties, and limitations inherent in the methods and datasets.
This approach promotes the ethical and practical use of interpretation insights, empowering AI
practitioners, researchers, and professionals to make informed decisions when selecting techniques
for responsible AI implementation in real-world scenarios.

Keywords: Artificial Intelligence; explainable AI; interpretable machine learning; interpretation
techniques

1. Introduction

The growing demand for transparency and accountability in AI decision-making has
made eXplainable Artificial Intelligence (XAI) an increasingly important area of research.
Although interpretation techniques are not essential for the operation of AI models, they can
be viewed as supplements that introduce an extra layer of transparency and explainability.
This supplementary aspect could prove pivotal in ensuring the adoption and success of AI
applications and the capacity of being more responsive to the needs of intended users.

In the context of the escalating significance of AI, Padovan et al. [1] propose that
interpretability entails grasping the mechanics of a system without necessarily plunging
into causality (i.e., comprehending how it operates), whereas explainability involves deci-
phering the reasons (i.e., understanding why it operates). These interpretations heighten
the comprehensibility, appropriateness, and usability of AI-generated guidance for its
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intended users. Consequently, techniques for interpretation have emerged, aiming to
facilitate human comprehension of the underlying rationale behind a model’s conclusions.
This becomes notably vital in high-stakes domains such as healthcare, criminal justice,
environment, and finance. Instances where users fail to apprehend the logic underpinning
a model’s suggestions can undermine trust in its decisions, potentially leading to user
exasperation, limited adoption, and even ethical and legal dilemmas.

From a technical perspective, integrating interpretability into a model serves several
essential purposes. It aids developers in identifying and rectifying biases within the
training dataset, allowing for targeted corrective measures. Moreover, interpretability plays
a pivotal role in fortifying model robustness by shedding light on potential adversarial
perturbations capable of altering model outputs. Additionally, it ensures that the model
relies solely on relevant variables to derive its outputs, as underscored by Barredo et al. [2]
in their work on explainable AI. In a retrospective analysis, Gunning et al. [3] delve into
the objectives, accomplishments, challenges, and insights of the XAI program.

In the context of XAI, a variety of interpretation techniques emerge, encompassing
representation-based, model-based, post hoc, and hybrid approaches. These strategic
approaches are skilfully developed to shed light on the decision-making processes of AI
systems, ultimately contributing to improved human comprehension and trust in their
outputs. This advancement holds immense promise for enhancing the effectiveness and
dependability of AI applications across diverse sectors like healthcare, finance, and legal
systems. Consequently, XAI research aims to leverage AI’s capabilities while concurrently
furnishing comprehensible explanations for its outcomes. These explanations might per-
tain to the data or systems themselves, or the decision-making mechanisms grounded in
fitted models. This review conducts an in-depth exploration of the principal techniques
within the XAI domain, while also addressing the challenges and opportunities inherent in
their implementation.

1.1. Motivation and Purpose of the Review

The motivation behind our review stems from a nuanced understanding of the existing
literature surrounding interpretable ML and AI. While there are commendable reviews
addressing interpretability within specific domains, such as healthcare [4], and in specific
areas of AI such as deep neural networks [5], and also in general machine learning [6,7],
our review aims to contribute a distinctive perspective.

While acknowledging the shared goal among these reviews—to pursue interpretability
in AI and ML—our work distinguishes itself through a comprehensive exploration of
foundational interpretation techniques in AI. Moreover, it contributes to the scholarly
discourse by providing a historical context, delving into publication trends that have
shaped the landscape of interpretable AI over time. In essence, our review offers a holistic
understanding that goes beyond domain-specific nuances, revealing the broader evolution
and foundational principles underpinning interpretability in the realm of AI and ML.

More specifically, our review introduces a structured categorization of interpretation
techniques, encompassing model-based, representation-based, post hoc, and hybrid meth-
ods. The retrospective analysis and publication trends featured in our review reveal the
evolution of different types of interpretations in AI, showcasing a preference shift towards
data-driven approaches. The inclusion of a retrospective analysis allows for a deeper
understanding of the evolution of interpretation in AI, and the analysis of publication
trends sheds light on the evolving landscape of interpretability research.

Overall, our review not only fills specific gaps in the existing literature but also
enhances it through a unique consolidation of structured categorization, retrospective
analysis, and publication trends, thereby shedding light on the advancements, challenges,
and emerging trends in this dynamic field of explainable AI (XAI) interpretation techniques.

This comprehensive review caters to researchers, practitioners, and policymakers
seeking a holistic understanding of the interpretability landscape in ML. It specifically
targets professionals and researchers in the fields of AI, ML, data science, and related
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disciplines, offering an in-depth exploration of the development and application of XAI
techniques. Moreover, it provides valuable insights into the historical context and evolution
of these methodologies, making it a pertinent resource for policymakers and individuals
concerned with the ethical and regulatory implications of AI.

By emphasizing the pivotal contributions of the original authors, this review aims to
provide a thorough understanding of the foundational principles of interpretability and
transparency in AI systems. Its primary objective is to facilitate a deeper comprehension of
the historical significance and progression of interpretability techniques within the field.

This review not only offers a comprehensive overview of foundational interpretability
techniques, highlighting the key contributions made by prominent and pioneering authors,
but also seeks to address the following critical questions, including a research question
centered on trend analysis:

1. What are the foundational interpretation techniques in the AI domain, and how have
they influenced the development of contemporary interpretation methodologies?

2. How do diverse interpretation techniques, including model-based, representation-based,
post hoc, and hybrid methods, address the challenge of explainability in AI models,
thereby fostering effective human–AI collaboration and regulatory compliance?

3. What are the inherent strengths and limitations associated with the utilization of vari-
ous interpretation techniques in real-world applications, particularly across different
domains such as images, text, and tabular data?

4. How has the adoption of advanced computational methods within various categories
of interpretation techniques influenced the evolving landscape of AI interpretability
over time?

By providing comprehensive insights into these critical questions, along with a dedi-
cated focus on the trend analysis, this review serves as an invaluable resource for individu-
als seeking a holistic understanding of the complexities and implications associated with
interpretability in AI systems.

1.2. Methodology of the Review

To attain a comprehensive understanding of explainable AI techniques, our method-
ological framework adopts a synthesis approach. Leveraging Google Scholar, we sys-
tematically retrieved titles using carefully chosen keywords, specifically “explainable AI
model-based techniques”, “explainable AI representation-based techniques”, “post hoc
explainable AI interpretation techniques”, and “Hybrid explainable AI interpretation
techniques.” Following this, we meticulously shortlisted titles by incorporating category-
specific keywords, resulting in the identification of 15 pertinent documents sourced from
academic journals, conference proceedings, and various Web of Science indexed platforms.
The exploration of each technique type involved an inclusive process, encompassing sur-
veys and comparative studies within academic literature. To refine our understanding, we
compiled an initial list of interpretation techniques, further enriched by references derived
from the short-listed titles. This systematic and inclusive approach serves as the foundation
of our methodology, ensuring both relevance and document quality, and facilitating a
thorough exploration of the dynamic landscape of explainable AI techniques.

We structured the review by methodically segmenting it into distinct components
for comprehensive analysis. Emphasizing historical context, we meticulously traced the
evolution of each method by examining references and identifying the pioneering re-
searchers responsible for each approach’s inception. Notably, our review only considered
publications up to 20 March 2023.

