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Abstract: Autism spectrum disorder (ASD) affects approximately 1.4% of the population and imposes
significant social and economic burdens. Because its etiology is unknown, effective diagnosis is
challenging. Advancements in structural magnetic resonance imaging (sMRI) allow for the objective
assessment of ASD by examining structural brain changes. Recently, machine learning (ML)-based
diagnostic systems have emerged to expedite and enhance the diagnostic process. However, the
expected success in ASD was not yet achieved. This study evaluates and compares the performance
of seven optimized ML models to identify sMRI-based biomarkers for early and accurate detection
of ASD in children aged 5 to 10 years. The effect of using hyperparameter tuning and feature
selection techniques are investigated using two public datasets from Autism Brain Imaging Data
Exchange Initiative. Furthermore, these models are tested on a local Saudi dataset to verify their
generalizability. The integration of the grey wolf optimizer with a support vector machine achieved
the best performance with an average accuracy of 71% (with further improvement to 71% after
adding personal features) using 10-fold Cross-validation. The optimized models identified relevant
biomarkers for diagnosis, lending credence to their truly generalizable nature and advancing scientific
understanding of neurological changes in ASD.

Keywords: autism spectrum disorder; structural magnetic resonance imaging; machine learning;
classification; feature selection; Boruta; grey wolf optimizer

1. Introduction

Autism spectrum disorder (ASD) affects 1.5% of children worldwide, being 4.5 times
more prevalent in males than in females [1]. In 2023, the estimated prevalence of ASD in the
United States is 80.9 per 10,000 people, while in Saudi Arabia, it is 100.7 per 10,000 people,
reflecting similar patterns observed in many countries [2,3]. ASD is a developmental
disorder marked by early social communication and interaction impairments, along with
restricted and repetitive activities and interests [4]. The term “spectrum” refers to the
variation in the severity and form of symptoms, which were classified as separate disorders
before the publication of the fifth edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) [5]. Symptoms appear in early childhood and continue throughout
life, resulting in challenges such as learning difficulties, increased psychological pressures
on families, and social isolation. The cause of ASD remains unknown, making effective
treatment challenging. However, early diagnosis enables healthcare providers and families
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to implement early interventions that enhance the quality of life for individuals with autism.
Presently, diagnostic approaches rely heavily on behavioral characterization, which is time-
consuming, expensive, susceptible to bias, and often does not meet DSM-5 evaluation
criteria. Moreover, due to comorbidity, these approaches may be inconclusive [5].

Structural magnetic resonance imaging (sMRI) is a non-invasive technique to study
brain morphology and diagnose disorders, particularly in children. It provides high
contrast sensitivity and resolution without radiation [6]. sMRI is used to obtain different
brain tissue sequences, such as T1 and T2. Longitudinal studies also utilize sMRI to monitor
brain growth over time [7]. Moreover, the big brain theory [8] has a structural basis, positing
that autistic people have larger brains than their peers with typical development (TD).
However, older statistical methods for studying structural changes in brain regions are
univariate and based on group differences, which cannot be directly related to clinical
diagnosis based on biomarker identification for an individual [9].

Machine learning (ML) has recently contributed to building efficient computer-aided
diagnostic (CAD) systems, analyzing complex medical imaging and Big Data in less time
and eliminating human errors. It also facilitates studies at the individual level and acts
as a vector with multiple variables [5]. ML models using data can automatically predict
and diagnose ASD earlier, improving the lives of patients and their families and reducing
financial costs. Personal and behavioral features, along with sMRI data, are valuable re-
sources for ML algorithms in uncovering hidden patterns for disorder prediction. However,
challenges arise from hyperparameters and high-dimensional data, making algorithm oper-
ation difficult. Optimization approaches like random search methods, feature selection (FS),
and hyperparameter tuning can enhance algorithm development, accelerate classification,
reduce costs, address high dimensionality, and improve prediction model accuracy [10].

There are three common types of FS algorithm: filter, wrapper, and embedded, which
aim to select the most important and effective features for prediction problems. New
optimization techniques, such as bio-inspired algorithms, can enhance FS methods by
globally searching for the optimal feature subset and improving prediction accuracy [11].
ML has shown significant benefits in accurate ASD diagnosis, saving time and effort for
human experts and facilitating effective intervention. Despite recent attention, further
improvement is needed in this area, and more research is required for classifying ASD
using enhanced algorithms. To our knowledge, this study is the first to employ the nature-
inspired grey wolf optimizer (GWO) algorithm and the Boruta algorithm for sMRI-based
ASD classification.

