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Abstract: In this paper, first, we delved into the experiment by comparing various attention mech-
anisms in the semantic pixel-wise segmentation framework to perform frame-level transcription
tasks. Second, the Viterbi algorithm was utilized by transferring the knowledge of the frame-level
transcription model to obtain the vocal notes of Korean Pansori. We considered a semantic pixel-wise
segmentation framework for frame-level transcription as the source task and a Viterbi algorithm-
based Korean Pansori note-level transcription as the target task. The primary goal of this paper was
to transcribe the vocal notes of Pansori music, a traditional Korean art form. To achieve this goal,
the initial step involved conducting the experiments with the source task, where a trained model
was employed for vocal melody extraction. To achieve the desired vocal note transcription for the
target task, the Viterbi algorithm was utilized with the frame-level transcription model. By leveraging
this approach, we sought to accurately transcribe the vocal notes present in Pansori performances.
The effectiveness of our attention-based segmentation methods for frame-level transcription in the
source task has been compared with various algorithms using the vocal melody task of the MedleyDB
dataset, enabling us to measure the voicing recall, voicing false alarm, raw pitch accuracy, raw chroma
accuracy, and overall accuracy. The results of our experiments highlight the significance of attention
mechanisms for enhancing the performance of frame-level music transcription models. We also
conducted a visual and subjective comparison to evaluate the results of the target task for vocal note
transcription. Since there was no ground truth vocal note for Pansori, this analysis provides valuable
insights into the preservation and appreciation of this culturally rich art form.

Keywords: frame-level transcription; vocal transcription; Pansori music; attention mechanism; deep
learning; Viterbi decoding

1. Introduction

Pansori music, originating in South Korea in the late seventeenth century, gained
popularity among the privileged class by the mid-eighteenth century and has since been
recognized as intangible heritage by UNESCO, highlighting the vital need for its preser-
vation and transmission to future generations [1,2]. This traditional art form involves
two key performers—the singer and the drummer. The drummer maintains the rhythm
and provides essential cues for the singer, who, in turn, narrates melodic stories. The
performance is structured into two distinct parts: storytelling, where the singer describes
various characters and conveys the emotional depth of the story, followed by a segment
where the singer projects their voice from the diaphragm, resonating powerfully with
the audience [3]. Pansori music is characterized by three primary sources: the drum, the
drummer’s voice, and the singer’s voice. The drummer and drum sounds are repeated
throughout the song, typically within short timeframes. The drum sounds vary, comprising
three distinct types or a combination thereof. Beyond its cultural significance, the need
for vocal note transcription in Pansori music is crucial. Capturing the intricate details
of the vocal notes and rhythms is essential for both preserving the authenticity of this
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art form and facilitating its transmission to future generations. Accurate transcription
allows for a deeper understanding of Pansori music’s complex structure and provides a
basis for analysis and study, offering insights into the interplay between the drummer, the
singer, and the vocal and rhythmic patterns. This transcription process becomes essential
for preserving the essence and integrity of Pansori music while facilitating its study in
current contexts.

There are basically four levels of transcription; frame-level transcription, note-level
transcription, stream-level transcription, and notation-level transcription. In this paper,
we are concerned with frame-level transcription and note-level transcription. Frame-
level transcription involves analyzing very short frames of audio to identify the pitch
or fundamental frequency (F0), which has been already proposed for transcription of
speech [4], singing voices [5], and musical instruments [6], while note-level transcription
approaches estimate notes’ onset and offset times including pitches [7,8]. The note-level
transcription can be estimated in two ways. The first way is to estimate the onset time, offset
time, and pitch of the note directly from the model [9], and the second way is to estimate
the fundamental frequency first and apply post-processing like median filtering [10] or
the hidden Markov model (HMM) [11] in the second step. In this work, we used the
latter approach to estimate the vocal notes of Pansori. First, we used a pixel-wise semantic
segmentation framework to calculate the fundamental frequency (F0) and applied Viterbi
decoding obtained from the first step to estimate the vocal notes of Pansori music. We
call this semantic segmentation framework for F0 estimation the source task and Viterbi
decoding-based post-processing for Pansori vocal note estimation the target task.