This review is organized as follows: Section 2 provides a foundation for understanding
the historical progression of AI. In Section 3, we review the origins, basic principles, and
suitability of existing Machine Learning (ML) interpretation techniques for different types
of data. The following two sections respectively analyse trends in annual publications on
different types of ML interpretation techniques; and cloud-based implementation strategies
for XAI. Section 6 explores examples and use cases of XAI in various fields, including
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healthcare, finance, environment, criminal justice, and autonomous systems. Section 7
discusses the challenges and limitations of XAI. Finally, in Section 8, we conclude with a
summary of the findings and a discussion of future research directions.

2. Unveiling the Evolution of AI: From Symbol Manipulation to Deep
Learning Networks

As we delve into the fascinating journey of AI’s evolution, this section unveils two
pivotal narratives that have shaped the landscape of AI: ’from symbol manipulation to
conversational agents’ and ’from brain cell models to deep learning networks.’ These
narratives not only highlight the technological milestones but also lay the foundation
for the critical exploration of contemporary AI’s interpretability and its implications for
transparency and reliability.

2.1. From Symbol Manipulation to Conversational Agents

In the early days of AI, the manipulation of symbols using predicates and logical
propositions formed the basis of the technology. Progress in AI was a result of progress in
manipulating symbols, which also pushed the boundaries of computing languages [8,9].

An early and noteworthy instance of a conversational agent is ELIZA, which orig-
inated in the mid-1960s [10]. This agent employed a domain-specific script to establish
a conversational style, such as that of a “DOCTOR”, and engaged users in a “therapist”
conversation by mostly restating their remarks as questions, thus prompting the user to pro-
vide further information and continue an ongoing dialogue. Some users reported benefiting
from these therapy sessions and sought continued access to the system, a phenomenon
known as “the ELIZA effect”. Considering that this occurs despite the strong reliance
of each question on the preceding answer and the transparent manner of restatement, it
becomes apparent that more sophisticated platforms like ChatGPT [11] are poised to gain
widespread acceptance as human conversational partners among a substantial portion
of individuals.

Integrating sophisticated symbolic manipulation capabilities, the Lisp family of pro-
gramming languages has established its prominence. However, it is intriguing to note that
ELIZA, despite this trend, was crafted using a distinct language called MAD (Michigan
Algorithm Decoder) [12]. This language was enriched with the integration of an accom-
panying package named SLIP (Symmetric List Processor), effectively infusing Lisp-like
features into its functionality. Such a departure from Lisp’s convention highlights the
innovative approach undertaken in ELIZA’s development.

In this unconventional choice of language, ELIZA’s creators navigated their way to-
wards designing a conversational agent capable of interactive dialogue. The augmentation
of MAD with SLIP not only exemplified a creative adaptation but also paved the way for a
system that initiated the journey toward explainable AI and human-computer interaction.
This strategic departure from the established norm enabled ELIZA to simulate therapeutic
conversations effectively, setting the stage for modern developments in the domain of
interpretation techniques for AI systems.

2.2. From Brain Cell Models to Deep Learning Networks

The development of AI has not been a linear climb up a ladder of success. There have
been several “AI winters” when interest has faded. The first occurred in the 1970s due
to the failure to meet the unrealistic expectations that had been raised for the field. The
second AI winter occurred in the late 1980s and early 1990s, and was caused in part by
the fact that symbolic manipulation systems, which were based on the Lisp programming
language, were not able to handle the complexity of real-world problems. These systems
were limited by their reliance on handcrafted rules and lack of ability to learn from data.

Parallel to the symbolic computational stream, there was a stream of research based
on computation models of brain cells and a model of learning (Hebbian learning). In 1943
McCulloch and Pitts introduced the “perceptron”, an idealized representation of a neuron



Appl. Sci. 2024, 14, 496 5 of 24

cell that sums its inputs and gives an output signal when the sum exceeds a threshold.
The first implementation was a machine built by Frank Rosenblatt in 1958 at the Cornell
Aeronautical Laboratory.

In 1969 Marvin Minsky and Seymour Papert showed, in their book Perceptrons, that
it was impossible for these classes of network to learn an XOR function, leading to an AI
winter for the computational approach. However two advances (rediscovered several times)
overcame this limitation leading to the “multilayer perceptron” (MLP) models (variously
called neural networks and deep learning). The MLP model consists of layers of “neurons”
fully connected to the neurons in the next layer, with the possibility of some connections
skipping layers.

These overcame previous constraints through the use of continuous activation func-
tions, instead of the perceptrons step function, and the “backpropagation” of error terms
through the network. Backpropogation can be seen to be the chain rule for differentiation,
coupled with the fact that the needed information is always available at each neuron via
the established connections. Cybenko’s theorem [13] shows the universal function ap-
proximation capability of MLPs, establishing their significance as general regression and
classification tools.

The MLP model was gradually expanded to architectures aimed at particular problem
areas. The convolutional neural network (CNN), for example, was particularly targeted at
image problems. There has been a transformative impact of Deep Learning (DL) in text,
speech, and image applications. We can now add protein folding to that list. AlphaFold can
predict the structure of a protein to an accuracy comparable with the results of laborious
experimental determinations and is considered a correct solution that scientists can rely on
with some confidence [14].

The evolution depicted in this section embodies AI’s transformative narrative—from
its rule-driven inception to the intricate landscapes of DL. While early AI systems thrived
on explicit rules, the difficulty of interpretation for contemporary AI raises multifaceted
ethical and practical concerns. In response, techniques such as model distillation, feature
visualization, and attention mechanisms are being explored as promising avenues for
enhancing transparency and reliability. By embracing these methods, AI practitioners
may usher in a new era of systems that inspire trust and understanding, bridging the gap
between human users and the intricacies of machine intelligence.

3. Techniques for Explainable AI

Explainable Artificial Intelligence (XAI) employs a range of fundamental techniques
that can be systematically classified into distinct categories, namely, model-based, represen-
tation-based, and post hoc interpretation techniques. Additionally, innovative hybrid ap-
proaches amalgamate these methods, offering a comprehensive understanding of complex
AI systems. This section provides an in-depth exploration of the origins and fundamental
principles underpinning these techniques, highlighting their respective merits. The accom-
panying Figure 1 illustrates the core principles underlying each category of interpretable
techniques. Notable interpretation techniques are conveniently compiled in Table 1.

In the following section, our focus shifts to model-based interpretation techniques,
where we explore their origins, fundamental principles, and respective merits.
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Figure 1. Core principles for interpretable techniques. Icons source: Flaticon. (2023). [Automation,
Data Modelling, Settings, Hybrid]. Retrieved from https://www.flaticon.com/ (accessed on 1
November 2023).

Table 1. Overview of Interpretation Techniques for Explainable Artificial Intelligence (XAI).

