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Abstract

:

The evaluation of landslide susceptibility plays a crucial role in preventing the risks associated with landslides and debris flows, providing valuable insights for the effective prevention and mitigation of geological hazards. However, there is limited research on high-altitude areas. Therefore, this study chose the western Tibetan Plateau as the study area, a representative area known for its susceptibility to landslides and high attitudes. In this study, seven factors were identified based on research objectives. Information value (IVM), weight of evidence (WOE), information value logistic regression (IVM-LR), weight of evidence logistic regression (WOE-LR), information value multi-layer perceptron (IVM-MLP) and weight of evidence multi-layer perceptron (WOE-MLP) were selected and compared for landslide susceptibility. The percentage of disaster area included in each risk level, the AUC value and the ROC curve were used to evaluate the accuracy of the results. The ROC curves of the results were close to the upper–left corner and the AUC values exceeded 0.85, an indication that all results were highly accurate. Moreover, the percentage of disaster area included for each risk showed an upward trend regarding susceptibility. The results indicated that the hybrid model exhibited superior performance in assessing landslide susceptibility at high altitudes. Overall, the results showed great significance regarding disaster prevention and mitigation measures of local governments.
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1. Introduction


Landslides are a prevalent geological hazard, causing significant damage and loss of life on a widespread basis [1,2,3,4]. Consequently, global research efforts are focused on landslide hazard prevention [5,6,7]. Geographic Information System (GIS) technology has provided an effective means of studying landslide susceptibility [8,9,10,11]. Various methods have been developed for assessing landslide susceptibility and can be divided into traditional and machine learning models [12,13,14,15,16,17,18,19,20,21,22,23,24]. For instance, Kayastha (2013) employed an analytic hierarchy process model to analyze landslide susceptibility in the vicinity of Beihai City, China, and the Tinau watershed in Western Nepal [25]. Ozdemir (2013) investigated the comparative efficacy of logistic regression (LR) and evidence methods using the Sultan Mountains in SW Turkey [26]. Sharma (2014) utilized the information value model (IVM) to determine landslide susceptibility in the Sikkim Himalayas, India [27]. Zhao (2021) conducted a study employing a machine learning support vector machine, a certainty factor, and random forest models in Ningqiang County, Shanxi Province, China [28]. Other models include adaptive network-based fuzzy inference models, the weight of evidence model (WoE), multi-layer perceptron (MLP), support vector machines (SVM), and decision trees [29,30,31,32,33,34,35]. Many studies have used more than two models to determine difference in the results. However, these results show that the learning ability of the traditional models is relatively weak, and machine learning models need sufficient and balanced data. There is no best single or mixed model that can be used in all areas. High-altitude areas have less interference from human factors and provide a good demonstration area for the comparative analysis of different models. At the same time, the roads in these areas are relatively simple; however, disasters may cause great damage to local traffic, and so they have extremely important practical research significance. In addition, limited research has been conducted in high-altitude areas of the Tibetan Plateau.



Based on this context, the present study selected Zhipuqi, which has the lowest altitude (3869 m) in the region, as the study area (Figure 1). Landslides represent one of the most significant geological hazards in this area. Analyzing landslide susceptibility mapping has considerable practical implications for planning and disaster prevention, significantly enhancing the safety of lives and property. To assess the feasibility of geological hazard analysis in high-altitude areas and to compare model differences, we employed the IVM [36], the weight of evidence (WoE) method [37,38,39,40], the LR model [41,42,43,44,45] and the multi-layer perceptron (MLP) method [46,47,48]. Of these models, the IVM and WoE can more quickly obtain a stable weight of each low-cost factor, and the LR and MLP can provide a higher learning ability for mixed models.




2. Materials and Methods


2.1. Study Area


The study area is located in the Zada basin, the west of the Tibetan Plateau; it belongs to the North Himalayan Tethys sedimentary zone. It lies in the junction zone of Himalayan land mass and Brahmaputra River. Between 78°15′–79°00′ E and 32°20′–32°40′ N, the total area covers 2600 km2 (Figure 1). It lies in a typical alpine canyon landform, an elevation ranging from 3869 to 6357 m, with most peaks more than 5000 m above sea level. It belongs to the typical alpine canyon landform and it is mainly composed of hilly landforms and deep canyon forming bytectonic faults. The only river is Pali river, which flows through the urban area from NW to SE with elevation between 3000 and 3800 m. This area has cold and dry climatic conditions. The mean annual temperature is between 0 and 3 °C with an annual precipitation of 200 mm. The maximum summer temperatures reach above 21 °C, whereas winter temperatures can be lower than −41 °C. The rock strata in the study area are mainly in the Holocene Series, Pleistocene Series, Selong Group and Cailiqun Group, and the rock types are mainly soil, gray and purple gray mesobioclastic micrite, carbonate rock (limestone, oolitic limestone, biological limestone) mainly composed of sand-shale assemblages. The rock structure is mainly block structure. Due to the special geographical and geological conditions of the region, it is of great importance to carry out disaster risk assessments, and it is also a good area for conducting high-altitude research.