This work aims to enhance the early classification accuracy of ASD using high-
dimensional sMRI data for children aged 5 to 10 years, as well as to identify important
biomarkers associated with ASD. To achieve this, a comparative empirical study is con-
ducted using different optimization algorithms combined with seven ML algorithms using
two public datasets from the Autism Brain Imaging Data Exchange Initiative (ABIDE) and
local data from King Abdulaziz University (KAU) Hospital. To our knowledge, the KAU
dataset is the first Saudi dataset used in ML applications for ASD classification. Recursive
feature elimination with cross-validation (RFECV), Boruta and GWO-based algorithms for
FS, and random search algorithm and GWO algorithm for hyperparameter tuning were all
investigated. The impact of age and gender on classification performance is also examined.
This study addresses the following research questions:

1. Can the proposed FS methods improve the accuracy of ML models in ASD classification?
2. Which of the proposed optimized models performs the best in predicting ASD in

terms of accuracy on the two public datasets?
3. Does combining personal features data with sMRI yield better results in ASD classifi-

cation compared to using only sMRI data?

The reminder of this paper is organized as follows. Section 2 reviews the related work.
Section 3 describes the materials and methods employed in this study. In Section 4, we
present and discuss the results and limitations of the research and suggest future work.
Finally, Section 5 summarizes and concludes the paper.
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2. Related Work

ML encompasses computational techniques using data for learning, performance
improvement, and prediction. Although ASD classification methods can vary, Figure 1
illustrates the common steps involved in developing ML applications, including: (a) data
collection and preprocessing; (b) feature extraction and selection; (c) model training; and
(d) model testing and performance evaluation.

Figure 1. General machine learning procedures for ASD diagnosis.

Earlier studies on ASD categorization primarily focused on ML or deep learning (DL)
techniques. Bahathiq et al. analyzed 45 articles proposing ML-based methods for ASD
diagnosis using sMRI [5]. These studies differed in ML algorithms, hyperparameters values,
sample size, and input features. There are very few publicly available datasets, with the
ABIDE datasets being the most well-known. Typically, individual ML algorithms such as
support vector machine (SVM) [12,13], Naïve Bayes (NB) [14], or k-nearest neighbor [15]
were investigated in these studies. Ref. [16] used extreme gradient boosting (XGB) with
ABIDE I male samples within a narrow age range, which limits generalizability to other age
groups. Challenges increased when using the entire large dataset due to sample variability
[17]. In the quest for biomarkers, various local and global parameters of the brain, such as
white matter (WM) volumes and cortical thickness (CT), have been utilized [18,19].

In [20], seven morphological features from 67 subjects were used, and the best accuracy
was obtained using average CT for each of 68 regions of interest (ROIs). Bilgen et al. [21]
evaluated twenty ML approaches based on morphological brain networks (MBNs) by con-
sidering preprocessing steps, dimensionality reduction techniques, and learning methods.
The top two teams achieved accuracies of 70% and 63.8% using the gradient boosting classi-
fier (GBC). Several ML models have been used to distinguish autistic from TD participants
using either sMRI alone [12] or sMRI combined with other data [22]. Katuwal et al. [23]
demonstrated the potential for early detection of ASD before the age of 10 using a random
forest (RF) model on MRI features of male brains. Participants from the ABIDE I and II
datasets were divided into four groups based on gender and health problems (TD or ASD)
in [24] to investigate gender differences in ASD diagnosis. Following that, an ML model
was trained using various combinations of functional and structural attributes.

A DL model identified ASD with an accuracy of 65.6% in [25] using resting-state fMRI
(rs-fMRI), white matter (WM), and gray matter (GM) features from the two ABIDE datasets.
Unlike the early-life global volume increases in ASD, the volume of GM/WM varies in adult
brain regions, increasing and decreasing. As a result, previous studies on ASD biomarkers
yielded contradictory results. In [26], an end-to-end framework was offered which uses
14 models that are compounds of different network architectures, among them a static
CNN model, sequential learning models (e.g., RNN), Spatial Transformer Networks, and
feature visualization methods (such as CAM). For a private dataset, the authors discovered
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that the 2D3D CNN and RAM worked best, whereas for the ABIDE dataset, a basic 3D
CNN performed best. The highest ACC of this study was 61.7%.