The proposed attentional based encoder–decoder network model for F0 estimation
presented in this research for the source task comprises a comparison of self-attention and
channel attention with different loss functions like binary cross-entropy and focal loss [12].
Our selection for attention mechanisms is inspired and drawn from the foundational works
of the field [13–16]. The proposed model is designed to operate on a combined frequency
and periodicity (CFP) representation [10], which offers a detailed and comprehensive
frequency–periodicity view of the audio data, essential for accurate F0 estimation. This
architecture encompasses a series of convolutional layers, with subsequent batch normal-
ization and SELU activation functions, aimed at extracting hierarchical features from the
input CFP representation. The model integrates max pooling layers for downsampling and
corresponding max unpooling layers for upsampling only in the frequency axis to pool only
in the frequency dimension, facilitating an effective feature extraction and reconstruction
process. Notably, the model incorporates a self-attention and channel attention mechanism
specifically within the bottleneck. The self-attention layer added onto the final feature map
of the encoder reduces the computational complexity because the frequency axis is reduced
in final feature map of the encoder and the time axis in this stage is the same as the input
because of the one-dimensional pooling layer.

The model acquired from the source task trained on the vocal melody dataset is an
essential component for F0 estimation in Pansori vocal note transcription in the target task.
This model provides crucial insights and features for estimating fundamental frequency val-
ues (F0) in the target Pansori audio data. To precisely estimate the vocal notes in the Pansori
performance, the Viterbi decoding technique was employed, a core process within hidden
Markov models (HMMs) [17]. Viterbi decoding involves the representation of different
states (such as silence, onset, and sustain states) that correspond to various aspects of the
vocal notes of Pansori within a defined range. The transition matrix is formulated to model
the probabilities associated with transitioning between distinct vocal states within the
HMM. This matrix reflects the likelihood of moving from one state (e.g., silence) to another
(e.g., onset or sustain) during the progression of Pansori vocal performances. Similarly, the
observation matrix is computed to assess the probability of observing specific vocal notes
or events within Pansori music. It quantifies the likelihood of various vocal characteristics,
such as note transitions, sustained notes, or silence, observed within the performance.
By leveraging the Viterbi algorithm in conjunction with the constructed transition and
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observation matrices, we aim to identify the most probable sequence of hidden states
(representative of Pansori vocal notes) in the audio recordings. This sequence considers
the observed vocal characteristics and the probable transitions between these vocal states.
The application of these techniques seeks to offer a systematic and robust methodology for
accurately transcribing and analyzing Pansori vocal performances, providing insights into
the structured vocal elements and note transitions inherent in this traditional Korean music.

2. Related Work

Several research studies have explored frame-level transcription techniques in the
context of music analysis. In one study [18], a method is introduced for estimating multiple
concurrent piano notes, addressing overlapping overtones with smooth autoregressive
models. This approach mitigates pitch estimation errors in the presence of background
noise, providing a comprehensive model for piano note transcription, validated using real
piano recordings from the MAPS dataset [18]. Another study [10] tackles the challenge
of training data for estimating multiple pitches in music and proposed a novel approach
called combined frequency and periodicity (CFP). This method combines different features
to enhance accuracy in simultaneous pitch estimation, demonstrating effectiveness in
western polyphonic music even under audio distortions like filtering and compression.
While these two studies represent conventional approaches to frame-level transcription,
recent attention from researchers has shifted toward neural network-based methods [19,20].
In [19], a supervised neural network model for polyphonic transcription on the MAPS
dataset is introduced, incorporating an acoustic model and a music language model. The
acoustic model, based on neural networks, estimates pitch probabilities in audio frames,
while the recurrent neural network-based language model captures pitch correlations
over time. In [20], the analysis of neural network-based frame-level piano transcription
compares four different input representations, highlighting the importance of selecting the
right input representation and fine-tuning hyperparameters, particularly the learning rate
and its schedule, to improve frame-level transcription accuracy.

