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Abstract: The effects of the anisotropic properties (wettability and roughness) of microgrooved
surfaces on heat transfer were experimentally investigated during pool boiling using Novec-7100 as a
working fluid. The idea for introducing the concept of anisotropic wettability in boiling experiments
draws inspiration from biphilic surfaces. The investigation is also motivated by two-phase immersion
cooling, which involves phase-change heat transfer, using a dielectric liquid as a working fluid.
Very few studies have focused on the effects of surfaces with anisotropic properties on boiling
performance. Thus, this study aims to examine the pool-boiling heat transfer performance on surfaces
with microgroove-induced anisotropic properties under the saturation condition. A femtosecond-
laser texturing method was employed to create microgrooved surfaces with different groove spacings.
The results indicated that anisotropic properties affected the heat transfer coefficient and critical heat
flux. Relative to the plain surface, microgrooved surfaces enhanced the heat transfer performance
due to the increased number of bubble nucleation sites and higher bubble detachment frequency. An
analysis of bubble dynamics under different surface conditions was conducted with the assistance of
high-speed images. The microgrooved surface with a groove spacing of 100 µm maximally increased
the BHTC by 37% compared with that of the plain surface. Finally, the CHF results derived from
experiments were compared with related empirical correlations. Good agreement was achieved
between the results and the prediction correlation.

Keywords: pool boiling; femtosecond laser; anisotropic properties; bubble dynamics; heat transfer
coefficient; critical heat flux

1. Introduction

With the growing ubiquity of information technologies, the development of data
centers is becoming increasingly necessary. Owing to the high-power requirement of these
data centers, cooling methods are crucial for dealing with large amounts of waste heat
generated by the servers. The total power consumption of data centers has significantly
increased [1,2] and is projected to make up ~20% of global electricity usage by 2025 [3]. To
mitigate the electricity usage, liquid cooling has become popular for its outstanding energy
efficiency and cooling performance. For example, two-phase immersion cooling using
highly wetted dielectric liquids as working fluids is a promising liquid cooling method,
notable for its exceptional heat transfer performance and energy efficiency. This liquid
cooling technique can significantly reduce the PUE to approximately 1.08 [3] relative to 1.38
for air cooling. The applications of immersion cooling are expected to be observed in data
centers [4–6], solar panels [7–9], and electrochemical batteries [10–12]. The primary heat
transfer mechanism of two-phase immersion cooling is related to the boiling heat transfer.
The boiling mechanism has been widely applied in various fields, including electronic
devices [13–15], nuclear power plants [16,17], and ink head printers [18–20].
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The boiling heat transfer performance mainly depends on the surface characteristics.
Surface roughness and wettability play essential roles in boiling. As the surface roughness
increases, the heat transfer coefficient (HTC) also enhances owing to the increased number
of bubble nucleation sites [21–24]. Highly wetted surfaces exhibit lower HTCs at low
heat-flux intervals because they require more thermal energy to activate bubble nucleation.
Conversely, surfaces with lower wettability show higher HTCs at low heat-flux intervals
because they allow for early bubble nucleation and more nucleation sites [25–28]. The
relationship between HTC and CHF has been established such that a surface with low
wettability achieves an increased HTC at the expense of a decreased CHF. In contrast, a
surface with high wettability achieves an increased CHF at the expense of a decreased
HTC [29–31].

Owing to the development of two-phase immersion cooling, boiling with highly
wetted liquids has been extensively studied in recent years. To improve the boiling heat
transfer of a highly wetted liquid, surface modification methods, such as ultrafast laser
texturing [32–34] and chemical coating [28,35], have been widely used. Gregorcic et al. [32]
conducted pool boiling experiments using water and FC-72 on laser-textured surfaces. The
laser-textured surfaces offered multi-scale microcavities to facilitate nucleation. Ho et al. [33]
conducted pool boiling experiments using water and FC-72 as working fluids on surfaces
produced using selective laser melting. They found that the fin separation of micro-fin
surfaces had a significant impact on the HTC. Their results indicated that the optimal fin
separation for micro-fin surfaces was 300 µm. Su et al. [28] conducted pool boiling tests
on graphene and fluorinated-graphene-coated surfaces, using R-141b as a working fluid.
The superior heat transfer performance of the F-graphene-coated surface was attributed to its
highest contact angle among the test surfaces, which led to a greater number of nucleation sites.

To further enhance BHTC, the use of a biphilic surface as a boiling surface is benefi-
cial because it exploits the advantages of high and low wettabilities. Inspired by biphilic
surfaces [36–38], surfaces with anisotropic wettability also exhibit distinct wettability char-
acteristics [39–43]. Liu et al. [40] used a laser belt–processing method to create microgrooves
on an Inconel 718 surface. The contact angle measured in the direction parallel to the groove
was different from that measured in the normal direction. This phenomenon was attributed
to variations in the energy barriers between the two directions. Similar findings were
reported in [41], which demonstrated the presence of an energy barrier that liquid droplets
must overcome in the normal direction. Droplets were attracted to the microstructure
and extended in the direction parallel to the microgrooves, facilitated by the continuous
three-phase contact lines along the microgrooves. These microgrooves effectively prevented
the diffusion of droplets in the normal direction.