2.2. Data Source and Methodology


Landslide inventories of this area are important for producing landslide susceptibility maps [49]. According to a detailed landslide survey, 151 landslides were collected (Figure 1). All landslides were selected for statistical landslide susceptibility analysis [50]. The major data of this study include a topographic and geological map of 1:200,000, a 30 m resolution DEM, Landsat-8 satellite remote sensing images, and existing reports and field survey data of hazards (Table 1). This study relied on IVM and the WoE value to calculate the risk weight of factors, and the LR and MLP models were used to calculate the weight coefficient. Finally, the receiver operating characteristic (ROC) curve was used to analyze the accuracy of model predictions. The methodology of the study area is shown as a flowchart (Figure 2), which shows the key steps to obtaining the landslide susceptibility map of the area.




2.3. Conditioning Factors


Based on the literature, effectiveness, availability of data and relevance with respect to landslide occurrence, seven factors were chosen to analyze the landslide: slope, aspect, elevation, lithology, distance to faults, distance to roads, and distance to rivers to produce the landslide susceptibility map.



2.3.1. DEM and Derivatives


Many common factors can be found using DEM, such as slope, slope aspect, and elevation [51]. In this area, the slope generally ranged from 0° to 60°, and was grouped into 7 classes: 0–10°, 10–20°, 20–30°, 30–40°, 40–50°, 50–60°, >60° (Figure 3a). The slope aspect affecting sunlight and wind was classified into nine categories: flat, north, northeast, east, southeast, south, southwest, west, northwest (Figure 3b). The elevation was between 3869 and 6357 m, which was divided into eight classes with intervals of 300 m (Figure 3c).




2.3.2. Lithology


Lithology has a very important effect on the occurrence of landslides because different lithologies can produce different influences during landslide occurrence [52]. The lithology of the area primarily consists of sand slate, limestone, breccia, and quaternary sediments. Influenced by the intensity of rock weathering and soil formation, according to the hardness, it can be divided into the following categories: hard rock, harder rock, softer rock, soft rock and extremely soft rock according to engineering geology (Figure 3d).




2.3.3. Distance to Faults


Faults cause fragmentation of the surrounding rocks and provide a source of material and power for the generation of landslides [53]. According to the distance to the faults, the work was divided into eight grades at the intervals of 300 m: 0–300, 300–600, 600–900, 900–1200, 1200–1500, 1500–1800, 1800–2100, >2100 m (Figure 3e).




2.3.4. Distance to Roads


Road vicinity is a human-made factor closely related to landslide formation [54]. The road construction process can destabilize the slopes on both sides of the road and strengthen the degree of rock fragmentation. The road data obtained were gridded, and a buffer zone was divided into eight classes established at intervals of 300 m from the road (Figure 3f).




2.3.5. Distance to River


Rivers can strengthen the erosion of surrounding rocks and invade rock cracks, thereby providing downward power for the formation of landslides [45]. It was divided into eight grades at 300 m intervals (Figure 3g).





2.4. Multicollinearity Diagnosis


IBM SPSS Statistics 21 was used to conduct multi-collinear diagnosis analysis. The results are presented in Table 2 and Table 3. It can be seen from the table that among the selected factors, the maximum variance inflation factor (VIF) of lithology was 1.439 < 10, the minimum tolerance (Tol) value was 0.695 > 0.1, the minimum eigenvalue was 0.503 > 0 and the maximum condition Idex was 0.503 < 10, indicating that there was no serious collinearity problem. Therefore, these seven selected factors could be used for landslide sensitivity analysis [28].




2.5. Landslide Susceptibility Modeling


2.5.1. Information Value Model (IVM)


The IVM is one of the most commonly used methods for geological disaster risk assessments [36,55]. It mainly converts the collected real geological disaster-related impact factor data into the information quantity required for calculation and obtains the total information quantity by superposing the information quantity of each factor. The specific theoretical and formula calculation processes of the landslide susceptibility index (LSI) are as follows:


  L S I =   ∑  i = 1   n    l o g 2   B i / B   S i / S     ,  



(1)




where S refers to the total area, B represents the area of grids containing geological hazards, and Si and Bi represent the total area or the area grids containing geological hazards of i.