Previous studies have shown promise in using ML algorithms for investigating ASD.
However, these studies had limitations. First, many investigations trained a single model
on small, high-dimensional MRI datasets, leading to overfitting and unstable models.
Additionally, the generalizability of these models was questionable as they were not
evaluated on external datasets [27]. Second, important biomarkers and neurophysiological
significance of findings were not thoroughly analyzed in most models. Third, optimization
techniques such as hyperparameter tuning and FS were often not employed, which can
impact accuracy and efficiency. Furthermore, FS techniques may be useful in bridging
gaps in study results caused by ambiguity in the exact parameters that cause ASD [17].
Identifying significant disease-related features is also important in medical diagnosis. Some
studies used no FS approach [16,28], while others used sample techniques such as F1-score,
recursive feature elimination (RFE), and principal component analysis (PCA) [20,21]. A
few studies have yielded promising results [29] using advanced technologies like Boruta
or bio-inspired algorithms like the GWO and particle swarm optimization (PSO). For
example, four bio-inspired methods were used in [30] to create optimized ML models using
gene expression data to predict ASD. In [30], four bio-inspired methods were employed
to develop optimized ML models using gene expression data for ASD prediction. The
GWO-SVM model achieved an accuracy of 99%. In [31], a model for Alzheimer’s detection
was proposed, where the Boruta and information gain filter feature selection methods were
independently tested. The authors achieved an accuracy rate of 99.06% using a GBC and
Boruta. However, to the best of our knowledge, optimized feature selection approaches
have not been extensively explored for ASD categorization using sMRI. Additionally,
comparing the performance of different ML models applied to the same data is challenging
due to variations in participant groups, preprocessing steps, CV procedures, and other
factors, which is in line with the “no free lunch” theory [5].

The reviewed studies (as presented in Table 1) provide an analysis of various as-
pects, including datasets, preprocessing tools, evaluation metrics, dimensionality reduc-
tion and FS methods, participant characteristics, imaging modalities, and identified fea-
tures/biomarkers for ASD diagnosis.

Table 1. A summary of the reviewed studies that applied ML or DL to classify ASD using sMRI.

Feature
Selection

Feature Selection
Method Modality Ref., Year Biomarker Dataset Subjects Age Preprocessing Tools Classifiers Validation Best ACC

ML

Without FS

-
sMRI + personal
and behavioral
features (PBC)

[16], 2017

GM, WM, CSF
and total

intracranial
volume

ABIDE I ASD = 114,
TD = 108 6–13 years FreeSurfer RF, XGB 10-fold CV Highest ACC by

RF: 60%

- sMRI [14], 2017 Volume, CT,
Cortical surface private data

ASD = 46,
Development

delay = 39
18 to 37 months FreeSurfer RF, NB, SVM 5-fold CV CT + RF: 80.9 ± 1.5

- sMRI + fMRI [28] 2021 Graph signals ABIDE I
pre-processed

ASD = 201,
TD = 251 6–18 years old GBC, SVM DT LOOCV ACC: 67.7

Supervised
sample FS:

Filter

Variable
importance

measures in RF

fMRI, sMRI and
DWI [22], 2019

ROI-based FC
and various

anatomic features
Private data ASD = 46,

TD = 47 13.6 ± 2.8 years FreeSurfer, FSL and AFNI RF -
Highest ACC: RF
combining the top
19 variables: 92.5

1st: SelectKBest
Algorithm, 2nd:

Minimum
Redundancy
Maximum
Relevance

sMRI [21], 2020 Cortical MBN ABIDE I ASD = 100,
TD = 100 Unknown FreeSurfer

LR, SVM, DT, LDA,
KNN, QDA, RF,

AdaBoost, GBC, XGB
- GBC 1st: 70%

statistical test GM and WM [24], 2019 sMRI MRC AIMS
collected data

ASD = 60,
TD = 60 18–49 years SPM 12 SVM Groups of CV Highest ACC: 86%

Supervised
sample FS:
wrapper

greedy
forward-feature

selection
T1-sMRI [20], 2021 Regional CT Private data ASD = 40,

TD = 36 9.5 ± 3.4 years FreeSurfer SVM LOOCV 84.2%

Unsupervised
FS

sparse graph
embedding T1w-sMRI [12], 2017

Morphological
brain connectivity

using a set of
cortical attributes

ABIDE I ASD = 59,
TD = 43 Unknown FreeSurfer SVM LOOCV 61.76%

Unsupervised
Dimensionality

Reduction
PCA sMRI [15], 2020

CT, SA and
sub-cortical

features
Private data

Schizophrenia = 64,
ASD = 36,
TD = 106

Schizophrenia = 14–
60, ASD = 20–44,
TD = 16–60 years

FreeSurfer and Enhancing
Neuroimaging Genetics

SVM, DT, LR, KNN,
RF, AdaBoost 10-fold CV

Highest Acc:
multi-class

classification LR +
CT = 69, ASD vs.