Technique Type Interpretability Category Data Type *

SHAP [15] Agnostic Local Post hoc STR, USTR, TS
LIME [16] Agnostic Local Post hoc STR, USTR, TS
Linear Models [17] Agnostic Local Model-based STR
Rule Extraction [18] Agnostic Local Model-based STR, Text
Decision Trees [19] Agnostic Global/Local Model-based STR
Anchors [20] Agnostic Local Post hoc STR, Text, IMG
Kernel SHAP [15] Agnostic Global/Local Post hoc STR, Text, IMG
Tree SHAP [21] Tree-based Global/Local Post hoc STR, Text, IMG
Deep SHAP [15] DL Global/Local Post hoc STR, Text, IMG
DeepLIFT [22] DL Global/Local Post hoc Image, Text
Grad-CAM [23] CNN Local Post hoc IMG

* STR—structured data; USTR—unstructured data such as text, IMG—Image, Video, Audio; TS—time series data

3.1. Model-Based Interpretation Techniques

The realm of model-based interpretation techniques serves the fundamental purpose
of delving into the internal processes of a model and offering insights into how it operates
and arrives at specific predictions. The central premise of these techniques revolves around
leveraging the model’s structural architecture and parameter configuration to glean insights
into its behavior and predictive outputs. This holistic comprehension not only affords
users the ability to scrutinize the robustness of the resultant solutions but also bolsters the
likelihood of fostering user trust in the yielded outcomes [24].

Rule-based and Bayesian models, decision trees, and random forests, as well as linear
models, stand as prominent exemplars of model-based interpretation techniques. Their
deployment has effectively contributed to elevating the level of explainability within AI
models, paving the way for a more comprehensive understanding of complex phenomena.

3.1.1. Rule-Based Models

McCarthy J. [18] made groundbreaking contributions to the field of AI that signifi-
cantly influenced the development of rule-based models. Through his visionary work on
time-sharing systems, McCarthy laid the groundwork for a more interactive computing
environment, allowing researchers to engage in real-time experimentation and iterative
development of rule-based reasoning and symbolic computation. Moreover, McCarthy’s
invention of the LISP programming language revolutionized the field of AI by enabling the
manipulation of symbolic expressions and the implementation of complex logical rules.
LISP’s unique features, including support for recursion and dynamic typing, provided
researchers with a powerful tool to explore and refine rule-based systems. McCarthy’s
pioneering efforts in promoting interactive computing and advancing symbolic compu-
tation were pivotal in shaping the trajectory of rule-based modeling and its subsequent
applications in various domains of AI research and development.

Rule-based models employ explicit sets of rules to analyze input data and facilitate
decision-making. These rules often take the form of “if-then” statements, wherein the

https://www.flaticon.com/
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“if” segment outlines conditions that must be met, and the corresponding “then” segment
prescribes the appropriate action upon satisfaction of those conditions. In essence, rule-
based models offer transparent and human-interpretable rules that guide the decision-
making process of AI systems.

Such rules frequently originate from domain experts and require a well-defined prob-
lem context, featuring clear cause-and-effect relationships between inputs and outputs.
An illustrative example is the domain of expert systems, where a set of rules guides deci-
sions and dispenses advice within a specific field. These models also extend to decision
support systems, aiding users in decision-making, and extend even to applications in
natural language processing, where rules enable the parsing and comprehension of natural
language text.

While rule-based models excel in providing transparency and comprehensibility,
their efficacy might wane in contexts requiring heightened adaptability or when intricate
problem domains surpass human experts’ capacity to formulate explicit rules. In such
scenarios, alternative ML techniques, like neural networks or decision trees, may prove to
be more suitable.

3.1.2. Bayesian Rule Lists (BRLs)

Wang et al. [25] were the first to propose a method for learning Bayesian rule sets. This
method uses Bayesian model averaging to learn a set of rules that jointly maximize the
posterior probability of the class labels. They demonstrated the effectiveness of their method
on classification tasks such as predicting adverse drug events and detecting fraudulent
insurance claims.

BRLs are a type of ML model that combines the interpretability of rule-based models
with the probabilistic reasoning of Bayesian models. The basic idea behind BRLs is to use
a set of logical rules for making predictions and to allow for uncertainty in the rules and
their weights. The objective of BRLs is to learn a list of if-then rules that define decision
boundaries between different classes or regression targets. Each rule in the list consists of a
condition and a class or regression target. The conditions are defined in terms of features
or attributes of the data, and the class or regression target is assigned a probability based
on the conditions of the rules that are satisfied. The weights and probabilities assigned to
each rule can be learned from training data or based on expert knowledge. BRLs are often
used in natural language processing and other areas where the decision-making process
involves multiple competing rules or factors. For example, Wang et al. [26] use BRLs for
interpretable classifications of consumer behaviors and Letham et al. [27] apply BRLs to
improve the explainability for stroke predictions.

3.1.3. Decision Trees (DTs)

The idea of DTs was introduced by Quinlan, J. R. [19]. His team designed Iterative
Dichotomiser 3 (ID3) algorithm that automatically learned trees from data. The ID3 algo-
rithm uses a top-down approach to start from a single node and split the data recursively
into smaller subsets using the most informative feature. This splitting continues until all of
the instances in a subset belong to the same class or when no more splits are possible. Over-
all, the DT technique performs well on tabular-style datasets with individually meaningful
features and with no strong multi-scale temporal or spatial structures. DTs are considered
to be explainable due to their ability to represent the decision-making process of a model
in a clear and transparent way [28]. They are particularly useful in applications where
transparency and interpretability are essential for ensuring the fairness and trustworthiness
of AI-based decision-making systems.

In a similar vein, Westberg et al. [29] explore the utility of decision trees in medical
diagnosis, where the trees leverage easily interpretable variables to make decisions, offering
straightforward explanations for their outcomes. This approach has potential applicability
in other domains that prioritize transparency in decision-making.
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However, if the complexity of the relationships in a given dataset is high then the
interpretability of a DT decreases. If the relationships between the input features and
the output variable are highly nonlinear or complex, a DT may struggle to capture them
accurately using a simple set of rules. In such cases, the decision tree may require a larger
number of nodes and branches, which can make it difficult to interpret and understand. To
overcome this limitation, Norouzi et al. proposed a stochastic gradient descent approach to
enable efficient optimization for large-scale datasets [30]. To further improve the model’s
explainability and generate additional insights, Mishra provides a practical guide for
incorporating Python-based explainable AI libraries such as SHAP, LIME, and Skope-Rules
into a DT [31].

Another challenge faced by DT algorithms is the use of local optimization functions,
meaning that inaccurate splits at the top of the tree may result in poor predictions. Therefore,
various techniques have been developed to simplify and optimize DT, such as pruning,
ensemble methods, and regularization. These techniques can help to reduce the complexity
of the tree and improve its interpretability, while still capturing the essential relationships
in the data. Gradient boosting can also be used to improve the interpretability of DT.
By combining multiple decision trees into an ensemble model, gradient boosting can
create more accurate and robust models that are less prone to overfitting. Costa [32]
provided a comprehensive review of the recent advances in the field of optimal DT and
their interpretability.

3.1.4. Random Forests (RFs)

Breiman [33] was the first to extend the DT algorithm and introduce RFs, which build a
large number of decision trees using bootstrapped samples of the data and random subsets
of the features. The final prediction is made by aggregating the predictions of all the trees
in the forest. Because the structure of an RF is more complex than the structure of a DT,
they can be more challenging to understand and interpret. Moreover, as the complexity of
relationships among the variables increases, the number of trees required to achieve good
accuracy also increases and with more trees, it becomes challenging to identify important
variables and evaluate their contribution to the predictions.

RFs have several advantages over DTs, including reduced over-fitting, improved
accuracy, and the ability to handle high-dimensional data. RFs, like DTs, also provide local
interpretability by explaining the model’s predictions for individual instances. To improve
the interpretability of tree-based models for complex tabular datasets, Lundberg et al. [28]
proposed computing the SHAP interaction values for trees. These SHAP interaction values
capture not only individual predictions, but also the interaction effects among all pairs of
those predictions.