Vocal melody transcription represents a specific aspect of frame-level transcription.
In [21], a high-resolution network (HRNet) is employed to separate vocals from polyphonic
music, and an encoder–decoder network is used to estimate vocal F0 values. The experi-
mental results indicate that this HRNet-based singing voice separation method effectively
minimizes accompaniment interference, surpassing other state-of-the-art algorithms in
most cases. Another study ([22]) focuses on single-instrument transcription, demonstrating
the ability to estimate onset and offset times with arbitrary time resolution, outperform-
ing accuracy in the MAESTRO dataset [23]. Additionally, Ref. [24] introduces Omnizart,
a Python toolkit covering the entire deep learning-based automatic music transcription
(AMT) life cycle. Featuring a compact command–line interface for user convenience, Om-
nizart provides models for a diverse range of instruments, including solo and ensemble
instruments, percussion, and vocals. It also includes models for chord recognition and
beat/downbeat tracking, addressing crucial tasks in music information retrieval (MIR)
related to automatic music transcription. Similarly, Ref. [25] tackles the challenging task of
automatic music transcription (AMT), highlighting the unique difficulties of transcribing
multiple instruments simultaneously with fine-scale pitch and timing precision. By employ-
ing a general-purpose transformer model trained through sequence-to-sequence transfer
learning, the research successfully demonstrates multi-task AMT across various datasets.

The note-based transcription approaches directly estimate notes, including pitches
and onsets. This note-based transcription is one level higher than frame-level transcription.
The work in [26,27] estimates the pitches and onsets in a single architecture. One example
for this is [28], which jointly estimates the different attributes of notes like pitch, intensity,
onset, and duration. It estimates the properties of notes concurrently using harmonic
temporal structured clustering. Note-level transcription can also be achieved after the
post-processing in frame-level transcription. First, the fundamental frequency is estimated
concurrently and applied post-processing to estimate the musical notes in the second
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step. The methods used during the post-processing steps are median filtering, hidden
Markov models, and neural networks [10,11,29]. The work in [10] uses median filtering
by comparing the estimated pitch in nearby frames for temporal smoothing. The moving
median filter is used with 0.25 s with a hop size of 0.01 s. This post-processing method is
reliable for connecting non-continuous pitch and can effectively delete the isolated one.
Similarly, the work in [11] converts the output of the support vector machine to a posterior
probability. The steps for pitch smoothing are performed for each note class by using
the Viterbi search method on the transition matrix of 2 × 2. The note onset and offset is
finally gathered from both the posterior probability of the support vector machine and the
training data.

3. Method
3.1. Frame-Level Transcription
3.1.1. Input

The model input for frame-level transcription in the source task to extract vocal melody
is the representation of combined frequency and periodicity (CFP) [10]. Generalized cep-
strum and generalized cepstrum of spectrum are the periodicity representation, whereas
the power scaled spectrogram is the frequency representation. The CFP can combine the
spectral and temporal features of music which aggregates the complementary benefits
of the two feature domains in different frequency ranges and improves the pitch detec-
tion algorithm. We use CFP representation as the input to our source task because the
previous work related to music transcription [10,30,31] has already proved that CFP repre-
sentation is beneficial for frame-level transcription because of the aggregation of the two
feature domains.

3.1.2. Attention-Based Semantic Segmentation Framework

To conduct frame-level transcription for vocal melody extraction in the source task,
we use encoder–decoder architecture which was originally developed for image segmenta-
tion [32]. The encoder takes an input CFP that represents both the frequency and periodicity
information of the signal. The input has three channels that can represent the three aspects
of music features. First, the input dimension of size 3 × F × T is passed into the encoder
consisting of three convolution blocks. Each of the convolution blocks consists of a batch
normalization layer, 2D convolution layer, scaled exponential linear unit (SELU) activation,
and max pooling layer. The pooling layer has a size of 4 × 1 which pools only in the
frequency dimension and consists of pooling indices between the pooling and unpooling
layers. The final feature of the encoder is passed into the three consecutive self-attention
blocks. Each self-attention block consists of a linear transformation of query, key, and value
tensor applied to the output of the encoder. The attention weights are computed using the
scaled dot-product attention mechanism between query and key. The softmax function is
applied to obtain the normalized attention weights. The attention weights are multiplied
with the value tensor to obtain the final attended values from the self-attention block. The
output of the self-attention-based features has two paths, one for the decoder and another
for the convolutional block. The path for the decoder consists of three blocks of convolution
which are the same as the encoder and is used to upsample the features using transposed
convolution. This path is constructed to detect the voicing frames of the audio. Similarly,
another path for a single convolutional block is designed to estimate the non-voicing frames
of the audio. As we apply the pooling operation only in frequency dimension, the size of
this non-voicing detector is 1 × T. Finally, we concatenate the detection obtained from the
two different paths to obtain the final output representation of vocal melody extraction.
The architecture for the encoder–decoder network and self-attention-based vocal melody
extraction is shown in Figures 1 and 2, respectively. The final output of the model architec-
ture is obtained by concatenating the result of the bottom block and the upsampled result
from the last convolutional block of the decoder along the frequency dimension (dim = 2).
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The softmax function is then applied along this frequency dimension to obtain the final
output, as shown in Equation (1).