TD binary
classification => 70
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Table 1. Cont.

Feature
Selection

Feature Selection
Method Modality Ref., Year Biomarker Dataset Subjects Age Preprocessing Tools Classifiers Validation Best ACC

DL

Supervised
sample FS:

Filter

ReliefF and
mRMR CT [18], 2018 sMRI 5 datasets ASD = 325,

TD = 325 17.8 ± 7.4 years FreeSurfer NN, SVM, KNN 5-fold CV 62%

Supervised
sample FS:
Wrapper

RFECV sMRI [8], 2022
set of

morphological
features

ABIDE I ASD = 530,
TD = 573 6–64 years FreeSurfer LASSO, RF, SVM, and

NN 4-fold CV NN Avg
ACC = 71%

Unsupervised
Dimensionality

Reduction
PCA sMRI and rs-fMRI [25], 2018

Regional based
mean time series+

GM+ WM

ABIDE I and
ABIDE II

ASD = 116,
TD = 69 5–10 Years SPM 8 DBN of depth 3 + LR 10-fold CV 65.56%

Given the foregoing, the purpose of this study was to optimize and evaluate seven ML
algorithms with varying degrees of complexity used to diagnose 5- to 10-year-old children
with ASD or TD using sMRI-based morphological features, as well as to identify important
biomarkers associated with ASD to aid in early and accurate diagnosis. This work aimed
to shed a light on the role of the RFECV, Boruta and GWO-based algorithms for FS, and the
random search and GWO algorithm for hyperparameter tuning. This study aims to provide
guidance for selecting acceptable ML models for classifying ASD based on morphometry
data because it has significant benefits in aiding accurate diagnosis.

3. Methods and Materials

To ensure accurate and reliable predictions using multi-source and heterogeneous
data, an ML-based system must address five primary challenges: data acquisition, data
pre-processing, feature extraction and selection, model training, and model testing with
performance evaluation. Our workflow for ASD classification, illustrated in Figure 2,
outlines the steps involved, which will be elaborated in the subsequent subsections.

Figure 2. Workflow for ASD classification.
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3.1. Data Acquisition

Three datasets were examined here: ABIDE I [32] and ABIDE II [33], which are publicly
available datasets, and a local Saudi dataset. The ABIDE datasets include anonymized sMRI
and rs-fMRI scans, along with personal, behavioral, and clinical diagnostic information
collected from multiple sites stored in the ABIDE repository. Each study received ethical
approval for data usage and sharing. We used 220 and 418 sMRI scans from ABIDE I and II,
respectively. Detailed criteria for subject inclusion/exclusion and acquisition methodology
can be found on the ABIDE website [34]. The data was downloaded usingCyberduck
software v8.4.2 from an Amazon Web Services S3 container in the Neuroimaging Infor-
matics Technology Initiative (NIFTI) file format [35], which is commonly used in image
processing software. The data was organized according to the Brain Imaging Data Structure
(BIDS) [36,37], facilitating script reuse and easy sharing between studies.

The KAU dataset comprised 33 participants who were recruited from KAU Hospital.
A pediatric neurologist diagnosed the subjects with ASD based on DSM-5 criteria. None of
the participants had ADHD, seizure disorder, or any other significant health problems. The
control group (TD individuals) who had no notable health, neurological, or developmental
problems. Participant scans were acquired in DICOM format using Siemens SKYRA or
VERIO machines and then converted to NIFTI format using MRIcroGL v1.2.20220720 soft-
ware [38,39]. A radiologist analyzed the MRI images visually to determine image quality,
artifacts, and any gross abnormalities that needed to be excluded. The KAU Hospital Ethics
Committee (approval number 386-21) approved the current study. All subjects in this work
ranged from 5 to 10 years old to reduce the effect of dataset heterogeneity. T1-weighted
sMRI scans were acquired in 3T scanners. Along with the sMRI data, general clinical infor-
mation such as diagnosis (ASD or TD), age, and gender was collected for each participant.
Investigating multiple datasets allows us to assess the robustness and generalizability of
the proposed models. The demographic information of the studied participants is provided
in Table 2.

Table 2. Demographics of KAU, ABIDE I, and ABIDE II participants.