3.2. Linear and Logistic Regression

Francis Galton [17] created regression analysis as a method to forecast one continuous
variable based on another. He hypothesized that the connection between two variables
could be represented by a straight line. He collected data on the heights of parents and
their children and to test this idea, he plotted the data on a graph. He observed that the
children’s heights tended to deviate less from the average height of all children than the
heights of their parents. Galton called a straight line drawn through the data points the
“regression line”, and used it to predict the height of a child based on the height of their
parents. Berkson, J. [34] invented logistic regression by using the logistic function for
statistical modeling. Both linear and logistic Regression are popular ML algorithms with a
wide range of applications in AI. Linear regression predicts a continuous numerical output
variable, while logistic regression predicts a categorical one.

It is widely accepted that linear and logistic regression models have a clear and
interpretable structure. These properties are valuable for designing AI-based decision-
making systems that are trustworthy and can be used in explainable AI.
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Schneider et al. [35] provided a thorough overview of linear regression analysis and
its strengths and limitations, discussed common interpretation mistakes and emphasized
the necessary aspects of reporting the results to ensure the validity and reliability of the
research findings.

Peng et al. [36] provided a clear and accessible introduction to logistic regression
analysis and emphasized the importance of transparent reporting and careful interpretation
of the results. These considerations are particularly important in the context of explainable
AI, where the interpretability of models is essential for ensuring their trustworthiness
and reliability.

To improve the accuracy, stability, and generalization of regression models, they are
frequently used in ensemble methods. Powerful ensemble models can be developed by
combining bagging, boosting, stacking, or random forests with regression models [37,38].

Global Sensitivity Analysis (GSA)

GSA has become integral in understanding complex ML models, with Saltelli et al. [39]
highlighting its impact. GSA enables the quantification of input parameter importance,
aiding in model optimization and critical feature identification and enhancing interpretabil-
ity across domains. Additionally, GSA facilitates sensitivity assessment in hybrid models,
evaluating constituent model contributions and ensuring robust, informed decision-making
for improved performance. Furthermore, in engineering and risk assessment, GSA inte-
grated into the GSAS (Global sensitivity analysis-enhanced surrogate) method allows for
efficient reliability analysis, identifying critical parameters and enhancing understanding
of system interactions and uncertainties, crucial for system design and maintenance [40].
The work of Friedman et al. [41] on gradient boosting machines (GBMs) influenced GSA
application in ML. GBMs emphasized individual model contributions, aligning with GSA’s
focus on input impact evaluation. This integration enhanced model interpretability and
robustness, particularly in ensemble-based learning techniques, contributing to improved
model performance and understanding in the field of ML.

The pioneering work of Judea Pearl and his colleagues in developing the Bayesian
network (BN) framework [42,43] has significantly shaped the landscape of probabilis-
tic reasoning in ML. Pearl’s research laid the groundwork for comprehending intricate
probabilistic relationships among variables, enabling the representation of complex data
structures in an intuitive manner. Emphasizing the utilization of graphical models to depict
conditional dependencies, Pearl’s contributions facilitated the creation of transparent and
interpretable models, fostering a more profound understanding of the underlying data
structure. BNs, conceptualized by Pearl, serve as a robust framework that seamlessly
integrates prior knowledge and data-driven learning, allowing the incorporation of expert
insights into the model development process. This emphasis on transparent modeling
has had a transformative impact on the advancement of interpretable ML, leading to the
creation of models that not only yield accurate predictions but also offer valuable insights
into the reasoning behind these predictions. Pearl’s significant contributions have paved
the way for the integration of causal reasoning and probabilistic inference in interpretable
ML, thus promoting the development of models that are both accurate and comprehensible
across various applications.

Russell and Norvig [44] emphasize the pivotal role of BNs as essential tools for effec-
tively representing and reasoning with uncertainty in the field of AI. The book highlights
how BN offer a formal and intuitive representation of uncertainty by capturing the proba-
bilistic relationships among variables. It accentuates the graphical depiction of conditional
dependencies among variables, enabling the construction of intricate probabilistic models in
a more manageable and interpretable manner, thereby facilitating effective decision-making
processes in the presence of uncertainty.
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3.3. Representation-Based Interpretation Techniques
3.3.1. Sparse Linear and Shallow Decision Tree ML Models

These are known for their ease of interpretation, requiring only minimal human
effort. However, the pursuit of greater predictive accuracy in ML has led to the adoption
of deeper and more complex models, albeit at a cost. These sophisticated models often
involve millions of interconnected deep neural networks, making them exceptionally
challenging to interpret. They appear as black boxes to human observers, eroding trust
in their predictions. While there are techniques available for visually inspecting the first
layer of a neural network, understanding the intricate workings of deep learning models
remains a significant challenge. In recent years, there has been a growing research focus on
developing methods to gain deeper insights into these models. Among these techniques,
saliency maps, as introduced by Itti et al. [45], and activation maximization [46] have
emerged as common tools for interpreting image classification models. Saliency maps have
also found utility in text classification tasks. The interpretability of attention mechanisms
also sparks considerable debate and ongoing research efforts.

3.3.2. Saliency Maps (SMs)

Saliency maps are visual attention explanatory techniques, motivated by the visual
functionality of the early primate visual system [45]. The idea of saliency maps in AI dates
back to the early 1990s and aims to illustrate the relative importance of each element among
its neighbours by measuring its contribution to a particular class. Morch et al. [47] proposed
“Visualisation of Neural Networks Using Saliency Maps” to understand and visualize the
non-linearities in feed-forward neural networks. Simonyan et al. [48] expanded the idea to
be used by classification ConvNets models. In the article “Graying the black box”, Zahavy
et al. [49] implemented saliency maps to explain deep reinforcement learning models by
mapping the entire model as a simplified Markov decision process (MDP). Kindermans
et al. [50] argue that this technique “lacks reliability when the explanation is sensitive to
factors that do not contribute to the model prediction”.

3.3.3. Activation Maximization (AM)

This is a technique used to visualize how specific unit neuron i, at a given hidden layer
j, is activated by an input x of a given class to produce an output image hij(θ, x), where
θ denotes the neural weights and biases as exhibited by Equation (1). The idea was first
published in 2009 by Erhan et al. [46], enabling us to shine a light inside the model black
box. The logic of this idea is that while training a model, the objective is to adjust its weight
to minimize the input to the output losses. On the other hand, when using activation
maximization, the model weights and a chosen output of a given class are kept constant,
and the input is modified to activate specific neurons that match the selected output.

X∗ = arg max
x s.t. ||X||=ρ

hij(θ, x). (1)

3.3.4. Attention Mechanisms (AtMes)

AtMes have garnered significant attention in the field of AI in recent years, particu-
larly due to their remarkable contributions to natural language processing (NLP). These
mechanisms are designed to identify and highlight important information that models
consider crucial for various tasks, which in turn enhances the interpretability of these
models. A notable feature of attention mechanisms is their ability to reveal the “reasoning”
behind each output generated by the model, as discussed by Rigotti et al. [51]. The journey
towards interpreting natural language inference (NLI) models using attention mechanisms
was first embarked upon by Ghaeini et al. [52]. However, it is important to note that the
debate surrounding the interpretability of attention mechanisms is far from settled [51].
Some researchers have asserted that models incorporating attention mechanisms lack inter-
pretability [53,54]. Conversely, there are researchers who assert that they have developed
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architectures that perform exceptionally well in various scenarios, pushing the boundaries
of state-of-the-art performance [51,55,56]. This ongoing discourse reflects the dynamic
nature of research in this field, with the quest for improved interpretability remaining a
central focus.