In the present work, although the test surfaces were not biphilic surfaces, the idea of
surface modification came from the concept of wettability difference on a surface. Very
few studies have investigated the boiling heat transfer of a copper surface with anisotropic
properties, particularly when a dielectric liquid (Novec-7100) is employed as the work-
ing fluid. Novec-7100 was selected as a working fluid owing to its electrical insulating
property and potential for developing two-phase immersion cooling. Therefore, this
study investigated the effects of anisotropic properties on microgrooved surfaces in boil-
ing heat transfer, using Novec-7100 as a working fluid. During the experiments, bubble
dynamics were analyzed through high-speed visualizations. The HTC and CHF perfor-
mances are discussed with the assistance of bubble dynamics and the mechanisms of the
anisotropic properties.

2. Experiments
2.1. Experimental Setup

The experimental setup is shown in Figure 1. This setup aimed to investigate the
effects of the anisotropic properties of microgrooved flat copper surfaces on the heat transfer
during pool boiling. All the experiments were conducted under atmospheric pressure,
and the working fluid was maintained at the saturation temperature. The dielectric liquid
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(Novec-7100, 3M) was employed as the working fluid in the experiments. An auxiliary
heater (CCTCL) connected to an autotransformer (CCTCL) was used to maintain the
saturated state of the working fluid. To supply power to the test sample, a cartridge heater
(220 V/800 W, CCTCL) was used and inserted into a copper block, as shown in Figure 2.
The heat input to the cartridge heater was regulated using a DC power supply (GPR-
20H50D, GW Instek). The copper block was covered with a PEEK holder (0.25 W/m·K) to
ensure thermal insulation. Three T-type thermocouples (CCTCL) connected to a data logger
(MX100) were inserted into the copper block to record temperature data for the heat transfer
analysis, as depicted in Figure 2. To reduce the heat resistance, thermal grease (SG-7650,
Hasuncast), with a thermal conductivity of 0.94 W/m·K, was applied to the surface of the
cartridge heater and the thermocouples. The test sample, with a thickness of 2 mm and
a diameter of 16 mm, was pasted on the top surface of the copper block (Figure 3), and a
thermal grease made of liquid metal (Thermalright, Silver King, 79 W/m·K) was applied at
the interface between the test sample and copper block.
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Figure 1. Schematic of the pool boiling experimental setup. Figure 1. Schematic of the pool boiling experimental setup.

To maintain the working fluid’s circulation and atmospheric pressure, a coil condenser
(CCTCL) was installed inside the boiling chamber and connected to the cooling system.
The cooling coil was able to condense the saturated vapor back to the bulk liquid pool.
High-speed images of boiling bubbles were captured using a high-speed camera (AOS
technologies AG, Promon U800) at a fixed frame rate of 210 fps and a spatial resolution of
1280 × 1024. A white-light-emitting diode was used for illumination during high-speed
image recording.

2.2. Properties of Working Fluid

To prevent electricity conduction, a dielectric fluid with a high dielectric constant is
widely used in immersion cooling [44]. The boiling experiment is a simple way to investigate
the two-phase heat transfer performance of dielectric liquids. In some previous studies,
dielectric liquids have been employed as working fluids for boiling experiments [45,46]. The
dielectric liquid produced by the 3M company consists of the FC and Novec series. The
primary difference between these two series lies in their global warming potential (GWP).
The Novec series offers a significantly lower GWP, making it a superior alternative to the FC
series. Therefore, Novec-7100, with a lower GWP and a boiling point of 61 ◦C, was chosen
as the working fluid in this study. Unlike DI water, Novec-7100 exhibits a much lower
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surface tension (9.3 mN/m) and boiling point (61 ◦C). Owing to a significant reduction in
surface tension, the CA of Novec-7100 on a plain copper surface is ~15◦, and that of DI
water on a plain copper surface is ~73◦. The properties of DI water and Novec-7100 are
listed in Table 1.
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the radial direction).
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Table 1. Properties of Novec-7100 and DI water at their boiling points.