2.5.2. Weight of Evidence Method (WoE)


Bonham–Carter (1988) first used the WoE to carry out mineral potential assessment [56]. Since then, the WoE has been applied in many fields [57,58,59,60,61]. The WoE is based on Bayesian statistical analysis, and the specific process of the model is as follows:



First, the total grid number of the workspace is preset as N[Z]. There is only one geological disaster point in each grid range. The initial probability of a geological disaster occurring in the working area can be obtained as N[L]/N[Z].



Second, the proportion of different factors at different stages in the probability of occurrence of geological disasters can be obtained by presetting Wi+ and Wi−. Wi+ and Wi−, respectively, represent the positive and negative effects of factors at this stage on the likelihood of occurrence of geological disasters:


    W   i   +   =   ln     P { N [ X i ] | N [ L ] }   P { N [ X i ] | N [   L  ¯  ] }     = l n   N ( X i ∩ L ) / N ( L )   N ( X i ∩   L  ¯  ) / N (   L  ¯  )   ,  



(2)






    W   i   −   =   ln     P { N [   X i  ¯  ] | N [ L ] }   P { N [   X i  ¯  ] | N [   L  ¯  ] }     = l n   N (   X i  ¯  ∩ L ) / N ( L )   N (   X i  ¯  ∩   L  ¯  ) / N (   L  ¯  )   .  



(3)







In the above formulae, the different stages of the different geological disaster impact factors are noted as Xi. The number of grids contained in this stage is written as N[Xi], and the grid number with geological hazard points is N[L]. In the instance where no geological hazard is present, they are denoted as N[    X i  ¯   ] and N[    L  ¯   ], respectively.



N(Xi∩L) is the number of grids containing geological hazards of Xi. In the case of everything else, the converse condition is Xi∩    L  ¯   .



Then, the contrasting weights can be obtained by addition and subtraction.


    W   +   =   W   i   +   +   W   i   −   ,  



(4)






    W   −   =   W   i   +   −   W   i   −   .  



(5)







Finally, the LSI can be computed by summing up the effects, allowing for the delineation of an LSZ map.


  L S I =  ∑  W   .  



(6)







Finally, two Landslide susceptibility mappings can be acquired by the WoE model. W+ can amplify the subtle differences in the LSI by the positive and negative effects of factors adding together. W− can find the dominant positive and negative factors is dominant.




2.5.3. Logistic Regression (LR)


The LR model is mainly used to infer the relationship between a group of relatively independent geological environmental factors and the occurrence of geological disasters. In other words, the model seeks to determine whether geological disasters can occur under such conditions, and if yes, the probability of their occurrence [62,63,64]. In this model, the probability of geological disasters is defined between 0 and 1, and the probability of hazard distribution in the working area is then calculated [34]. Compared with the analytic hierarchy process, the geological environment factors selected by this model can be either discrete or continuous, which can more reasonably fit the probability of landslide occurrence [65]. The specific calculation process is as follows:


  A =   exp ⁡ ( M )   1 + exp ⁡ ( M )   .  



(7)







A indicates the probability of a landslide occurrence from 0 to 1. M is a linear combination, and can be expressed as


  A =   exp   M     1 + exp   M     .  



(8)







X1, X2, …, and Xn denote the variables. N1, N2, …, and Nn are the slope coefficients. N0 refers to the intercept.




2.5.4. Multi-Layer Perceptron (MLP)


Multi-layer perceptron (MLP) is one of the most frequently used artificial neural network methods with three layers combining input, hidden and output layers [66]. It can find a non-linear relationship between a lot of independent parameters.



The associative matrix of processing objects is constructed by joining relations between input layers and hidden layers. The connection between hidden layer and output layer elements forms the decision matrix of the processing object. Through training, the network can form an orderly and stable structure with a decision-making ability. The back-propagation (BP) algorithm is widely used in an MLP model. The BP algorithm consists of forward transmission of information and back propagation of error. Forward transmission. In the process of seeding, the input information is calculated from the input layer to the output layer through the hidden layer, and the state of neurons in each layer only affects the state of the next layer of neurons. If the desired output is not obtained in the output layer, the error variation of the output layer is calculated, and then reverse propagation is carried out. Through the network, the error information is reversed back along the original link path to modify the weight of neurons in each layer until the desired goal is reached.