output = so f tmax(torch.cat(bottom(pool3(conv3(pool2(conv2(pool1(conv1(x))))))), dim = 2)) (1)
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We also integrate the channel attention mechanism after obtaining the final features
of the encoder network and compare the performance with self-attention. The channel
attention module introduces a channel-wise attention mechanism by selectively amplifying
informative channels within the input tensor. This mechanism is particularly beneficial
for tasks such as vocal melody extraction, where certain channels may carry more crucial
pitch information. To apply the channel attention, first, an adaptive average pooling
operation is applied to reduce the spatial dimensions of the tensor to 1 × 1, which can
effectively summarize the global information across the channel dimension. Subsequently,
the tensor passes through two linear fully connected layers. The first linear layer reduces
the dimensionality of the channels to input_channels/reduction ratio, followed by ReLU
activation, where we keep the reduction ratio as 16. The tensor is then further processed by
another linear layer, which restores the dimensionality of the original number of channels.
The final attention weights are reshaped, which allows for element-wise multiplication
with the original input obtained from the feature map of the encoder. The resulting feature
map has again two paths, one for non-voice detection and another for voice detection, the
same as for the self-attention described above.
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3.1.3. Loss Function

We compare focal loss [12] and binary cross-entropy loss in our experiment for the
source task of vocal melody transcription. The goal of these loss functions is to classify
each time step in an audio signal as either belonging to the vocal melody (positive class) or
not (negative class). The loss function computes the error by comparing the model’s output
logits, typically representing the likelihood of the presence of a melody, with the binary
ground truth labels. By optimizing this loss during training, the model learns to distinguish
between vocal melody and non-melody segments in the audio, which is essential for
accurate melody extraction. In vocal melody extraction tasks, there may be a significant
imbalance between voicing and non-voicing frames in audio data. The presence of voicing
frames is often the minority class. Focal loss is designed to address such imbalances by
assigning higher weights to hard-to-classify examples, which in this context would be the
voicing frames. Following [12], we set the value of parameter for focal loss as αt = 0.25,
and γ = 2.

3.2. Note-Level Transcription

The pre-trained model trained on the MedleyDB dataset [33] for vocal melody extrac-
tion in the source task provides the meaningful features for estimating F0 values in the
target Pansori data. The vocal notes in the target task can be achieved after applying the
post-processing in the Pansori estimated F0 of the source task in frame-level transcription.
To conduct post-processing for the vocal notes in the Pansori performance, the Viterbi
decoding technique is employed, a core process within hidden Markov models (HMMs).
In the Viterbi decoding, the transition matrix T and observation matrix P play a specific
role. More specifically, T represents the probabilities of transitioning between different
hidden states and P represents the likelihood of observations given a particular state. By
utilizing the Viterbi algorithm with T and P, the goal is to find the most likely sequence of
hidden states (Pansori vocal notes) that best explains the observed musical events. Given
the definition of states, S0 for the silence state, Si for the onset state for a particular note
i, and S′

i for the sustain state for note i, the transition matrix T with dimensions N × N
is constructed with specific probabilities for transitions between these states. The size of
this transition matrix is determined by the range of musical notes, which we consider here
from A2 to E6. Similarly, Pstay_silence represents the probability of staying in the silence
state, Pstay_note represents the probability of the sustain state S′

i returning to itself, and P__
represents the probability of transitioning from the silence state to an onset state. The
structure of the transition matrix is given below.

T =



Pstay_silence P__ 0 0 . . . 0
0 0 Pstay_note 0 . . . 0
0 0 0 Pstay_note 0 . . .
. . . . .. .
. . . . .. .
0 0 0 0 0 Pstay_note

P____ 0 0 0 0 0


Each value in the matrix T represents the probability of transitioning from a state (indi-

cated by the row) to another state (indicated by the column) in the HMM. The specific values
of Pstay_silence, Pstay_note, and P__ determine these transitions within the model’s states.