Property DI Water Novec-7100
Boiling point (◦C) 100 61

Density (kg/m3) 957.9 1418

Thermal conductivity
(W/m·K) 0.679 0.062

Heat of vaporization (kJ/kg) 2257 112

Specific heat (J/kg·K) 4217 1254

Surface tension (mN/m) 60.8 9.3

GWP -- 297

CA on plain copper surface ~73◦ ~15◦

2.3. Surface Preparation

The flat copper samples, with a thickness and diameter of 2 mm and 16 mm, re-
spectively, were used as the test surfaces in the boiling experiments. The procedure for
fabricating smooth copper surfaces is illustrated in Figure 4a. To remove the oxidation
layer, the copper samples were polished using 2000-grit sandpaper. After polishing, the
samples were rinsed with deionized water and acetone. Subsequently, the copper samples
were immersed in acetone and subjected to sonication for 10 min to completely remove the
residue on the surface. Finally, the copper samples were dried in an oven for 10 min.
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The plain copper samples were textured with microgrooves, using a femtosecond laser
(Tongtai, TLFS-500). The parameters of the femtosecond laser are listed in Table 2. The
laser system had an average power of 5.4 W, a scanning speed of 100 mm/s, and a pulse
repetition rate of 1 MHz. A schematic of the laser-scanning path is shown in Figure 5. The
horizontal line interval for each scanning path was 10 µm, and the diameter of the laser
spot size was 15 µm. A total laser fluence of ~3 J/cm2 was used to fabricate microgrooves
on the plain surfaces. All the test surface conditions are listed in Figure 6. S1 represents
the plain copper surface; S2, S3, and S4 represent the microgrooved surfaces under the
condition of different groove spacings. The various groove spacings were produced by
changing the number of laser-scanning paths.

Table 2. Parameters of ultrafast femtosecond laser.

Laser Parameter Value

Fluence (J/cm2) 3
Repetition rate (MHz) 1

Scanning speed (mm/s) 100
Average power (W) 5.4

Scanning interval (µm) 10
Spot size (µm) 15



Appl. Sci. 2024, 14, 495 6 of 23

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 24 
 

pulse repetition rate of 1 MHz. A schematic of the laser-scanning path is shown in Figure 
5. The horizontal line interval for each scanning path was 10 µm, and the diameter of the 
laser spot size was 15 µm. A total laser fluence of ~3 J/cm2 was used to fabricate micro-
grooves on the plain surfaces. All the test surface conditions are listed in Figure 6. S1 rep-
resents the plain copper surface; S2, S3, and S4 represent the microgrooved surfaces under 
the condition of different groove spacings. The various groove spacings were produced 
by changing the number of laser-scanning paths. 

Table 2. Parameters of ultrafast femtosecond laser. 

Laser Parameter Value 
Fluence (J/cm2) 3 

Repetition rate (MHz) 1 
Scanning speed (mm/s) 100 

Average power (W) 5.4 
Scanning interval (µm) 10 

Spot size (µm) 15 

 
Figure 5. Schematic of laser-scanning path and groove spacing in the present study. 
Figure 5. Schematic of laser-scanning path and groove spacing in the present study.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 24 
 

 
Figure 6. Schematic of test surface conditions in pool boiling experiments. 

2.4. Surface Characterization 
2.4.1. Surface Roughness 

The images of the surface morphology for all the surface conditions were obtained 
using a laser-scanning confocal microscope (NTUME Precision Metrology Lab, Brand: 
Keyence, Osaka, Japan, Controller: VK-X1000, Measuring Head: VK-X1100). Confocal, 
three-dimensional, and surface profile images are shown in Figures 7 and 8. Surface 
roughness is a critical factor that can significantly influence the boiling heat transfer per-
formance. Many studies have focused on the roughness effect on boiling surfaces; how-
ever, very few studies have considered anisotropic surface roughness, which depends on 
the measurement direction in microgrooves. The measurement results obtained in the par-
allel and normal directions to the microgrooves are shown in Table 3. To provide greater 
detail for the morphology of the microgrooves, scanning electron microscopy (SEM) im-
ages of the microgrooved surfaces are presented in Figure 9. 

Table 3. Surface roughness measured in parallel and normal directions on S1–S4 surfaces. 

Sample Ra (Parallel, μm) Ra (Normal, μm) 
S1 1.31 1.73 
S2 1.64 6.86 
S3 1.76 6.11 
S4 1.68 5.09 

Figure 6. Schematic of test surface conditions in pool boiling experiments.

2.4. Surface Characterization
2.4.1. Surface Roughness

The images of the surface morphology for all the surface conditions were obtained
using a laser-scanning confocal microscope (NTUME Precision Metrology Lab, Brand:
Keyence, Osaka, Japan, Controller: VK-X1000, Measuring Head: VK-X1100). Confocal,
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three-dimensional, and surface profile images are shown in Figures 7 and 8. Surface rough-
ness is a critical factor that can significantly influence the boiling heat transfer performance.
Many studies have focused on the roughness effect on boiling surfaces; however, very few
studies have considered anisotropic surface roughness, which depends on the measure-
ment direction in microgrooves. The measurement results obtained in the parallel and
normal directions to the microgrooves are shown in Table 3. To provide greater detail for
the morphology of the microgrooves, scanning electron microscopy (SEM) images of the
microgrooved surfaces are presented in Figure 9.
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2.4.2. Surface Wettability