3. Results


3.1. Landslide Susceptibility Mapping by the IVM Model


The relationships between the factors calculated by the information model and disasters are presented in Table 4. The change in the calculated weight of each factor at each stage is shown in Figure 4 by the IVM model. With respect to slope and aspect, the most sensitive range of slope is 20–30° (0.28) and the west direction has the largest weight at 0.98, indicating that these two classes are most susceptible to landslide occurrence. The most affected lithology is hard rock (2.1). The elevation class from 4800 to 5100 m has the highest weight factor (0.43). Among the lithology units, hard rock has a value of 2.11. When the distance to faults is >2100 m, the probability of disaster occurrence is the largest, with the weight of 0.88. The class between 900 and 1200 m shows the highest susceptibility (1.28) for distance to roads. At 900–1200 m, the factor of being away from the rivers has the maximum weight (0.42). Finally, the risk assessment map is divided into five categories based on the natural discontinuity method: very low, low, moderate, high, very high (Figure 5). The proportion of disaster area of each hazard level is calculated by statistical analysis. From very low to very high, the percentages of disaster area are 0.39%, 3.03%, 7.87%, 34.22%, and 54.49%, respectively (Table 5).




3.2. Landslide Susceptibility Mapping by the WoE Model


The relationship between the factors calculated by W+ with the WoE method and disasters is shown in Table 4. The most sensitive range of slope is 20–30° (0.09). In the aspect, the west direction has the largest weight, 0.61. When it is at the height of 4800–5100 m, it is most prone to disasters (0.17). The most affected lithology is hard rock (1.23). When the distance to faults is 1800–2100 m, the probability of disaster occurrence is the largest, with a weight of 0.52. The 900–1200 m group displays the factor of the distance from the roads with the highest probability of disaster (0.89). At 900–1200 m away from the river, the calculated weight reaches the maximum (0.26) (Figure 6a). The final hazard assessment map is divided into five categories based on the natural discontinuity method: very low, low, medium, high and very high (Figure 7a). The percentages of disaster area showing the five classes from very low to very high are 0.23%, 2.11%, 7.59%, 26.20% and 63.86%, respectively (Table 5).



The relationship between the factors calculated using the WoE method W− and disasters is shown in Table 4. The change in the W− calculation weight of each factor at each stage is shown in Figure 6b. The most sensitive slope class is 20–30° (0.32), the west direction has the largest weight (0.86), and the areas at a height of 4800–5100 m are most prone to disasters (0.47). The most affected lithology is hard rock (2.11). When the fault > 2100 m, the probability of disaster occurrence is the largest, with a weight of 1.14. The highest probability of the distance to roads between 900 and 1200 m is 1.05. At 900–1200 m away from the river, the calculated weight reaches the maximum (0.36). The final hazard assessment map is also divided into five categories based on the natural discontinuity method (Figure 7b). From very low to very high, the percentages of disaster area are 0.55%, 3.93%, 10.36%, 33.40%, and 51.76%, respectively (Table 5).




3.3. Landslide Susceptibility Mapping by IVM-LR and WoE-LR Models


The relationships between the corresponding factors and the disasters are listed in Table 6 by logistic regression (LR). Through the coefficients of the LR, the weight of factors from IVM and WoE were weighted superposition. Then, the results of IVM-LR and WoE-LR were divided into five levels using the natural breakpoint method: very low, low, moderate, high, very high (Figure 8).



Based on the IVM-LR model (Figure 8a), the LSI values of all units were between −8.93 and −3.83. Statistical analysis revealed that the proportion of landslide areas in each hazard level from very low to very high was 0.42%, 1.91%, 7.38%, 29.84%, and 60.47%, respectively (Table 5).



Based on the W+-LR model (Figure 8b), the LSI values of all units were between −4.64 and −2.10. Statistical analysis revealed that the proportion of landslide areas in each hazard level from very low to very high was 0.12%, 2.31%, 9.38%, 25.95%, and 62.25%, respectively (Table 5).



Based on the W−-LR model (Figure 8c), the LSI values of all units were between −5.75 and −3.55. Statistical analysis revealed that the proportion of landslide areas in each hazard level from very low to very high was 0.10%, 4.54%, 14.50%, 33.30%, and 47.56%, respectively (Table 5).




3.4. Landslide Susceptibility Mapping by IVM-MLP and WoE-MLP Models


The factor coefficients obtained by the MLP method are presented in Table 6. The LSI values by the MLP model were obtained through analysis. The results were divided into five levels using the natural breakpoint method: very low, low, moderate, high, very high (Figure 9).



Based on the IVM-MLP model (Figure 9a), the LSI values of all units were between −2.14 and 0.98. Statistical analysis revealed that the proportion of landslide areas in each hazard level from very low to very high was 0.16%, 3.57%, 9.26%, 34.30%, 52.71%, respectively (Table 5).



Based on the W+-MLP model (Figure 9b), the LSI values of all units were between −1.36 and 0.57. Statistical analysis revealed that the proportion of landslide areas in each hazard level from very low to very high was 0.11%, 2.65%, 8.41%, 25.19%, 63.63%, respectively (Table 5).