Dataset ASD% Male% Age (years) Total Participants

ABIDE I 47.7 82.7 6.4–10.9 220
ABIDE II 44.7 69.4 5.1–10.9 418

KAU 57.6 66.7 5.4–10.8 33

3.2. Pre-Processing

The acquired datasets were treated in six steps: image preprocessing and analysis,
feature extraction, cleaning of the extracted data, transformation, splitting, and reduction.

3.2.1. sMRI Pre-Processing and Features Extraction

For sMRI pre-processing and feature extraction, the well-known Recon-all pipeline
from FreeSurfer V.5.3.0 software was employed. This pipeline addresses the challenges
associated with developing and implementing pre-processing stages for neuroimaging
data [40]. It improves the visual quality of the images, eliminates inter-subject variability
caused by data gathering methods and artifacts, and enhances the reproducibility of the
study [5,41]. Recon-all consists of 31 steps for surface-based analysis and volumetric seg-
mentation, including intensity normalization, skull-stripping, brain segmentation, region
labeling based on Desikan-Killiany (DK) atlas, surface amplification, spheroid atlas scoring,
and cortical surface parcellation [40]. These steps are illustrated in Figure 3.

When executed on a personal computer, the Recon-all process generates substantial
analytical volumes (approximately 400 MB) and takes around 10–20 h to complete. How-
ever, utilizing high-performance computers can significantly improve the performance of
ML applications by efficiently managing large datasets and reducing computation time and
resource demands [42]. To expedite the Recon-all pipeline, we utilized the Aziz Supercom-
puter, which allowed us to process data independently for each subject and in parallel, with
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24 subjects using 24 CPUs. After completing all steps, the volume of subcortical structures
(n = 66), surface area (SA) (n = 70), CTs (n = 70), mean curvatures (n = 68), and volumes
(n = 68) of cortical structures were calculated. Descriptions of these morphological features
can be found in Table 3 and further elaborated in Table S1 in the Supplementary Materials.
Furthermore, Figure S1 in the Supplementary Material represents the difference between
cortical and subcortical regions in the DK atlas.

Table 3. List of the morphological regions of the Desikan-Killiany atlas.

Cortical Regions

#Label Label Name Name #Label Label Name Name

1 lh bankssts
Banks of

superior temporal
sulcus

35 rh bankssts
Banks of

superior temporal
sulcus

2 lh caudal
anteriorcingulate

Caudal anterior
cingulate cortex 36 rh caudalanteriorcingulate Caudal anterior

cingulate cortex

3 lh caudal
middlefrontal

Caudal middle
frontal gyrus 37 rh caudal

middlefrontal
Caudal middle
frontal gyrus

4 lh cuneus Cuneus 38 rh cuneus Cuneus

5 lh entorhinal Entorhinal cortex 39 rh entorhinal Entorhinal cortex

6 lh fusiform Fusiform gyrus 40 rh fusiform Fusiform gyrus

7 lh inferiorparietal Inferior
parietal lobule 41 rh inferiorparietal Inferior

parietal lobule

8 lh inferiortemporal Inferior
temporal gyrus 42 rh inferiortemporal Inferior

temporal gyrus

9 lh lateraloccipital Lateral occipital
gyrus 43 rh lateraloccipital Lateral occipital

gyrus

10 lh caudal
lateralorbitofrontal

Lateral
orbitofrontal gyrus 44 rh caudal

lateralorbitofrontal
Lateral

orbitofrontal gyrus

11 lh lingual Lingual gyrus 45 rh lingual Lingual gyrus

12 lh caudal
medialorbitofrontal

Medial
orbitofrontal gyrus 46 rh caudal

medialorbitofrontal
Medial

orbitofrontal gyrus

13 lh middletemporal Medial
temporal gyrus 47 rh middletemporal Medial

temporal gyrus

14 lh parahippocampal Parahippocampal gyrus 48 rh parahippocampal Parahippocampal gyrus

15 lh paracentral Paracentral gyrus 49 rh paracentral Paracentral gyrus

16 lh parsopercularis Pars opercularis 50 rh parsopercularis Pars opercularis

17 lh parsorbitalis Pars orbitalis 51 rh parsorbitalis Pars orbitalis

18 lh parstriangularis Pars triangularis 52 rh parstriangularis Pars triangularis