Similarly, the observation matrix P is constructed based on several input parameters.
To calculate the size of rows for matrix P, first, we defined the range of Pansori vocal notes
from A2 to E6 and converted them into MIDI numbers. Hence, the number of notes nnotes
can be obtained by subtracting from the maximum note notemax to the minimum note
notemin. In this context, the matrix P includes rows for the silence, onset, and sustain states
for each vocal note. Hence, we multiply the number of notes by 2 for the onset and sustain
states and add 1 for the silence state. So, the size of the rows for the observation matrix
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P is calculated as sizerows = 2(notemax − notemin) + 1. Similarly, to calculate the size of the
columns for the matrix P, the length of F0 values is calculated, which is obtained from our
pre-trained model of the source task.

To convert the Pansori audio data into MIDI format, first, we passed the wave file
of Pansori into our best vocal melody pre-trained model. The F0 for the Pansori vocal
data can then be estimated using this pre-trained model. We also calculated the tuning
frequency and adjusted the estimated F0. This corrected F0 was transformed to MIDI notes
after applying the tuning correction. The tuning frequency aims to refine the accuracy
of the estimated pitch by adjusting it based on any detected tuning discrepancies in the
audio signal. The librosa library was employed for this purpose, contributing to the overall
accuracy of the pitch estimation process [34]. To construct the observation matrix P, we
defined the probability of voiceacc, onsetacc, and pitchacc. If the predicted F0 value by the
pre-trained model was non-zero, we assumed that the corresponding frame is considered
the voiced frame. But, if the generated F0 value was zero, it was considered the non-voiced
frame. We also detected the onset from the audio, and if the time frame was detected as
an onset, it set the high probability for the onset state. But, if the time frame was detected
as the non-onset state, it set the low probability for the non-onset state. To assign the
probabilities to the sustain states of the observation matrix P, we looped over all possible
MIDI note values from A2 to E6, and if it exactly matched with the transformed MIDI
values, we set the high probability for the sustain state at that time frame. Similarly, if this
did not match, we set the low probability for the sustain state.

The Viterbi algorithm works by considering the transition matrix T and observation
probabilities P to identify the most probable sequence of the hidden state. For each time
step in the observed sequence (along columns of P), the Viterbi algorithm assesses all
possible state sequences at that time step. It computes the likelihood or probability of
each state sequence occurring. It iterates through the observed sequence, updating the
probability of arriving at each state based on the maximum likelihood computed from
the previous time step. At each step, the algorithm computes the most probable path
(sequence of states) by considering both the probability of the current observation given
the state and the probability of transitioning to the current state from the previous states.
By taking these probabilities into account and maximizing the likelihood, the algorithm
infers the most likely sequence of hidden states that generated the observed sequence
of events (here, Pansori vocal notes) based on the given models. We utilized the librosa
library to obtain the most probable sequence of hidden states for Viterbi decoding (https://
librosa.org/doc/main/generated/librosa.sequence.viterbi.html), accessed on 25 December
2023. After obtaining the sequence of states through Viterbi decoding, the subsequent
processing involved converting these states into an intermediate piano-roll representation.
The states, representing silence, onset, and sustain events, were iteratively analyzed to
identify the onset and offset times, MIDI pitches, and note names of the vocal segments.
The information obtained in the piano roll was finally converted into a MIDI file using
the midiutil library (https://readthedocs.org/projects/midiutil/downloads/pdf/latest/),
accessed on 25 December 2023.

4. Experimental Results
4.1. Frame-Level Transcription

We conducted the experiment of frame-level transcription by comparing self-attention
and channel attention mechanisms, assuming the task as a pixel-wise semantic segmen-
tation framework. The different loss functions like binary cross-entropy and focal loss
were also compared. We evaluated the effectiveness of our method against state-of-the-art
techniques on the MedleyDB [33] dataset, utilizing the same splitting ratio as described
in [30,31,35]. The network hyper-parameters remained consistent with those outlined
in [30]. The evaluation metrics used were voicing recall (VR), voicing false alarm (VFA),
raw pitch accuracy (RPA), raw chroma accuracy (RCA), and overall accuracy (OA).