Based on the W−-MLP model (Figure 9c), the LSI values of all units were between −1.69 and 0.99. Statistical analysis revealed that the proportion of landslide areas in each hazard level from very low to very high was 0.17%, 4.28%, 12.68%, 33.41%, 49.46%, respectively (Table 5).




3.5. ROC Curves


The accuracy of landslide sensitivity analysis models is usually evaluated by the receiver operator curve (ROC) and area under curve (AUC) [66,67]. Evaluation results are shown in Figure 10. Evaluation accuracies of IVM, W+, W−, IVM-LR, W+-LR, W—LR, IVM-MLP, W+-MLP, W−-MLP are 86.8%, 86.1%, 87.0%, 87.3%, 86.4%, 86.1%, 86.5%, 86.9% and 85.8%, respectively. The AUC values are 0.868, 0.861, 0.870, 0.873, 0.864, 0.861, 0.865, 0.869 and 0.858 respectively. The results indicate which method is more suitable for working areas at high altitudes. The accuracy rate obtained by the five calculation models was greater than 85%, and the accuracy rate of IVM-LR was the highest.





4. Discussion


In the results of the models, the most sensitive slope strata are 20–30°, indicating that shear stress increases with an increasing slope. The west direction has the largest weight due to the general orientation of the geological layers. Of the elevations, 4800–5100 m has the highest weight factor. The most affected lithology is hard rock, as the dominant lithology of the high elevation is hard bedrock. The highest susceptibility of the distance to faults is above 2100 m because the area the faults are stable, 900–1200 m away from the roads and rivers with the highest susceptibility, indicating that disasters have a significant impact on road and river traffic. Therefore, the results show that landslide susceptibility evaluation is important for disaster prevention and mitigation measures of local governments.



By comparing the percentage of disaster area included in each risk level of the model evaluation results, the percentages of disaster areas in high and very high areas are as follows: IVM is 88.71%, W+ is 90.06%, W− is 85.16%, IVM-LR is 90.30%, W+-LR is 88.20%, W−-LR is 80.85%, IVM-MLP is 87.01%, W+-MLP is 88.82% and W−-MLP is 82.87%. At the same time, with the increase in hazard level, the landslide area ratio shows an upward trend, which indicates that landslide sensitivity classification obtained by the seven calculation models is reasonable, and the mixed model is more reasonable than single models [68].



It can be seen from the success rate curve that the calculation accuracy of the nine models is more than 85%. In contrast to other regional studies, Cui, et al. used the WoE model to determine the landslide susceptibility mapping of Long County. The AUC method revealed accuracies of 79.71% [69]. Zhu, et al. chose Yadong County as the study area for landslide susceptibility with the LR model. The AUC method revealed accuracies of 83.8%. The results of these models indicated that high-altitude landslide susceptibility evaluation using GIS models is feasible [70,71,72,73]. The prediction accuracies of the hybrid model are relatively high. This shows that the calculation results of the model are accurate and reliable, and that the mixed model is more accurate than the single model [74,75,76].



Based on the above analysis, high-altitude landslide susceptibility evaluation is important and feasible. Furthermore, the disaster assessment classification map produced by the hybrid model has the highest rationality (90.3%), which is consistent with the results obtained in other studies. This study also finds more objective distinctions between the different models, which can be used to obtain better model combinations. In most cases, the hybrid model is better than the single model, and the hybrid model can optimize the problems of the single model to a certain extent. For information model and evidence weight, the calculation of the final LSI may deviate from the actual value through simple numerical superposition. The addition of the logical regression model can be used to calculate the coefficient of each factor, which can further highlight the differences in each factor’s role in the final calculation of the LSI, thus obtaining more accurate and reliable evaluation results. In addition, this research also verifies the above-mentioned assumption and achieves the expected results. However, the study area is small and contains less human activity. Therefore, the results may not be suitable for use in landslide susceptibility evaluation in large cities with intense human activity.




5. Conclusions


The investigation of landslides in high-altitude areas presents important challenges. In this study, we employed GIS-based analysis to assess landslide susceptibility in the study area, utilized remote sensing techniques for landslide detection, and applied single and hybrid models such as information volume, evidence weight, and logistic regression for evaluation. This approach can significantly reduce the financial and personnel investments required for landslide investigations. Moreover, by minimizing human factors, the evaluation process ensures objective results.