The surface wettability data and CA measurement images of all the test samples were
recorded using a contact angle goniometer (NTU MEMS Thermal Control Lab, Brand:
Model 100SB, Sindatek Instruments Co., Ltd., Taipei, Taiwan). A 3 µL water droplet was
dropped onto each test sample for the CA measurement. The static CA and receding CA
for Novec-7100 measured in directions parallel (θ1) and normal (θ2) to the microgrooves
are displayed in Table 4. The deviation between the parallel CA and normal CA is known
as the degree of anisotropy (∆θ12). This concept could be observed in Liu’s study [40].
The characteristic of the anisotropic wettability may also appear on a surface with a
unidirectional structure [22,47]. The images of the static CA and dynamic CA measurements
are shown in Figure 10.
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Table 4. Static and receding CA results measured in parallel and normal directions on S1–S4 surfaces.

Static Contact Angle

Surface Condition θ1
(Parallel)

θ2
(Normal)

∆θ12
(Anisotropy) Schematic

S1 18 ± 0◦ 15 ± 0.3◦ ~3◦
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2.5. Data Reduction and Uncertainty Analysis

The heat loss analysis for the plain copper surface at different heat-flux intervals is
shown in Table 5. As a baseline check for the experimental data, the heat loss percentages
were less than 10% in the experiments.

Table 5. Heat loss analysis during the boiling experiments.

Specific Heat-Flux Interval (W/cm2) Heat Loss (%)

q′′ ≈ 4.33 9.7
q′′ ≈ 10.33 4.3
q′′ ≈ 18.33 2.5
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Owing to the good insulation condition during the experiments, the heat transfer
mode was considered as 1D heat conduction. The temperature gradient, dT

dx , was calculated
using the linear property of the heat conduction, defined in Equation (1) as follows:

dT
dx

=
T1 − T3

2∆x
(1)

where ∆x is the distance between the T1 and T2 thermocouples. The heat flux, q′′ , was
derived using Fourier’s heat conduction law, expressed in Equation (2) as follows:

q′′ = −kCu
dT
dx

(2)

where kCu is the thermal conductivity of copper (400 W/m·K). The surface temperature,
Tw, was estimated through back-calculation, given by Equation (3) as follows:

Tw = T1 − q′′ (
dCu
kCu

+
dgrease

kgrease
) (3)

where kgrease is the thermal conductivity of the thermal grease (79 W/m·K), dCu is the
distance between the T1 thermocouple and the upper surface, and dgrease is the thickness of
the applied thermal grease. The wall superheat, ∆Tw, was estimated using Equation (4)
as follows:

∆Tw = Tw − Tsat (4)

where Tsat represents the saturation temperature of the working fluid. The saturation
temperature for Novec-7100 is 61 ◦C.

Finally, the boiling heat transfer coefficient, h, was evaluated using Equation (5)
as follows:

h =
q′′

∆Tw
(5)

The estimation of uncertainties within specific heat-flux intervals was conducted using
Taylor’s method [48]. The uncertainty analysis of the S1 surface is presented in Table 6. The
subsequent equations are the general formulae of the uncertainty calculation. Equation (6)
is the general formula for determining uncertainties for various parameters, including the
heat flux, wall superheat, and HTC. Up denotes the uncertainty in the derived parameter p,
whereas Uaexp represents the uncertainties associated with all the measured parameters
indicated as aexp.

Up =

√
∑n

i=1(
∂p

∂aexp
Uaexp)

2 (6)

The calculation of the uncertainty for the heat flux was performed using Equation (7)
as follows:

Uq′′

q′′
=

( kCuUT2−T1

2∆xq

)2

+

( kCuUT3−T2

2∆xq

)2

+

(
kCu(T2 − T1)U∆x

2∆x2q

)2

+

(
kCu(T3 − T2)U∆x

2∆x2q

)2
 1

2

(7)

Equation (8) was applied to determine the uncertainty of the wall superheat as follows:

UTw

Tw
=

[(
UT1

Tw

)2
+

(
dCuUq

kCuTw

)2

+

(
qUdCu

kCuTw

)2
] 1

2

(8)



Appl. Sci. 2024, 14, 495 12 of 23

To estimate the uncertainty of the HTC, Equation (9) was employed as follows:

Uh
h

=

[(
Uq

q

)2
+

(
U∆T
∆T

)2
] 1

2

(9)

Table 6. Uncertainty analysis for a plain copper surface (S1), using Novec-7100 as the working fluid
at different heat-flux intervals.