https://librosa.org/doc/main/generated/librosa.sequence.viterbi.html
https://librosa.org/doc/main/generated/librosa.sequence.viterbi.html
https://readthedocs.org/projects/midiutil/downloads/pdf/latest/
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Our self-attention-based approach, integrated with focal loss, demonstrated notable
results. The one-layer self-attention with focal loss achieved a voicing recall of 68.05%,
with an overall accuracy of 78.74%. As we increased the self-attention layers to two and
three, a slight decrease in performance was observed, suggesting potential saturation in
model capacity. This observation prompted us to explore the reasons behind this trend
and assess whether the increase in self-attention layers contributes significantly or not to
model effectiveness.

Similarly, when employing binary cross-entropy as the loss function, the two-layer self-
attention stands out with a high overall accuracy of 80.25%, showcasing the effectiveness of
this combination. This notable performance of the two-layer self-attention brings a closer
examination between attention mechanisms and loss functions. One potential avenue
for this analysis is the impact of self-attention depth on the model’s capacity to capture
hierarchical dependencies within the data. This raises questions about the trade-offs
involved in increasing or decreasing the depth of self-attention layers and how these
choices influence the model’s ability to generalize. Our channel attention-based methods,
integrated with both focal loss and binary cross-entropy consistently exhibited strong
performance. Notably, the focal loss variant stands out with an impressive overall accuracy
of 80.33%, surpassing the performance of the binary cross-entropy counterpart, which
achieved an accuracy of 79.87%. Focal loss is designed to address class imbalance by
down-weighting well-classified examples, potentially enhancing the model’s focus on
challenging instances.

Comparing our proposed methods to established approaches, such as DSM [35], Lu
and Su’s [31], and SegNet [30], our techniques demonstrate competitive results. While
DSM excels in voicing recall, our methods strike a balance, achieving strong performance
across multiple metrics. Lu and Su’s method performs admirably, particularly in voicing
false alarm, showcasing its distinct strengths.

In conclusion, our proposed vocal melody extraction method, leveraging self-attention
and channel attention mechanisms, coupled with carefully chosen loss functions, presents
promising results on the MedleyDB dataset. The analysis of different configurations
provides insights into the strengths and potential areas for improvement, paving the
way for advancements in vocal melody extraction techniques. Table 1 below shows the
comparison of various F0 estimation methods on the test data of MedleyDB.

Table 1. Comparison of various F0 estimation methods on the MedleyDB test data.

Method VR VFA RPA RCA OA

One-layer SA + F 68.05 10.53 59.91 61.38 78.74

Two-layer SA + F 64.68 7.75 57.69 58.97 79.83

Three-layer SA + F 59.72 8.94 52.73 54.60 76.86

One-layer SA + CE 60.75 7.74 54.75 55.75 78.25

Two-layer SA + CE 63.68 7.55 58.30 59.12 80.25

Three-layer SA + CE 67.08 9.62 59.22 60.43 78.90

Channel attention + F 65.84 9.02 60.56 61.71 80.33

Channel attention + CE 65.73 8.77 59.40 60.63 79.87

DSM [35] 88.4 48.7 72.0 74.8 66.2

Lu and Su’s [31] 77.9 22.4 68.3 70.0 70.0

SegNet [30] 73.7 13.3 65.5 68.9 79.7

We also visualize the results of Pansori vocal F0 using our best pre-trained model
(channel attention + F) and other pitch estimation methods such pYin [36], PyWorld [37],
and Segnet [30]. Figure 3 below shows the tracking of F0 visualization of our method
along with other pitch estimation methods in one of the audio samples of Pansori. The
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visualized result from our method shows similar tracking performance in comparison
with other methods. To visualize the F0 tracking in the spectrogram, we first extract
the F0 values of the audio sample from our method as well as other pre-trained models.
The fundamental frequency values extracted from each model are then overlaid into
the spectrogram. This comprehensive visualization aids in assessing the accuracy and
consistency of our method in tracking F0 variations throughout the audio sample. The cyan
lines in all four plots in Figure 3 represent the fundamental frequency values estimated by
the model, providing insights into the pitch dynamics of the Pansori performance. This
visual analysis is crucial for evaluating the efficacy of our approach in comparison to other
state-of-the-art pitch estimation techniques. These visualized results contribute to the
evaluation and validation of our approach in the broader context of pitch estimation for
traditional Pansori vocal performances.
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4.2. Note-Level Transcription