19 lh pericalcarine Pericalcarine gyrus 53 rh pericalcarine Pericalcarine gyrus

20 lh postcentral Postcentral gyrus 54 rh postcentral Postcentral gyrus

21 lh posterior
cingulate

Posterior
cingulate cortex 55 rh posteriorcingulate Posterior

cingulate cortex

22 lh precentral Precentral gyrus 56 rh precentral Precentral gyrus

23 lh precuneus Precuneus 57 rh precuneus Precuneus

24 lh rostral
anteriorcingulate

Rostral anterior
cingulate cortex 58 rh rostral

anteriorcingulate
Rostral anterior
cingulate cortex

25 lh rostral
middlefrontal

Rostral middle
frontal gyrus 59 rh rostral

middlefrontal
Rostral middle
frontal gyrus

26 lh superiorfrontal Superior frontal gyrus 60 rh superiorfrontal Superior frontal gyrus

27 lh superiorparietal Superior
parietal gyrus 61 rh superiorparietal Superior

parietal gyrus

28 lh superiortemporal Superior
temporal gyrus 62 rh superiortemporal Superior

temporal gyrus

29 lh supramarginal Supramarginal gyrus 63 rh supramarginal Supramarginal gyrus

30 lh frontalpole Frontal pole 64 rh frontalpole Frontal pole

31 lh temporalpole Temporal pole 65 rh temporalpole Temporal pole

32 lh transversetemporal Transverse
temporal gyrus 66 rh transversetemporal Transverse

temporal gyrus

33 lh insula Insula 67 rh insula Insula

34 lh isthmuscingulate Isthmus cingulate 68 rh isthmuscingulate Isthmus cingulate
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Table 3. Cont.

Cortical Regions

#Label Label Name Name #Label Label Name Name

Sub-Cortical regions

69 Left Thalamus Proper Thalamus 85 Right-Caudate Caudate nucleus

70 Left-Hippocampus Hippocampus 86 Right-Amygdala Amygdala

71 Left-Caudate Caudate nucleus 87 Right Accumbens area Nucleus Accumbens

72 Left-Amygdala Amygdala 88 Right-Lateral-Ventricle
Lateral ventricles

73 Left-Accumbens-area Nucleus Accumbens 89 Right-Inf-Lat-Vent

74 Left-Lateral-Ventricle
Lateral ventricles

90 Right Cerebellum White Matter
Cerebellum-White-Matter

75 Left-Inf-Lat-Vent 91 Surfaces holes

76 Left-Cerebellum-White-Matter Cerebellum-White-Matter 92 Right-Putamen Putamen

77 Left-Putamen Putamen 94 Right-choroid-plexus Choroid-plexus

78 Left-Pallidum Pallidum 95 Right-VentralDC Ventral Diencephalon

79 Left-choroid-plexus Choroid-plexus 96 Right-vessel Vessel

80 Left-VentralDC Ventral Diencephalon 97 3rd-Ventricle
Ventricle81 Left-vessel Vessel 98 4th-Ventricle

82 Right-Thalamus-Proper Thalamus 99 5th-Ventricle

83 Right-Hippocampus Hippocampus

Figure 3. Main steps of the Recon-all pipeline.

CT is the shortest distance between the WM and CSF boundaries per each vertex of
the reconstructed cortical surface. Each vertex has a curvature for the pial surface and a
curvature for the white surface. It demonstrates how curved each vertex is. It is calculated
as the mean reciprocal of the principal radii. SA was designated as the GM/WM boundary.
To calculate the cortical volume, multiply the SA by the CT [6,43]. Figure 4 visualizes the
geometrical connection between CT, SA, and volume-derived measurements.
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Figure 4. Morphological features extracted from brain surfaces by FreeSurfer.

3.2.2. Data Cleaning and Integration

In traditional clinical diagnosis, clinicians often gather a wide range of personal and
behavioral data, including factors such as ethnicity, or answers to question such as “Do
ASD patients hear small sounds frequently while others do not?” [20]. Here, we utilized age
and gender information, along with brain characteristics, as these variables were readily
available in our datasets. However, it is important to note that real-world data is often
inconsistent, noisy, and incomplete, which can pose challenges for ML systems. To address
this, we performed a series of data cleaning operations. To handle missing values, we
employed the SimpleImputer module, which estimates missing values by using the mean
descriptive statistic for each column [44]. This approach helps to fill in the gaps and ensure
that the data is more complete and suitable for analysis. Following data cleaning, we
combined the ABIDE I and ABIDE II datasets into a single data repository.

Using the five measurements from Recon-all, we created various “features sets”. F1
represents a set of cortical region volumes, while F2, F3, F4, and F5 represent subcortical
region volumes, SAs, CTs, and mean curvatures, respectively. The F6 set includes all
measurements, for a total of 342 features.