Specific Heat-Flux Interval
(W/cm2)

Uncertainty Parameter

Tw (K) h (W/cm2·K)

q′′ ≈ 2.09 0.27 0.02
q′′ ≈ 10.23 0.56 0.03
q′′ ≈ 19.14 0.87 0.05

2.6. Experimental Procedure

Before the experiments, 2 L of Novec-7100 was poured into the boiling chamber, and
the auxiliary heater was activated by turning on the autotransformer. The auxiliary heater
was used to increase the working fluid’s temperature to its saturation temperature (61 ◦C).
Subsequently, a DC power supply connected to a cartridge heater was switched on, and
the temperature readings of the thermocouples in the copper block were recorded using
a data logger. To regulate the input power to the test sample, the current was adjusted
using the DC power supply. The current was gradually increased at an increment of
0.05 A for measuring each experimental datum. When the temperature fluctuations of
the thermocouples in the copper block were less than 0.1 ◦C within a 5 min interval, the
steady-state condition was confirmed. Finally, CHFs were achieved under all the test
conditions. Once the CHF was reached, film boiling occurred on the flat copper surface,
causing the surface temperature to rapidly rise by over 20 ◦C within 1 min. After this, the
DC power supply was turned off immediately to avoid burning out the apparatus. To
verify the repeatability, experiments for each test condition were conducted three times in
the study.

3. Results and Discussion
3.1. Validation of Experimental Setup

To validate the experimental setup, the pool boiling curve for a plain copper surface,
obtained using Novec-7100 as the working fluid, was compared with the Rohsenow corre-
lation curve [49] and similar pool boiling curves in the related literature [50,51]. The widely
used correlation proposed by Rohsenow is expressed in Equation (10) as follows:

q′′ nucleate = µlhlv

[
g(ρl − ρv)

σ

]0.5
(

cpl∆Tsat

Cs f hlvPrn

)3

(10)

where µl is the dynamic viscosity of the liquid, hlv is the latent heat, g is the gravitational
acceleration, ρl is the density of the liquid, ρv is the density of the vapor, σ is the surface
tension, cpl is the specific heat of the liquid, ∆Tsat is the wall superheat, Pr is the Prandtl
number, Cs f is the surface-fluid factor, and n is the experimental constant.

In the current study, n equals 1.7 for fluids other than water. The surface-fluid
combination, Cs f , equals 0.0036 based on the experimental data for Novec-7100 [52,53].
As depicted in Figure 11, the boiling results obtained for the plain surface in the present
work are almost consistent with the Rohsenow correlation and those obtained for the plain
surface in the related studies. However, owing to the prediction limit of the Rohsenow
correlation, the experimental data diverge in the high heat-flux regime. A vapor film
gradually forms from the intensified bubble aggregation in this regime and deteriorates
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the heat transfer rate. Therefore, the boiling curve diverges to the right in the end. Similar
phenomena can be found in the above literature [50,51].
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3.2. Evaluation of Boiling Heat Transfer Data

Figure 12 illustrates the boiling curves (Figure 12a) and HTC curves (Figure 12b)
obtained for all the test conditions. Table 7 presents the increment in HTCs relative to the
plain surface (S1) at the highest heat flux of S4 (22.44 W/cm2). S2 exhibited the furthest
leftward-shifted boiling curve, with an HTC enhancement by a factor of 1.37 compared
with that of S1. Although the HTCs of S3 and S4 were lower than that of S2, theirs still
increased by factors of 1.18 and 1.05, respectively, relative to the reference condition (S1).
For CHF values, the boiling tests conducted using microgrooved surfaces as test surfaces
exhibited slightly lower CHF values than that of the plain surface. A minor decrease in
CHF was attributed to earlier bubble aggregation on microgrooved surfaces. This led to a
large vapor slug, which hindered the heat transfer between the surface and the liquid. As
a result, the highest HTC improvement among all the test surfaces was an increase by a
factor of 37% owing to the enhanced bubble nucleation facilitated by the characteristics of
the anisotropic wettability and roughness. More details of the bubble dynamics supported
by the high-speed visual study will be introduced in the following section.

Table 7. Boiling results obtained under S1–S4 conditions.

Surface
Condition

∆Tw,ONB
(K)

CHF
(W/cm2)

HTC
(W/cm2K) hSN/hS1

S1 10.29 25.08 1.10 --
S2 5.56 24.09 1.51 1.37
S3 5.85 23.32 1.30 1.18
S4 6.43 22.44 1.16 1.05



Appl. Sci. 2024, 14, 495 14 of 23

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 24 
 

 
(a) 

 
(b) 

Figure 12. (a) Pool boiling curves obtained under test conditions using Novec-7100 as the working 
fluid; (b) HTCs obtained under test conditions using Novec-7100 as the working fluid. 

Table 7. Boiling results obtained under S1–S4 conditions. 

Surface  
Condition 

ΔTw,ONB 
(K) 

CHF 
(W/cm2) 

HTC 
(W/cm2K) 

hSN/hS1 

S1 10.29 25.08 1.10 -- 
S2 5.56 24.09 1.51 1.37 
S3 5.85 23.32 1.30 1.18 
S4 6.43 22.44 1.16 1.05 

  

Figure 12. (a) Pool boiling curves obtained under test conditions using Novec-7100 as the working
fluid; (b) HTCs obtained under test conditions using Novec-7100 as the working fluid.