Note-level transcription can be achieved after the post-processing in frame-level
transcription. First, the fundamental frequency of the Pansori raw wave file is estimated
in the source task of vocal melody extraction and post-processing is applied using Viterbi
decoding to estimate the vocal notes in the second step. The transition matrix of size
89 × 89 is constructed to represent the Pansori notes from A2 to E6. While constructing the
transition matrix, we set the probability of the silence state, sustain state, and transitioning
from the silence state to an onset state as Pstay_silence = 0.2, Pstay_note = 0.9, and P__ =(
1 − Pstay_note

)
/(nnotes + 1), where nnotes is the number of midi values between A2 and E6.

To construct the observation matrix P, first, we defined the probability of voiceacc = 0.9,
onsetacc = 0.8, and pitchacc = 0.99. If the F0 value generated by the pre-trained model was
non-zero, we assumed that the corresponding frame is considered the voiced frame and set
its probability as voiceacc = 0.9, but if the generated F0 value was zero, it was considered
as the non-voiced frame, and we set its probability as 1 − voiceacc. We also detected the
onset from the audio and if the time frame was detected as an onset, it set the probability
of onset state as onsetacc = 0.8. But if the time frame was detected as the non-onset state,
it set the probability of non-onset state as 1 − onsetacc. To assign the probabilities to the
sustain states of the observation matrix P, we looped over all possible MIDI notes values
from A2 to E6, and if it exactly matched with the transformed MIDI values, we set the
probability of the sustain state as pitchacc = 0.99 at that time frame. Similarly, if the absolute
difference between these two MIDI values was 1, we set the probability of the sustain state
as pitchacc × 0.6 = 0.59. If these two conditions did not match, we set the probability of the
sustain state as 1 − pitchacc.

After obtaining the sequence of states through Viterbi decoding, we converted these
states into an intermediate piano-roll representation. This transformation is designed to
interpret the estimated states in the context of Pansori vocal performance. The piano roll
consists of information such as onset and offset times, MIDI pitches, and note names of the
vocal segments of Pansori.

First, we collected 15 chunks of Pansori audio samples. These samples were first
used to estimate the F0 using our pre-trained vocal melody extraction methods. These
F0 values were used in the Viterbi decoding algorithm to estimate the vocal note. We
also extracted the F0 values from other state-of-the-art pitch estimation methods such as
pYin [36], PyWorld [37], and Segnet [30] and visually compared the vocal notes with our
best pre-trained methods. Figure 4 below shows the visual comparison of our method
with pYin, PyWorld, and Segnet. It visualizes the audio, along with the MIDI, derived
from one of the Pansori audio samples, employing both our method and other state-of-
the-art techniques. We used the Audacity tool to visualize the audio signal along with its
corresponding midi [38]. The X-axis in the top row in Figure 4 represents the time, whereas
the Y-axis represents the amplitude of the raw audio Pansori. Similarly, the X-axis from
second row to fifth row represents the vocal note of Pansori using our method and other
state-of-the-art methods, where the Y-axis here represent the note names from C3 to C6.
The original dataset of 15 chunks of Pansori along with their midi results are also available
in the github (https://github.com/pratikshaya/music_note_transcription) accessed on 25
December 2023.

https://github.com/pratikshaya/music_note_transcription
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Due to the absence of note-level ground truth labels for Pansori data, a subjective
evaluation was conducted. Our approach involved providing 15 note-level predicted MIDI
files to Pansori experts for assessment. The MIDI files using Viterbi decoding obtained after
F0 estimation from our best pre-trained model along with PyWorld and pYin were given
to the expert. Five individuals were selected for this task, and each expert was assigned
a rating between 0 and 5. A score of 0 represented the worst result, while a score of 5
indicated the best outcome. The average values from all five experts were then calculated
for each of the 15 data samples. pYin obtained the average value of 2.56, PyWorld obtained
2.04, and our channel attention + focal loss obtained 2.32. This indicates that our Viterbi
algorithm-based post-processing method is comparable with other popular state-of-the-
art methods. The detailed rating values for each of the audio samples of Pansori using
PyWorld, pYin, and channel attention + F are shown in Tables 2–4, respectively.