The susceptibility to landslides was classified into five hierarchic levels: very low, low, medium, high, and very high, using the natural breakpoint method. The rationality and accuracy of the results were validated by examining the area ratio of each landslide level and analyzing the receiver operating characteristic (ROC) curve. The findings demonstrated that the calculated results were highly reasonable and accurate, with the hybrid model outperforming the single models. Specifically, the IVM-LR model achieved a 90.30% ratio in high-risk and very high-risk areas, an AUC value of 0.873, and an accuracy rate of 87.3%, displaying the highest level of rationality and accuracy. This model proved suitable for landslide risk assessment research in high-altitude areas, providing reliable technical and data support for landslide investigations and assessments.



In this research, we further confirmed the superior performance of the hybrid model compared to single models, using both traditional and machine learning models. Overall, the hybrid model based on machine learning turned out to be less effective than expected. In the future, we will continue to incorporate more machine learning models into the existing framework to enhance evaluation accuracy. This exploration will aid in advancing the field of landslide risk assessment.



In addition, the integration of machine learning models into the existing framework should be explored. Incorporating advanced algorithms and techniques in the field of machine learning can potentially enhance the accuracy and predictive capabilities of landslide risk assessment. Furthermore, future research should focus on incorporating additional influential factors, such as climate change data and geological characteristics, to further improve the understanding and prediction of landslide susceptibility in high-altitude areas.



By continuing to refine and expand the methodology, as well as incorporating new data sources and techniques, we can advance the field of landslide risk assessment. This will contribute to more effective disaster prevention and mitigation strategies, ultimately safeguarding lives, property, and infrastructure in high-altitude regions prone to landslides.
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Figure 1. Location of study area and landslide inventory. 
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Figure 2. Flowchart of the study. 
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Figure 3. Landslide causative factors. (a) Slope. (b) Aspect. (c) Elevation. (d) Lithology. (e) Distance to faults. (f) Distance to roads. (g) Distance to rivers. 
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Figure 4. Weight of factors for the IVM model. 
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Figure 5. Landslide susceptibility mapping by the IVM model. 
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Figure 6. Weight of factors for the WoE model. (a) W+. (b) W−. 
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Figure 7. Landslide susceptibility mapping by the WoE model. (a) W+. (b) W−. 
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Figure 8. Landslide susceptibility mapping by the hybrid models. (a) IVM-LR. (b) W+-LR. (c) W−-LR. 
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Figure 9. Landslide susceptibility mapping by the MLP model. (a) IVM-MLP. (b) W+-MLP. (c) W−-MLP. 
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Figure 10. ROC curves for the nine methods. 
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Table 1. Sources of thematic factors.
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	Base Map
	Thematic Factor
	Source





	DEM
	Slope
	ASTER DEM (30 m)



	
	Aspect
	



	
	Elevation
	



	Geological map
	Lithology
	China National Archive 1:200,000



	
	Distance to faults
	



	Geographic map
	Distance to roads
	National Geomatic Center of China



	
	Distance to rivers
	










 





Table 2. Conditioning factor categories.
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	Factor
	TOL
	VIF





	Slope degree
	0.937
	1.077



	Slope aspect
	0.967
	1.034



	Elevation
	0.929
	1.077



	Lithology
	0.695
	1.439



	Distance to faults
	0.867
	1.154



	Distance to roads
	0.832
	1.203



	Distance to rivers
	0.943
	1.06










 





Table 3. The results of collinearity diagnostics.
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Dimensionality

	
Eigenvalue

	
Condition Index

	
Variance Proportion




	
Slope

	
Aspect

	
Elevation

	
Lithology

	
Distance to Faults

	
Distance to Roads

	
Distance to Rivers

	
Slope Degree






	
1

	
1.918

	
1

	
0

	
0.03

	
0.03

	
0.06

	
0.12

	
0.06

	
0.08

	
0.04




	
2

	
1.13

	
1.303

	
0.41

	
0.14

	
0

	
0

	
0

	
0.19

	
0.05

	
0.02




	
3

	
1.056

	
1.348

	
0.15

	
0.17

	
0.08

	
0.05

	
0.03

	
0.07

	
0.16

	
0.15




	
4

	
0.955

	
1.417

	
0

	
0

	
0.67

	
0.02

	
0

	
0.04

	
0.03

	
0.22




	
5

	
0.896

	
1.463

	
0.07

	
0.36

	
0.03

	
0.53

	
0.01

	
0.01

	
0.01

	
0.01




	
6

	
0.846

	
1.506

	
0.06

	
0.12

	
0.12

	
0.29

	
0.01

	
0.03

	
0

	
0.47




	
7

	
0.697

	
1.659

	
0.3

	
0.11

	
0.05

	
0

	
0

	
0.32

	
0.4

	
0.08




	
8

	
0.503

	
1.953

	
0

	
0.06

	
0.01

	
0.05

	
0.83

	
0.27

	
0.28

	
0











 





Table 4. Weight of factors for the IVM, W+, W−.