3.4. Post Hoc Interpretation Techniques

Post hoc interpretation techniques generate explanations for models that are not
inherently explainable, making it possible to understand more of the logic behind black-box
or complex ML models. These techniques include LIME [16], SHAP [15], and Grad-
CAM [23], which generate local explanations by highlighting the features that contribute
most to a model’s decision. Some methods, such as LIME and Kernel SHAP [15], are
model-agnostic and can be used on any ML models, while others, such as Tree SHAP [21],
Deep SHAP [15], DeepLIFT [22] and Grad-CAM [23], are model-specific by leveraging
extra knowledge of the specific models.

Ribeiro et al. proposed Local interpretable model-agnostic explanations (LIMEs) to
explain the predictions of any classifier by learning an interpretable model locally around
the prediction [16]. To explain the prediction for an instance, a LIME generates new fake
instances around it by sampling its neighborhood, applies the original complex or black-box
model to those new instances to produce predictions, and trains an interpretable model
(e.g., a linear model) that captures the behaviors of the complex model in that neighborhood.
Based on that, a representative set of individual instances can be selected and explained to
achieve a global understanding of the model. LIMEs are claimed to be capable of explaining
the predictions of any classifier in an interpretable and faithful manner.

Lundberg et al. presented a unified framework named Shapley additive explanations
(SHAPs) for interpreting model predictions [15]. Shapley values [57] are a concept for
measuring each player’s contribution to the game in cooperative game theory and are
comparable to the importance of features in ML model prediction. The Shapley value of a
feature is calculated as a weighted average of the model prediction differences between
models trained with and without the feature under all possible combinations of the other
features. Formally, it is calculated as

ϕi = ∑
S⊆F\{i}

|S|! (|F| − |S| − 1)!
|F|!

[
fS′(xS′)− fS(xS)

]
, (2)

where ϕi is the Shapley value of feature i, F is the set of all features, S is a subset of
F \ {i}, xS is the values of input features in set S, fS is a model trained with feature set S,
fS(xS) is the model prediction with set S, and S′ = S ∪ {i}. The Shapley values are very
challenging to calculate, in that there are 2|F| differences to be computed. Lundberg et al.
proposed Kernel SHAP and Deep SHAP to approximate them efficiently. Kernel SHAP is a
model-agnostic method that can be used on any model, and Deep SHAP is a model-specific
method for deep neural networks models. Lundberg et al. also proposed Tree SHAP [21]
for estimating the SHAP values of tree ensembles, such as random forests and XGBoost, in
polynomial time.

Framling et al. [58] compared LIMEs and SHAPs in generating explanations for a deep
learning model trained on a medical dataset. The results showed that both techniques were
useful in generating explanations for the model’s decision-making process.

3.4.1. Deep Learning Important Features

DeepLIFT [22] is a recursive prediction explanation method for deep learning models.
For a given output, it assigns importance scores to the inputs in a backpropagation-like way,
where an importance signal is propagated from an output neuron backwards to the input in
one pass. It features framing importance in terms of differences from a reference state and
allowing separate consideration of the effects of positive and negative contributions, which
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enables it to work even when gradients are discontinuous and discover dependencies
possibly missed by other methods.

3.4.2. Gradient-Weighted Class Activation Mapping

Grad-CAM [23] was proposed by Selvaraju et al. for producing visual explanations
for convolutional neural network (CNN)-based models. It uses the gradients of a target
concept to produce a localization map and highlights the important regions in the image for
the corresponding prediction. Furthermore, Woods et al. [59] discussed how Grad-CAM
was used to generate visual explanations for the decision-making process of a deep learning
model trained on image classification. The generated explanations helped to improve the
model’s robustness to adversarial attacks.

Altmann et al. [60] proposed permutation feature importance (PFI) to measure the
decrease in model performance after shuffling a feature’s values. A feature is important if
shuffling its values increases the model error, because the model relies on the feature for
the prediction. In contrast, a feature is not so important if shuffling its values has no or
little effect on the model error.

3.5. Hybrid Interpretation Techniques

Kim et al. [61] proposed a mind-the-gap model(MGM) for interpretable feature ex-
traction and selection. By building interpretability criteria directly into the model, it can
optimize parameters related to interpretability and directly report a global set of distin-
guishable dimensions for further data exploration and hypothesis generation. In particular,
it discovers a global set of distinguishable dimensions when clustering high dimensional
data. It draws parameters for important dimensions from distributions with multiple
modes, while unimportant ones are drawn from a uni-modal distribution. The MGM
method is particularly used for data clustering, rather than for prediction. When clustering
data, it is interesting and very useful to simultaneously produce a list of dimension sets
that are important for distinguishing between the clusters. However, a limitation of the
method is that it focuses on the clustering of binary data only.

Singh et al. [62] proposed a framework for evaluating counterfactual explanation
methods based on explainability metrics and properties. These explanations work by
finding the minimal set of changes to input that will change the model’s output. Jentzsch
et al. [63] discuss the use of conversational agents to provide explanations for the outputs
of AI systems. The conversational agent engages in a dialogue with the user to understand
their questions and provide appropriate explanations. The approach provides a user-
centred and interactive way to understand AI decision-making.

Lundberg et al. [28] proposed a technique that combines local explanations generated
by LIMEs with global explanations generated by SHAPs to provide a more comprehensive
understanding of the decision-making process of decision trees. The proposed technique
generates both local and global explanations, which could be used to understand the
model’s decision-making process at different levels of granularity.

Furthermore, contextual importance and utility and case-based reasoning post hoc
explanation-by-example [64] are also techniques that provide local and global explanations.

4. Trends in Literature for Different Types of ML Interpretation Techniques
4.1. Analysis of Trends in Literature for Different Types of ML Interpretation Techniques

Figure 2 plots the numbers of publications on various types of interpretation tech-
nique each year. In analyzing the trend lines, it becomes evident that each category of
interpretation techniques experienced varying degrees of interest and utilization over time.
Notably, the hybrid and model-based categories exhibit an initial period of stronger growth,
followed by a period of much more gradual growth, before a final spurt of interest around
2020. The post hoc and representation-based categories demonstrate fairly constant expo-
nential growth, starting from a lower base. The growth of the representation-based category
is strongest, though currently it still achieves the lowest number of publications annually.
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The trends in the logarithm of Google Scholar references from 1986 to 2022 were
notably influenced by pivotal developments in the respective techniques. For instance, the
introduction of the mind-the-gap model (MGM) in 2015 and counterfactual explanations
(CEs) in 2022 within the hybrid category contributed to its sustained upward trajectory.
Similarly, the inclusion of decision trees (DTs) in 1986 and random forests in 2001 within
the model-based category contributed to its consistent yet slightly slower growth. Within
the post hoc category, the combined introduction of Bayesian rule lists (BRLs) and Shapley
additive explanations (SHAPs) in 2017, permutation feature importance (PFI) in 2010, local
interpretable model-agnostic explanations (LIMEs) in 2016, and deep learning important
features (DeepLIFT) and gradient-weighted class activation mapping (Grad-CAM) in
2019 accounts for the observed fluctuations, denoting varying levels of interest over time.
Moreover, the incorporation of saliency maps (SMs) in 1995, activation maximization
(AM) in 2009, and attention mechanisms (AtMes) in 2018 within the representation-based
category contributes to its modest yet gradually increasing trend, reflecting sustained
but relatively moderate scholarly attention to these interpretation techniques over the
years. In summary, the trends in the logarithm of Google Scholar references from 1986 to
2022 were significantly shaped by pivotal developments within each technique category,
demonstrating the nuanced evolution of ML interpretation techniques. The introduction of
specific techniques not only influenced their individual trajectories but also led to spill-over
effects, reshaping the broader landscape of scholarly interest and research focus in the field.
These insights underscore the intricate interplay between technological advancements and
scholarly attention, emphasizing the dynamic nature of the ML interpretation landscape
and the continued evolution of research priorities within the scholarly community. These
findings provide valuable insights into the dynamic landscape of interpretation techniques
and the evolving focus within the scholarly community.