3.2.3. Data Transformation

For ML model usage, we employed numeric transformation rules to encode the
string feature “gender”. Female values were represented as 0, while male values were
represented as 1. Additionally, to mitigate biases and ensure consistent modeling, we
utilized standardization. This scaling technique independently rescaled each feature,
centering the values around the mean with units of standard deviation [15].

3.3. Data Splitting

The combined features sets from the ABIDE datasets were randomly split into 80% for
training and validation, and 20% for testing. To evaluate model performance and ensure
stability, a 10-fold CV was conducted on the training and validation set. This involved
dividing the data into 10 parts, with nine parts used for training and one part for validation,
repeated 10 times.

The test set (KAU data) remained separate throughout the process, excluding it from
training, model selection, and CV. Its sole purpose was to assess the model’s performance
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on unseen data. This separation ensured consistency, reduced heterogeneity within training
datasets from different sources, and enabled unbiased evaluation in diverse contexts
(such as different medical region or setting). Additionally, it allowed for an independent
evaluation of the model’s adaptability on unique data characteristics. Analysis of local
demographics may provide insights into the Saudi population, while utilizing a public
database in the training and validation phases ensured standardized evaluation, facilitating
comparisons with existing studies, knowledge, and benchmarks in the field.

Random_state was used to control randomization during data splitting [8].

3.4. Feature Selection

Compared to the number of instances, the feature extraction phase resulted in a
large feature matrix (342 sMRI-based + age + gender). This ML challenge, known as the
“dimensionality curse”, leads to overfitting, reduced performance, and increased memory
and computational requirements. FS techniques address this issue by eliminating irrelevant,
redundant, or noisy features while preserving the original data structure. This enhances
classification accuracy, model interpretability, and mitigates overfitting [18].

Wrapper FS is based on a specific ML algorithm applied to a specific dataset. It
compares all possible feature combinations using a search method to select the optimal
features based on an evaluation criterion [45]. Specifically, we investigated RFECV, Boruta,
and GWO-based wrapper techniques.

3.4.1. Recursive Feature Elimination with Cross-Validation (RFECV)

RFE, based on greedy optimization, iteratively eliminates features with weak relation-
ships to the target variable (lowest importance) until reaching a predefined feature count.
The sklearn RFECV module is an efficient RFE variant that explores the optimal feature
subset by for a given estimator (by default DT) removing 0 to N features using RFE and
evaluating the model’s 10-fold CV score. The resource requirements may vary based on
data size and the chosen estimator [46,47]. Figure 5 shows the RFECV algorithm flowchart.

Figure 5. The flowchart of RFECV algorithm.

3.4.2. Boruta

Boruta, an R algorithm, has been ported to Python as the BorutaPy library [48]. The
flowchart of Boruta is illustrated in Figure 6.



Appl. Sci. 2024, 14, 473 11 of 29

Figure 6. The flowchart of the Boruta algorithm.

Boruta operates based on two principles: shadow features and binomial distributions.
Initially, it creates “shadow features” by duplicating and shuffling the columns of the
original dataset. These shadows are then combined with the original features to create a
new dataset. A RF model is trained on this new dataset, and the feature importance is
determined iteratively using the “Z value”, which measures the mean accuracy reduction.
Higher Z values indicate more significant features. When a feature’s importance surpasses
a predefined threshold, it is considered a “hit”. However, to avoid discarding potentially
useful features due to chance, Boruta employs a binomial distribution approach. By
repeating the process considering the binary outcomes of “hit” or “not hit” for each feature,
Boruta determines which features should be retained and which should be discarded [49].

3.4.3. Grey Wolf Optimizer (GWO)-Based Algorithm

GWO is a bio-inspired meta-heuristic algorithm based on the social behavior of grey
wolves, known for their hierarchical pack structure [50]. Figure 7 illustrates this hierarchi-
cal structure.

Figure 7. Grey wolf leadership hierarchy.

Here, we utilized the GWO object from the Niapy library [51]. The GWO algorithm
utilizes alpha (α), beta (β), delta (δ), and omega (ω) wolves to find the optimal solution.
Each wolf represents a potential solution, with the alpha wolf making major decisions. The
beta (β) wolf aids the α wolf in decision making and enforces the alpha wolf’s leadership
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among the lower-ranked wolves. Delta (δ) are senior wolves or sentinels who protect the
α and β and control the omega ω wolves. Wolves’ positions are updated based on prey
location and a fitness function. The best solutions are ranked as α, β, and δ according to
fitness. Omega wolves’ positions are adjusted based on the top three wolves positions,
denoted as X⃗α, X⃗β, and X⃗δ. Prey encircling, hunting, attacking, and searching are key steps
in the algorithm and are mathematically represented as follows:

1. Initialize the positions of the wolves randomly within the search space.
2. Prey Encircling: update the positions of the wolves based on the alpha wolf’s position,

aiming to encircle the prey. The position of each wolf is updated using the following
equation: X⃗i = X⃗α − A⃗ × C⃗i, where X⃗i is the position of the ith wolf, X⃗α is the
position of the alpha wolf, A⃗ is a random vector, and C⃗i is a coefficient vector.