Table 4. Weight of factors for the IVM, W+, W−.


















	Factors
	Class
	Class Pixel Counts
	Class Pixel Counts %
	Landslide Pixel Counts
	Landslide Pixel Counts %
	      W   i   +      
	      W   i   −      
	W+
	W−
	IVM





	Slope
	0–10
	121,295
	12.29
	3699
	6.97
	−0.592
	0.062
	−0.529
	−0.654
	−0.819



	
	10–20
	255,220
	25.85
	14,338
	27.00
	0.046
	−0.017
	0.030
	0.063
	0.063



	
	20–30
	329,166
	33.34
	21,463
	40.42
	0.205
	−0.118
	0.086
	0.323
	0.278



	
	30–40
	216,075
	21.89
	11,389
	21.45
	−0.021
	0.006
	−0.015
	−0.027
	−0.029



	
	40–50
	58,428
	5.92
	2084
	3.92
	−0.430
	0.022
	−0.408
	−0.452
	−0.593



	
	50–60
	6637
	0.67
	128
	0.24
	−1.061
	0.005
	−1.057
	−1.066
	−1.480



	
	>60
	487
	0.05
	0
	0.00
	0.000
	0.001
	0.000
	0.000
	0.000



	Aspect
	Flat
	2630
	0.27
	131
	0.25
	−0.081
	0.000
	−0.081
	−0.081
	−0.111



	
	North
	143,044
	14.49
	8196
	15.43
	0.067
	−0.012
	0.055
	0.079
	0.091



	
	Northeast
	110,889
	11.23
	4947
	9.32
	−0.197
	0.023
	−0.174
	−0.219
	−0.270



	
	East
	95,795
	9.70
	2725
	5.13
	−0.663
	0.052
	−0.611
	−0.716
	−0.919



	
	Southeast
	126,716
	12.83
	1872
	3.53
	−1.333
	0.108
	−1.225
	−1.440
	−1.864



	
	South
	155,703
	15.77
	4716
	8.88
	−0.599
	0.083
	−0.515
	−0.682
	−0.828



	
	Southwest
	120,834
	12.24
	8712
	16.41
	0.313
	−0.051
	0.261
	0.364
	0.423



	
	West
	103,712
	10.50
	10,998
	20.71
	0.736
	−0.128
	0.608
	0.863
	0.979



	
	Northwest
	127,984
	12.96
	10,804
	20.35
	0.484
	−0.093
	0.390
	0.577
	0.650



	Elevation
	3869–4200
	30,654
	3.15
	304
	0.58
	−1.738
	0.028
	−1.710
	−1.765
	−2.442



	
	4200–4500
	143,803
	14.77
	6284
	11.98
	−0.220
	0.034
	−0.186
	−0.254
	−0.302



	
	4500–4800
	256,027
	26.30
	15,152
	28.89
	0.100
	−0.038
	0.062
	0.137
	0.136



	
	4800–5100
	266,770
	27.40
	19,377
	36.94
	0.319
	−0.148
	0.170
	0.467
	0.431



	
	5100–5400
	157,095
	16.13
	9563
	18.23
	0.130
	−0.027
	0.103
	0.156
	0.176



	
	5400–5700
	80,207
	8.24
	465
	0.89
	−2.279
	0.082
	−2.197
	−2.360
	−3.216



	
	5700–6000
	37,286
	3.83
	1262
	2.41
	−0.486
	0.016
	−0.470
	−0.501
	−0.671



	
	6000–6357
	1819
	0.19
	47
	0.09
	−0.764
	0.001
	−0.763
	−0.765
	−1.060



	Lithology
	Hard rock
	101,483
	10.28
	21,463
	40.42
	1.671
	−0.439
	1.232
	2.110
	2.110



	
	Harder rock
	176,351
	17.86
	1726
	3.25
	−1.749
	0.174
	−1.575
	−1.923
	−2.458



	
	Softer rock
	402,465
	40.76
	17,828
	33.57
	−0.204
	0.122
	−0.083
	−0.326
	−0.280



	
	Soft rock
	239,235
	24.23
	11,185
	21.06
	−0.148
	0.043
	−0.104
	−0.191
	−0.202



	
	extremely soft rock
	67,761
	6.87
	901
	1.69
	3.261
	0.056
	3.205
	−3.317
	−4.591



	Distance to faults
	0–300
	142,236
	14.41
	947
	1.78
	−2.138
	0.146
	−1.992
	−2.284
	−3.014