Figure 2. Numbers of annual publications on various interpretation techniques, with key milestones
marked.

4.2. Emerging Techniques within the Field of ML Interpretation

As the complexity of neural network models in natural language processing (NLP)
continues to grow, the development of novel methods for computing local explanations has
emerged as a promising avenue for boosting interpretability within this domain. Concur-
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rently, the integration of logic-based systems in contemporary AI research has demonstrated
its significance in handling noisy and inconsistent data, emphasizing the critical role of
rigorous methodologies in ensuring trustworthy and XAI.

Recent advancements in the field of ML interpretation, as highlighted by [65], under-
score the promising potential of a novel method for computing local explanations in neural
network models for NLP. This innovative approach demonstrates the critical importance of
generating robust and optimal local explanations, particularly in complex neural network
models, to bolster transparency and enhance interpretability. By emphasizing the signifi-
cance of producing reliable explanations, this method paves the way for the development
of robust interpretation techniques, especially in the domain of NLP.

Moreover, the integration of logic-based systems in contemporary AI research, as dis-
cussed by [66], has proven to be indispensable for establishing trustable XAI. By accounting
for the inherent inconsistencies and noise present in real-world data, these logic-based
methodologies provide a reliable framework for uncovering intricate relationships within
complex datasets. This recognition of the indispensable role of logic-based approaches fur-
ther accentuates the criticality of robust and rigorous frameworks in ensuring the reliability
and interpretability of AI-driven systems.

The evolving landscape of ML interpretation techniques showcases the potential for
developing robust and reliable methodologies to enhance the interpretability of complex
neural network models. With the integration of innovative methods for computing local
explanations and the recognition of the indispensable role of logic-based systems in han-
dling real-world data, the field of AI interpretation is poised for significant advancements
in the pursuit of transparent and trustworthy AI systems.

5. Implementation Strategies for Explainable AI Using Cloud-Based Solutions

While various techniques for explainable AI have been explored extensively, the suc-
cessful implementation and deployment of these techniques in real-world applications
require careful consideration of numerous factors. This section delves into the crucial as-
pects of implementing and deploying explainable AI solutions, focusing on the integration
of different interpretation techniques with cloud-based solutions. By understanding the
intricacies involved in the implementation process, organizations can leverage the power of
explainable AI to enhance decision-making, foster trust, and ensure regulatory compliance
within their respective domains.

The implementation of XAI is significantly facilitated by the integration of various
cloud-based solutions, which have emerged as pivotal platforms for deploying and man-
aging ML models. Notably, major cloud computing providers such as Amazon, Google,
Microsoft, and IBM offer comprehensive toolsets and services tailored to address the grow-
ing demand for model transparency and interpretability. This section explores how leading
cloud platforms, including Amazon SageMaker, Google Cloud AI Platform, Microsoft
Azure Machine Learning, and IBM Watson Studio, have incorporated dedicated features
and functionalities to enable users to comprehend and elucidate the decision-making pro-
cesses of complex ML models. By leveraging these cloud-based solutions, organizations
can not only enhance the interpretability of their AI models but also ensure transparency,
fairness, and accountability in their AI-driven applications.

Amazon SageMaker[67] is Amazon’s machine learning service that supports building,
training and deploying ML models. It offers SageMaker Clarify for model explainability and
interpretability, which detects and measures potential bias in ML models using a variety of
metrics and enables ML developers to address potential bias and explain model predictions.

Google Cloud AI Platformoffers model explainability features to explain the predic-
tions of ML models. It enables users to generate feature attributions, visualise explanations
and understand why a particular prediction was made. Specifically, it provides Vertex
Explainable AI [68] for feature-based and example-based explanations and a What-If Tool
for visually investigating model behavior.
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Microsoft Azure Machine Learning [69] provides an Azure ML Interpret package
and a Responsible AI dashboard for interpreting and explaining ML models in terms of
their fairness, reliability, safety, transparency and accountability. The Azure ML Interpret
package provides various explainable AI methods such as SHAPs and LIMEs, as well as
feature importance metrics. It is integrated with Azure Machine Learning Studio, and can
also be accessed through the Python SDK for Azure Machine Learning.

IBM Watson Studio v8.0.0 [70] is IBM’s software platform for data science, which
empowers data scientists and analysts to build, run and manage AI models. It brings
together open-source frameworks like PyTorch, TensorFlow and scikit-learn and sup-
ports programming languages such as Python, R and Scala. Particularly to interpret ML
models and make them more transparent, it offers a toolkit named AI Explainability 360
(AIX360) [71], providing various algorithms that cover different dimensions of explanations
and explainability metrics.

6. Applications: XAI’s Impact across Diverse Domains

XAI is assuming growing significance in facilitating AI systems to elucidate their
decision-making methodologies in a manner comprehensible to humans. This not only
fosters enhanced trust but also empowers superior decision-making and more effective risk
management. XAI’s adoption spans diverse applications, and its role is especially pivotal
in critical domains such as healthcare, finance, criminal justice, environment, education,
and autonomous systems. The ensuing examples spotlight the varied applications and use
cases of XAI.

6.1. Healthcare

XAI has emerged as a pivotal component within the healthcare sector, affording
healthcare providers the ability to fathom the rationale behind AI algorithms’ specific
diagnostic conclusions or treatment recommendations. This fosters heightened assurance of
the accuracy of these algorithms and consequently elevates the quality of decision-making
and patient care. Consequently, XAI finds widespread utility in realms such as medical
diagnosis, treatment recommendations, patient monitoring, and clinical decision support.

6.1.1. Example 1: Enhanced Breast Cancer Prognostication

An illustrative case highlighting the pivotal role of XAI in healthcare is the work of Mu-
caki et al. [72]. They developed an ML approach utilizing biochemically-inspired algorithms
to predict outcomes related to hormone and chemotherapy for breast cancer patients. Their
predictions are rooted in extensive data from the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) study. Through this XAI-based model, healthcare
providers gain a deeper understanding of the factors contributing to these predictions,
ultimately improving the precision and personalization of breast cancer treatment.

6.1.2. Example 2: Augmented Understanding of Breast Cancer Diagnoses

Another compelling application of XAI is demonstrated by Wang et al. [73], who
deployed an XAI model to provide explanations for breast cancer diagnoses. This model
not only aids medical practitioners in making more informed decisions but also empowers
patients by offering them insights into the diagnostic process. By demystifying the AI-
driven diagnosis, XAI fosters collaboration between healthcare providers and their patients,
improving overall healthcare experiences.