3.3. Effects of Groove-Induced Anisotropic Wettability and Roughness

The texturing of the microgrooves on the surface can induce anisotropic properties.
Kwon et al. [54] explored the influence of microgrooved surfaces on water droplet repellency.
Their CA measurements revealed observable anisotropy between the directions normal and
parallel to the groove. Gui et al. [55] similarly investigated the microgroove effect on the
surface wettability and suggested the utility of Wenzel’s model [56] for predicting the CA
along the grooves and Cassie’s model [57] for predicting the CA in the normal direction.

In the present study, a similar phenomenon was observed on the microgrooved
surfaces, where Wenzel’s and Cassie’s wetting states dominated in the directions parallel
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and normal to the groove, respectively. Therefore, the existence of the wettability anisotropy,
as shown in Table 4, can be explained by this difference in the wetting states. Wenzel’s and
Cassie’s models are respectively shown by Equations (11) and (12) as follows:

cosθw = rcosθ0 (11)

where θw is the contact angle on the rough surface in Wenzel’s model; r is the roughness
factor, which is defined as the ratio of the real surface area to the apparent surface area; and
θ0 represents Young’s contact angle for smooth surfaces as follows:

cosθc = fslcosθ0 − flv (12)

where θc is the Cassie–Baxter contact angle for the rough surface, fsl is the area fraction
of the solid wetted by the liquid, and flv is the area fraction of the liquid in contact with
the vapor.

With the groove spacing increasing from 100 µm to 500 µm, an enhancement in CA
in the normal direction was observed, as shown in Table 4. This groove-spacing effect
slightly influenced the CHF values in the boiling heat transfer. Furthermore, the existence
of microgrooves on the surface significantly enhances the surface roughness in the normal
direction, as displayed in Table 3. With the groove spacing decreasing from 500 µm to 100 µm,
a smaller groove spacing and more microgrooves can induce more available nucleation
sites in the normal direction inside the grooves. This enhancement in the nucleation ability
was attributed to the increased surface area provided by more microgrooves on the surface.
As a result, groove-induced wettability and roughness variations may influence the boiling
heat transfer performance. The effects of the anisotropic properties on the boiling heat
transfer are discussed in the following section.

3.4. Effects of Anisotropic Wettability and Roughness on Boiling Heat Transfer

Figure 13a,b illustrate the mechanisms of bubble nucleation and liquid rewetting
on microgrooved surfaces. As depicted in the figure, more bubble nucleation sites were
activated when the wettability in the parallel direction was lower. In addition, higher
wettability in the normal direction provided good rewetting because it facilitated liquid
spreading [41]. Therefore, a superior heat transfer performance was achieved with a larger
CA difference between the parallel and normal directions, which is denoted as higher
anisotropy. The experimental results showed that the S2, S3, and S4 surfaces demonstrated
greater heat transfer performance than the S1 surface owing to their increased anisotropy,
as observed in Table 4. Supported by slightly increased anisotropy, the S2 surface with the
smallest groove spacing exhibited a higher HTC than and a CHF similar to those of the S3
and S4 surfaces.

The effects of the anisotropic roughness can be observed in Table 3 and Figure 13c,d.
In the normal direction, the S2, S3, and S4 surfaces exhibited more significant surface
roughness compared with that of the plain surface (S1). For the S1 condition, the surface
was relatively smooth, leading to limited space for nucleation. On the contrary, the mi-
crogrooved surfaces with sufficient space inside the grooves could provide more nucleation
sites. The strengthened nucleation ability achieved a superior HTC on the microgrooved
surfaces. Similar boiling experiment results can be observed in previous studies [24,58].
The average roughness factors are shown in Figure 13d. These roughness factors were
mainly affected by the groove spacing, suggesting that the smaller the groove spacing
that was selected, the higher the roughness factor that was derived. This is because more
microgrooves could be presented on the test surface with a smaller spacing. With a larger
space for bubble nucleation, the S2 surface could exhibit an HTC superior to those of the S3
and S4 surfaces.
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3.5. Analysis of Bubble Dynamics