	
	300–600
	130,353
	13.20
	1655
	3.12
	−1.486
	0.117
	−1.370
	−1.603
	−2.083



	
	600–900
	116,897
	11.84
	3214
	6.05
	−0.698
	0.067
	−0.631
	−0.766
	−0.968



	
	900–1200
	99,413
	10.07
	4004
	7.54
	−0.303
	0.029
	−0.274
	−0.333
	−0.417



	
	1200–1500
	81,447
	8.25
	3995
	7.52
	−0.097
	0.008
	−0.089
	−0.105
	−0.133



	
	1500–1800
	62,792
	6.36
	4748
	8.94
	0.364
	−0.030
	0.335
	0.394
	0.492



	
	1800–2100
	49,558
	5.02
	4494
	8.46
	0.562
	−0.039
	0.523
	0.601
	0.754



	
	>2100
	304,634
	30.85
	30,045
	56.58
	0.655
	−0.486
	0.169
	1.141
	0.875



	Distance to roads
	0–300
	75,224
	7.62
	5010
	9.43
	0.227
	−0.021
	0.206
	0.248
	0.308



	
	300–600
	60,303
	6.11
	4832
	9.10
	0.427
	−0.034
	0.393
	0.461
	0.575



	
	600–900
	54,734
	5.54
	5715
	10.76
	0.718
	−0.060
	0.658
	0.778
	0.957



	
	900–1200
	47,437
	4.80
	6196
	11.67
	0.972
	−0.079
	0.893
	1.051
	1.280



	
	1200–1500
	38,515
	3.90
	4871
	9.17
	0.935
	−0.060
	0.875
	0.994
	1.234



	
	1500–1800
	35,040
	3.55
	4053
	7.63
	0.833
	−0.046
	0.788
	0.879
	1.105



	
	1800–2100
	33,165
	3.36
	3413
	6.43
	0.702
	−0.034
	0.668
	0.736
	0.936



	
	>2100
	642,874
	65.11
	19,012
	35.80
	−0.623
	0.659
	0.035
	−1.282
	−0.863



	Distance to river
	0–300
	200,667
	20.33
	5901
	11.11
	−0.629
	0.116
	−0.513
	−0.745
	−0.871



	
	300–600
	141,756
	14.36
	6769
	12.75
	−0.125
	0.020
	−0.106
	−0.145
	−0.172



	
	600–900
	125,416
	12.70
	8599
	16.19
	0.258
	−0.043
	0.215
	0.302
	0.350



	
	900–1200
	114,948
	11.64
	8283
	15.60
	0.312
	−0.048
	0.264
	0.360
	0.422



	
	1200–1500
	102,535
	10.39
	6996
	13.17
	0.253
	−0.033
	0.220
	0.287
	0.343



	
	1500–1800
	84,136
	8.52
	5642
	10.63
	0.235
	−0.025
	0.210
	0.259
	0.318



	
	1800–2100
	66,091
	6.69
	3535
	6.66
	−0.006
	0.000
	−0.005
	−0.006
	−0.008



	
	>2100
	151,738
	15.37
	7377
	13.89
	−0.106
	0.018
	−0.088
	−0.125
	−0.146










 





Table 5. The proportion of landslides in different susceptibility classes of the 9 models.






Table 5. The proportion of landslides in different susceptibility classes of the 9 models.





	Model
	Very Low
	Low
	Moderate
	High
	Very High





	IVM
	0.39%
	3.03%
	7.87%
	34.22%
	54.49%



	W+
	0.23%
	2.11%
	7.59%
	26.20%
	63.86%



	W−
	0.55%
	3.93%
	10.36%
	33.40%
	51.76%



	IVM-LR
	0.42%
	1.91%
	7.38%
	29.84%
	60.47%



	W+-LR
	0.12%
	2.31%
	9.38%
	25.95%
	62.25%



	W−-LR
	0.10%
	4.54%
	14.50%
	33.30%
	47.56%



	IVM-MLP
	0.16%
	3.57%
	9.26%
	34.30%
	52.71%



	W+-MLP
	0.11%
	2.65%
	8.41%
	25.19%
	63.63%



	W−-MLP
	0.17%
	4.28%
	12.68%
	33.41%
	49.46%










 





Table 6. Coefficient of evaluation factors by LR and MLP.






Table 6. Coefficient of evaluation factors by LR and MLP.





	Factors
	Slope
	Aspect
	Elevation
	Lithology
	Distance to Faults
	Distance to Roads
	Distance to Rivers





	LR
	0.480
	0.716
	0.150
	0.614
	0.702
	0.367
	0.633



	MLP
	0.053
	0.135
	0.144
	0.164
	0.217
	0.131
	0.157
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