6.1.3. Example 3: Informed Clinical Decisions for Sepsis Prediction

Rajkomar et al. [74] leveraged XAI to provide explanations for sepsis predictions,
thereby enhancing clinical decision support. Sepsis is a life-threatening condition, and
having transparent explanations for AI-driven predictions can be a critical factor in the
timely intervention and treatment of patients. In this case, XAI acts as a vital aid for
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healthcare professionals, enabling them to make more confident and effective decisions in
emergency situations.

XAI has significantly reshaped healthcare by providing unprecedented insights into
AI algorithms’ decision-making processes. Its integration not only bolsters medical profes-
sionals’ confidence in diagnostic and treatment recommendations but also ushers in a new
era of informed medical interventions.

6.2. Finance

XAI has assumed a pivotal role within the finance sector, driven by imperatives of
regulatory compliance and customer transparency. Through its capacity to offer lucid
insights into decision-making processes, XAI equips financial institutions and investors
to enhance their choices grounded in a comprehensive grasp of underlying variables.
Its applications in finance span a wide spectrum, encompassing critical areas like risk
management, trading strategies, and fraud detection. Notably, XAI models have found
utility in revealing the risk profiles of financial products and investments, illuminating the
intricate nuances that influence financial decision landscapes.

6.2.1. Example 1: Illuminating Credit Risk Assessment

The power of XAI models in finance is exemplified by a groundbreaking study con-
ducted by Bussmann et al. [75], which introduces an XAI-based model tailored for credit risk
assessment. This innovative model serves as a potent tool for financial institutions, signifi-
cantly enhancing their risk management capabilities. Through transparent explanations of
the factors influencing credit risk, financial professionals can make more informed decisions,
reducing potential financial losses and fostering greater trust in their lending practices.

6.2.2. Example 2: Enhancing Stock Trading Strategies

XAI’s influence extends into the realm of trading and investment. Kumar et al. [76]
present a compelling perspective by proposing an explainable reinforcement learning
approach designed for financial stock trading. This approach integrates SHAP, offering
transparency and interpretability to decision-making processes. It unveils the intricate
factors underpinning trading choices and portfolio management strategies. By doing so,
it equips traders with a deeper understanding of their strategies, which can lead to more
effective investment decisions.

6.2.3. Example 3: Bolstering Fraud Detection

XAI models have also demonstrated their effectiveness in enhancing fraud detection
within the finance sector by introducing heightened transparency into the decision-making
process. Ji [77] explores the domain of credit card fraud detection, where the deployment
of explainable AI techniques, specifically SHAPs and LIMEs, emerges as a strategic avenue.
This approach effectively unravels the contributing factors behind calculated fraud scores,
providing clear explanations that empower financial institutions to proactively thwart
fraudulent activities. By pinpointing potential fraudulent transactions and offering compre-
hensible rationales for their determinations, this research resonates as a proactive measure
for fraud prevention.

In essence, the multifaceted applications of XAI within the finance sector, spanning
from risk assessment and trading to fraud detection, embody the transformative potential of
transparent decision-making. As XAI’s prominence continues to grow, its role in fostering
regulatory compliance, bolstering investor confidence, and refining financial decision
landscapes stands resolute, promising a future where transparency and accountability
converge to shape the financial industry.

6.3. Environment

XAI is leaving an indelible mark on the realm of environmental sciences by its use in
models forecasting and tracking air quality, climate shifts, and water conditions. These
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applications of XAI are facilitating a more comprehensive comprehension of the intricate de-
terminants underlying environmental challenges. Below, we present noteworthy instances
exemplifying the impact of XAI applications in the field of the environment.

One of the pivotal applications of XAI within the environmental domain is in air quality
monitoring. XAI models have been ingeniously employed to furnish elucidations for air
pollution predictions, thereby facilitating a profound comprehension of the determinants
contributing to air quality degradation. A notable instance is the study conducted by
Gu et al. [78], where an XAI model melding deep neural networks with a nonlinear
auto regressive moving average model was proposed for air pollution prediction. This
amalgamation yielded enhanced predictive accuracy and interpretability, exemplifying the
potency of XAI in advancing understanding and forecasting.

Similarly, XAI’s impact extends to climate change prediction, where it lends trans-
parency to the intricacies of climate forecasts. By explicating the factors that influence global
warming, XAI models contribute significantly to the comprehension of climate dynamics.
For example, Straaten et al. [79] have harnessed an XAI model to shed light on the elevated
summer temperatures experienced in Western and Central Europe.

In addition, the critical realm of water quality monitoring is profoundly influenced by
XAI. XAI models here serve to expound upon water quality predictions, empowering a
comprehensive grasp of the variables responsible for water pollution. Wu et al. [80], for
instance, devised a water quality prediction model rooted in XAI principles. Applied to
the Yellow River in China, this model unveiled insights into the intricate interplay among
various water quality parameters. Likewise, Park et al. [81] employed an XGBoost model
coupled with Shapley values (SHAPs) to predict water quality, select input variables, and
provide model explanations.

In sum, XAI’s ascendancy within the environmental domain, spanning air quality,
climate change, and water quality, illuminates the trajectory toward a more transparent,
comprehensible, and actionable understanding of complex environmental phenomena.

6.4. Criminal Justice

The utilization of XAI has notably showcased its potential to augment transparency,
accountability, and equity within the criminal justice system. Extensive research has probed
the deployment of XAI tools across diverse domains encompassing risk assessment, bail
determinations, and sentencing protocols.

For instance, Dressel and Farid [82] undertook an exploration into XAI’s role in
predicting recidivism within the criminal justice sphere. Their work accentuated the
paramount importance of employing XAI tools judiciously and transparently to ensure
fairness in decision-making processes. Counterfactual fairness, a concept introduced by
Kusner et al. [83], emerged as a pivotal consideration. They proposed a method to integrate
this notion into XAI models, thereby mitigating biases that might otherwise perpetuate.

Moreover, Rudin and Radin [84] provided an incisive discourse on the indispensable
value of incorporating XAI models across various applications, including the criminal
justice domain. Their insights underscored the pivotal role of XAI in averting the potential
pitfalls of biased decisions.

In conclusion, the advent of XAI as a pivotal tool within the criminal justice domain
manifests its potency in fostering fair, informed, and unbiased decision-making processes,
holding the potential to reshape the landscape of judicial systems for the better.

6.5. Autonomous Systems

XAI has risen as an invaluable asset in enhancing the safety and dependability of
autonomous systems such as self-driving cars and drones. By unveiling the intricate
decision-making processes of these systems, XAI plays a pivotal role in the identification
and rectification of errors or biases, thereby elevating their trustworthiness. Noteworthy
instances abound in this realm.
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For instance, Lipton’s framework [85] stands as an exemplar of XAI’s impact. By
harnessing attention mechanisms and layer-wise relevance propagation, this framework
delves into the depths of deep learning models, illuminating their inner workings and
rendering insights accessible.

Equally compelling is the framework proposed by Kim et al. [86]. This innovation
ingeniously amalgamates adversarial training, model introspection, and user feedback to
cultivate an adaptable and explicable model for self-driving cars. The outcome is a harmo-
nious blend of adaptability and transparency that resonates with real-world applications.