The images of the bubble dynamics at four different heat-flux intervals, as obtained
using a high-speed camera, are shown in Figure 14. Owing to the increased surface rough-
ness in the normal direction and the increased CA in the parallel direction, the numbers
of bubble nucleation sites on the S2, S3, and S4 surfaces surpassed that of bubble nu-
cleation sites on the S1 surface in the low heat flux regime. Unlike the S1 surface, the
S2–S4 surfaces had bubbles that started to nucleate at lower wall superheats (5.56–6.43 K).
As shown in the high-speed images in Figure 14, the emerging bubbles were more pro-
nounced on the S2–S4 surfaces compared with those on the S1 surface at a heat flux of
~1.79 W/cm2. The difference in the bubble nucleation abilities can be attributed to the
lower wettability in the parallel direction on the S2–S4 surfaces, which was induced by
the more significant energy barrier of the microgrooved surfaces in the parallel direction.
As stated by Liu et al. [40], this energy barrier prevented liquid droplets from collapsing
and penetrating the microgrooves in the normal direction. Therefore, this phenomenon
caused a less-wetted condition that lowered the minimum surface energy requirement to
activate the bubble nuclei. A preferable bubble nucleation environment was formed with
the assistance of a larger directional wettability difference and increased surface roughness
in the normal direction. With an earlier onset of nucleate boiling and an increased number
of nucleated bubbles, as presented in Figure 14, the S2–S4 surfaces could transfer more heat
with the help of the liquid–vapor phase change.

After the ONB, a large number of bubbles emerged and started to dominate the test
surface at a low heat-flux interval (1.79–4.21 W/cm2). In this heat flux regime, the bubble
departure frequency was noticeably increased, making it challenging to examine the bub-
ble behavior. As the process continued, the interaction between the bubbles intensified,
causing smaller bubbles to merge and form larger ones at the moderate heat-flux interval
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(4.21–12.27 W/cm2). The rapid aggregation and coalescence of bubbles propelled the
boiling to the high heat-flux interval (12.27–21.59 W/cm2). When the heat flux reached
~22.44 W/cm2 on the S4 surface, the generated bubbles no longer had sufficient time to
depart from the test surface. Consequently, these numerous bubbles coalesced to form a
large vapor film that covered the entire surface. As depicted in Figure 14, larger vapor
columns rapidly developed on the S1–S4 surfaces in the high heat flux regime because
of over-intensified bubble coalescence, resulting in a vapor film. Owing to the low ther-
mal conductivity of the vapor film, effective heat transfer was hindered, leading to the
occurrence of film boiling.
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The bubble evolution cycle is another critical factor affecting the boiling heat transfer
performance. As shown in Figure 15, the bubble detachment rate of the S2 surface was much
faster than those of the S1, S3, and S4 surfaces in the low heat flux regime (~1.79 W/cm2).
This is because the wettability in the normal direction for S2 was higher than those in the
normal direction for the other test surfaces (Table 4). Enhanced liquid replenishment would
accelerate the bubble evolution cycle. This efficient bubble detachment could facilitate heat
dissipation. As presented in Figure 15, S3 also exhibited a high bubble departure rate. As a
result, the differences in the directional wettability and surface roughness played a crucial
role in reducing the surface wall superheat and achieving a higher heat transfer rate for S3
compared with S1. The S2 surface, with more nucleation sites, an earlier ONB, and a faster
bubble evolution cycle, exhibited the most significant improvement in the heat transfer
performance among all four test conditions.

3.6. Discussion of CHF Correlations

In terms of the CHF performance, the S2, S3, and S4 surfaces exhibited slightly lower
CHF values of ~24.09 W/cm2, ~23.32 W/cm2, and ~22.44 W/cm2, respectively, compared
with that of the S1 surface (~25.08 W/cm2). This suggested that the higher parallel CA
and higher surface roughness of the microgrooved surfaces may cause slightly lower CHF
values, primarily owing to the over-intensified interaction of bubbles on these surfaces.
Figure 14 illustrates that on the S2–S4 surfaces, large vapor slugs formed at a heat flux of
~21.59 W/cm2, impeding the heat transfer from the test surface to the working fluid. Thus,
slightly lower CHFs were achieved compared with that of the plain surface (S1).
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A comparison between the CHF values obtained in the present study and those
predicted using existing models is presented in Figure 16. One notable model proposed
by Zuber [59], as shown in Equation (13), is based on hydrodynamic instability theory
as follows:

q′′ CHF = Kh f g

[
σgρv

2(ρl − ρv)
] 1

4 (13)

where K is the dimensionless CHF ratio, which equals 0.131 in Zuber’s model; h f g is the
latent heat; σ is the surface tension of the working fluid; g is the gravitational accelera-
tion constant; and ρv and ρl are the density of the working fluid in the vapor and the
liquid phases, respectively. However, this model solely accounts for the effect of pool
hydrodynamics during boiling and neglects the influence of test surface characteristics. As
expressed in Equation (14), Kandlikar [60] developed an extended model based on Zuber’s
and incorporated the effect of the surface wettability as follows:

q′′ CHF = ρvh f g

(
1 + cos θrec

16

)[
2
π

+
π

4
(1 + cos θrec)cos ω

]1/2[σg(ρl − ρv)

ρv2

]1/4
(14)

where θrec is the receding CA, and ω is the incline angle, which equals 0 on a horizontal
surface. In this correlation, the CHF values increased with increasing surface wettability.
As depicted in Figure 16, deviations between our CHF results obtained for microgrooved
structures and those obtained using Kandlikar’s prediction model emerged owing to