Table 2. Note-level subjective evaluation of Pansori vocal based on F0 estimation from PyWorld.

PyWorld

Audio Expert1 Expert2 Expert3 Expert4 Expert5 Average

chunk0 3 3 4 3 2 3

chunk1 2 3 2 3 2 2.4

chunk4 1 2 2 1 1 1.4

chunk5 2 1 2 2 1 1.6

chunk6 2 2 2 3 2 2.2

chunk7 3 2 3 3 2 2.6

chunk8 1 2 4 3 1 2.2

chunk9 3 2 3 2 2 2.4

chunk11 2 2 2 1 1 1.6

chunk12 2 2 2 1 2 1.8

chunk13 2 2 3 1 1 1.8

chunk14 3 2 1 2 1 1.8

chunk16 3 2 3 2 1 2.2

chunk17 3 2 2 2 2 2.2

chunk18 1 2 2 1 1 1.4

2.04

Table 3. Note-level subjective evaluation of Pansori vocal based on F0 estimation from pYin.

pYin

Audio Expert1 Expert2 Expert3 Expert4 Expert5 Average

chunk0 3 3 4 3 2 3

chunk1 4 3 2 3 1 2.6

chunk4 5 4 3 3 2 3.4

chunk5 2 2 2 1 2 1.8

chunk6 3 3 2 2 3 2.6

chunk7 3 3 2 2 1 2.2

chunk8 2 2 4 2 3 2.6
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Table 3. Cont.

pYin

Audio Expert1 Expert2 Expert3 Expert4 Expert5 Average

chunk9 3 3 2 3 2 2.6

chunk11 3 5 2 3 1 2.8

chunk12 4 4 2 3 1 2.8

chunk13 2 2 4 3 2 2.6

chunk14 3 2 1 2 1 1.8

chunk16 4 5 3 3 1 3.2

chunk17 3 2 3 3 1 2.4

chunk18 2 2 2 3 1 2

2.56

Table 4. Note-level subjective evaluation of Pansori vocal based on F0 estimation from channel
attention + F.

Channel Attention + F (Our)

Audio Expert1 Expert2 Expert3 Expert4 Expert5 Average

chunk0 4 5 3 2 3 3.4

chunk1 2 3 2 3 2 2.4

chunk4 3 4 2 2 2 2.6

chunk5 2 3 4 3 3 3

chunk6 3 4 2 2 3 2.8

chunk7 3 3 2 1 2 2.2

chunk8 2 2 3 1 2 2

chunk9 2 2 2 1 3 2

chunk11 2 2 2 2 2 2

chunk12 1 2 1 1 1 1.2

chunk13 3 4 3 3 2 3

chunk14 3 4 2 3 3 3

chunk16 1 1 2 2 1 1.4

chunk17 2 2 2 2 1 1.8

chunk18 1 3 2 2 2 2

2.32

5. Conclusions

In conclusion, this paper presents a comprehensive exploration of frame-level tran-
scription for vocal melody extraction using attention mechanisms in the source task, fol-
lowed by the application of the Viterbi algorithm for note-level transcription in the context
of Korean Pansori. Leveraging knowledge from the source task, a pre-trained model is
employed for fundamental frequency (F0) estimation, crucial for the subsequent vocal
note transcription in Pansori. The Viterbi decoding technique is employed to decode the
vocal notes in Pansori, addressing the challenge of the absence of note-level ground truth
labels for this traditional art form. The transition matrix, capturing the probabilities of
transitioning between different vocal states, and the observation matrix, assessing the
likelihood of specific vocal events, are constructed. By employing the Viterbi algorithm
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with these matrices, this paper achieves the goal of identifying the most likely sequence of
hidden states representative of Pansori vocal notes. The presented results, including the
comparison of attention mechanisms and the evaluation of our methodology against other
state-of-the-art methods, highlight the effectiveness and comparability of our approach in
the intricate task of Pansori vocal note transcription.

In summary, this research not only contributes to the advancement of frame-level
transcription models but also addresses the unique challenges posed by the transcription
of traditional music forms like Pansori. The proposed methodology lays a foundation for
preserving and appreciating the rich cultural heritage embedded in Pansori music, offering
a valuable tool for future research and exploration of this traditional Korean art form.
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