Moreover, XAI finds resonance in the realm of drones. Keneni’s evolutionary ap-
proach [87] encapsulates its utility by developing an interpretable decision support system
for unmanned aerial vehicles in precision agriculture. The experimental outcomes stand as
a testament to the promises that XAI holds in this evolving landscape.

In sum, the integration of XAI into the realm of autonomous systems not only upholds
the principles of accountability and reliability but also shapes the trajectory toward a safer
and more dependable future for these technologies.

7. Challenges and Limitations

The human-centered approach to XAI takes into account the value that users will
ultimately derive from the models. The complexity of these models can often be such that
humans struggle to understand them, but more interpretable models may not perform
as well—in general, there is a trade-off between accuracy and interpretability. If decision-
makers cannot understand their models, they may not trust them, which can lead to a lack
of adoption and decrease the ultimate effectiveness of the AI system.

Many multiple criteria decision making methods have assumed a fixed importance
weighting for each criterion. The ability of LIMEs to discover the most important variables is
questionable when the importance of each factor varies with context, or is even thresholded
in a rules-based model (whether explicitly or implicitly). One approach to address this
challenge is shown by Främling [88], who introduced the notion of contextual importance
and utility (CIU), building on past research on the theory of how humans actually reach
decisions. The notion here is that the importance to a human of an input may vary given
the context.

Several challenges still remain to be addressed to ensure that XAI systems can be
deployed efficiently, safely and ethically. These challenges can be categorized into four main
areas, namely technical challenges, ethical challenges, social challenges, and regulatory
challenges. One of the technical challenges of XAI is that many of the techniques developed
for explaining models have been designed for specific types of models. For example, post
hoc techniques such as LIMEs and SHAPs are best suited for models that are based on
feature importance, whereas counterfactual explanations are better suited to rule-based
systems. Rudin [89] argues that there is a need to move away from black box models
towards models that are inherently interpretable. The use of interpretable models can
provide a more transparent and understandable decision-making process.

One of the ethical challenges of XAI is that it can be difficult to determine what level of
explanation is sufficient for different scenarios. Gunning et al. [3] discuss the need to ensure
that the explanations provided by XAI systems are appropriate for the context in which
they are deployed. The explanations must be able to convey the necessary information to
users without overwhelming them with too much technical detail. Furthermore, the use of
XAI must not perpetuate existing biases or discrimination in society.

Social challenges of XAI include issues related to human trust and perception. Shin [90]
investigated human trust and perception of AI systems. Their study showed that partic-
ipants were more likely to trust and accept the decisions of systems that provided ex-
planations for their outputs. However, the study also showed that the level of trust and
acceptance varied depending on the type of explanation provided.

The regulatory challenges of XAI include issues related to the legal and ethical im-
plications of AI systems. Gunning et al. [3,91] discuss the need for clear regulations
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and standards for the use of XAI in different domains. The regulations must be able
to provide guidance on the ethical and legal implications of AI systems, as well as the
potential risks associated with their use. Liao et al. [92] discuss the need to ensure that
AI systems are held accountable for their decisions. They propose a framework for the
design of XAI systems that includes mechanisms for detecting and reporting errors in the
decision-making process.

The challenges associated with XAI are varied and require a multidisciplinary ap-
proach to address them. Technical challenges require the development of techniques that
are applicable across different types of models. Ethical challenges require the development
of systems that are transparent, fair, and do not perpetuate existing biases in society. Social
challenges require the development of systems that are trusted and perceived as fair by
humans. Regulatory challenges require the development of guidelines and standards that
can ensure the ethical and legal use of XAI systems.

These challenges can also be seen as opportunities—by using XAI techniques, AI
systems can be made more transparent, and their decision-making processes can be better
understood by humans. This, in turn, can lead to increased trust and adoption of the AI
system. XAI can provide improved accountability and potential regulatory compliance in
AI systems.

8. Conclusions and Future Research Directions

With the increasing use of ML models in various domains, there is a growing need for
these models to be transparent, interpretable, and accountable. However, the complexity of
deep learning and other modern AI models makes generating interpretable explanations
challenging and there is in general a trade-off between accuracy and explainability. This
highlights the importance of XAI in providing tools to ensure AI system outputs can be
understood by human users, enhancing trust, adoption, and ultimate effectiveness of these
systems. This can also have a positive impact on regulatory compliance and the ethical use
of AI in various fields.

This review provides a comprehensive overview of foundational XAI techniques
within the AI domain, including model-agnostic methods, post hoc explanations such as
LIMEs and SHAPs, counterfactual explanations, and intrinsically interpretable models. By
addressing critical questions ranging from the evolution of interpretability methodologies
to the impact of diverse interpretation techniques on fostering human–AI collaboration and
regulatory compliance, this review has shed light on the intricate facets of explainability
in AI models. Through an exploration of the strengths and limitations associated with
the application of these techniques across varied data domains, including images, text,
and tabular data, this review has emphasized the nuanced challenges and opportunities
prevalent in real-world applications. Furthermore, by examining the transformative influ-
ence of advanced computational methods on the dynamic landscape of AI interpretability,
this review has revealed the evolving trends that shape the future trajectory of this critical
field. As a result, this comprehensive analysis serves as a resource for individuals seeking
a holistic understanding of the complexities and implications inherent in the realm of
interpretability in AI systems. Furthermore, we highlighted the importance of XAI in
various fields such as healthcare, finance and law enforcement and highlighted some of the
challenges associated with the development and deployment of XAI systems, including
technical, ethical, social, and regulatory challenges. These challenges can also be seen as
opportunities for further research and development.

It appears that, while deep learning has shown considerable advantages for “unstruc-
tured” data, like images and text, for structured data which comes as a table of numbers say,
deep learning is far from the best approach at the moment [93]. What are the implications
of this? (1) Massive search and optimization may produce accurate models but they may
not be interpretable. However, problems that have a large set of possible solutions (i.e., a
large Rashomon set) may include models that are simple, interpretable, robust and accu-
rate. Rudin et al. [89,94] notably advocates this approach and has shown in a number of
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cases that large black box models can be replaced by remarkably simple and interpretable
models with no lack of accuracy. They outline a number of challenges for interpretable
ML [95]; (2) modern deep learning architectures have achieved surprising accuracy while
appearing to be over-parameterized and un-regularized. Guo et al. [96] showed that, while
classification accuracy is very high, many of these approaches cause the model to be very
poorly calibrated. This may be an important point for some use cases where we want the
outputs to be accurate estimates of probabilities.

The current limitations of deep learning in handling unstructured data have been
noted. However, research in the area of interpretable ML has shown that simple, inter-
pretable models can provide accurate results. Finally, we should consider the importance
of model calibration, especially in cases where accurate probability estimates are needed.

To ensure the efficient, safe, and ethical deployment of XAI systems, a multidisciplinary
approach is required, involving experts from various fields such as computer science,
psychology, philosophy, and law. This approach can help address technical challenges
by developing techniques that are applicable across different types of models. Ethical
challenges can also be addressed by developing systems that are transparent, fair, and do
not perpetuate existing biases in society. Social challenges can be addressed by developing
systems that are trusted and perceived as fair by humans. Finally, regulatory challenges
can be addressed by developing guidelines and standards that ensure the ethical and legal
use of XAI systems.

XAI is an exciting and rapidly changing field with significant potential to transform
the way we use AI systems. By addressing the challenges associated with XAI, we can
develop more trustworthy, transparent, and effective AI systems that can benefit industry
and society as a whole.
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