Appl. Sci. 2024, 14, 495 19 of 23

insufficient consideration of the effects of the surface morphology. Thus, a modified
correlation combining both the surface wettability and roughness factor was introduced by
Chu [61]. Chu’s correlation is presented in Equation (15) as follows:

q′′ CHF = ρvh f g

(
1 + cos θ

16

)[
2(1 + α)

π(1 + cos θ)
+

π

4
(1 + cos θ)cos ω

]1/2[σg(ρl − ρv)

ρv2

]1/4
(15)

where θ is the apparent CA; r is the roughness factor, which is defined as the ratio of
the real wetted area to the projected base area; and α equals rcos θrec. As a result, in
Figure 16, our CHF values match well with those theoretically predicted by Chu owing to
the consideration of the effects of the surface wettability and roughness factor induced by
the microgrooved structure. As a result, the CHF values of the microgrooved surfaces can
be accurately predicted within a 10% error, using Chu’s prediction model.
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4. Conclusions

This work experimentally investigated the effects of the anisotropic properties of
microgrooved surfaces on the heat transfer during pool boiling. The ultrafast femtosecond-
laser texturing technique was employed to create microgrooves on flat copper surfaces.
Novec-7100 was used as the working fluid during the experiments. Through the visual
study of the bubble dynamics, the nucleation ability and bubble evolution cycle on the
surfaces were analyzed and discussed. The mechanisms of the anisotropic wettability and
roughness were used to explain the difference in the heat transfer performances for all the
test conditions. The conclusions of the present study can be summarized as follows:

• All the microgrooved surfaces exhibited HTCs superior to that of the S1 surface, par-
tially owing to the lower surface wettability in the direction parallel to the grooves.
Superior nucleation ability was achieved on these surfaces. Moreover, the S2 sur-
face, with a groove spacing of 100 µm, increased the HTC by a maximum factor of
1.37 compared with that of the plain surface (S1). This is because the S2 surface
exhibited the highest anisotropy for all the test conditions;

• The effect of the anisotropic surface roughness facilitated the formation of more
bubble nucleation sites on microgrooved surfaces. The roughness of the microgrooved
surfaces in the normal direction was much higher than that of the microgrooved
surfaces in the parallel direction, suggesting more space for bubble nucleation. As
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a result, the combination of the higher anisotropy and roughness on microgrooved
surfaces resulted in a preferable condition for bubble nucleation and a superior heat
transfer performance;

• The CHF values of the microgrooved surfaces were slightly decreased compared
with that of the S1 surface. This is because the over-intensified bubble aggregation,
due to the exceptional nucleation ability on microgrooved surfaces, deteriorated the
heat transfer performance, forming a vapor film on the surfaces. Furthermore, the
CHF values in the present work were evaluated using Chu’s empirical correlations,
ensuring a good agreement.

In summary, microgrooved surfaces with anisotropic properties facilitated the im-
provement in the boiling heat transfer performance. These characteristics hold the potential
for diverse industrial applications in the future. Further investigation of the effect of the
dimensions of microgrooves on the boiling heat transfer will be conducted in future work.
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Nomenclature
dCu distance between T1 thermocouple and upper surface, m
dgrease thickness of applied thermal grease, m
G gravitational acceleration constant, m/s2

hfg latent heat of vaporization, J/kg
hSN/hS1 heat transfer coefficient ratio
kCu thermal conductivity of copper, W/m·K
kgrease thermal conductivity of thermal grease, W/m·K
q′′ heat flux over the surface area of the sample, W/cm2

q′′ CHF critical heat flux, W/cm2

r roughness factor
T1 temperature of the thermocouple located 14 mm below the test surface, ◦C
T2 temperature of the thermocouple located 20 mm below the test surface, ◦C
T3 temperature of the thermocouple located 26 mm below the test surface, ◦C
Tw surface temperature, ◦C
Tsat saturation temperature of the working fluid, ◦C
∆Tw wall superheat, ◦C
∆x depth difference at the thermocouple’s location, m
θ contact angle
θ1 contact angle measured in the direction parallel to the grooves
θ2 contact angle measured in the direction normal to the grooves
∆θ12 degree of anisotropy
θrec receding contact angle
ρ density, kg/m3

ρl liquid density, kg/m3

ρv vapor density, kg/m3
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σ surface tension, N/m
ω angle relative to horizontal
- from. . . to. . .
~ approximately
Abbreviations
CA contact angle
CAD computer-aided design
CHF critical heat flux
CCTCL Chuan Chi Trading Co., Ltd.
DC direct current
DI deionized
GWP global warming potential
BHTC boiling heat transfer coefficient
ONB onset of nucleate boiling
PUE power usage effectiveness
PEEK polyetheretherketone
Ra average surface roughness
S surface condition
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