3. Prey Attacking: update the positions of the wolves to attack the prey. The position of
each wolf is updated using the following equation: X⃗i = X⃗p − A⃗ × C⃗i, where X⃗p is
the position of the prey.

4. Searching: update the positions of the wolves to search for the prey. The position of
each wolf is updated using the following equation: X⃗i = X⃗i + A⃗ × C⃗i, where A⃗ is a
random vector, and C⃗i is a coefficient vector.

5. Boundary Checking: ensure that the updated positions of the wolves remain within
the defined search space.

6. Fitness Evaluation: evaluate the fitness of each wolf based on the problem-specific
fitness function.

7. Select the three wolves with the best fitness values as the alpha, beta, and delta wolves,
respectively.

8. Update the positions of the omega wolves based on the positions of the alpha, beta,
and delta wolves.

9. Termination: repeat steps 2–8 until a termination criterion is met (e.g., a maximum
number of iterations or a desired fitness value is reached).

The GWO algorithm flowchart represented in Figure 8.

Figure 8. The flowchart of the GWO algorithm.

3.5. Models Development and Training

The work utilizes seven ML algorithms for distinguishing between ASD and TD
individuals. Here is a brief description of each algorithm:

3.5.1. Machine Learning (ML) Algorithms

• Support vector machine (SVM):
SVM finds an optimal decision boundary (hyperplane) in a high-dimensional space to
separate different classes. It maximizes the margin between classes and can handle
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non-linear classification using kernel methods. SVM is suitable for handling high-
dimensional data such as sMRI, but training time can be long [5].

• Naïve Bayes (NB):
NB is based on Bayes’ theorem and assumes that features are independent and con-
tribute independently to the final prediction. Gaussian NB, which follows the normal
distribution, is used in this work. NB is known for its simplicity and efficiency, and it
is particularly useful when dealing with large datasets [52,53].

• Decision Tree (DT):
DT is a flowchart-like tree structure that represents a series of decisions and their
outcomes. Starting from a root node, it uses a top-down greedy search to produce
a DT with decision and leaf nodes without backtracking over the space of possible
branches. The DT branches describe the dataset’s features. The final classification is
made at the leaf nodes of the tree. DTs are intuitive and easy to interpret, but they can
be prone to overfitting [54].

• Random Forest (RF):
RF is an ensemble learning method that combines multiple weak learners (e.g., DTs) to
create a robust model. Each tree is trained on a random subset of the original dataset
using a bagging technique. The final prediction is determined by majority voting. RF
improves performance and reduces overfitting compared to a single DT [17].

• Extreme Gradient Boosting (XGB):
XGB is an optimized version of the GBC algorithm. It is designed for speed and
performance, utilizing three techniques: implementation of sparse-aware that handles
missing data values automatically; utilization of a block structure to facilitate the
parallelization of tree construction; and continuous training to further enhance the
model’s performance that has been fitted to new data [14,55].

• Category Boosting (CatBoost):
CatBoost is a gradient boosting approach that specifically works well with categorical
features. It creates a set of DTs with identical splitting criteria throughout the entire
level. Each successive tree is produced with a lower loss than the previous one.
CatBoost is well-balanced and less sensitive to overfitting [55].

• Multilayer perceptron (MLP):
MLP is an artificial neural network with input, output, and hidden layers. The input layer
receives the data represented by a digital vector to be processed. Classification is handled by
the output layer. A number of hidden layers make up the MLP’s true computational engine.
MLP processes input data through linear and nonlinear transformations, transmitting
the data forward. The network learns from feedback on prediction errors through the
backpropagation learning process, adjusting weights for improved predictions [56].

3.5.2. Hyperparameter Optimization

Hyperparameter optimization is vital for achieving optimal performance in ML al-
gorithms. It involves adjusting the algorithm’s hyperparameters during training to best
fit the dataset. Grid search and random search are commonly used methods for tuning
hyperparameter values. Recently, population-based algorithms like GWO have gained
popularity for hyperparameter optimization [57]. In this study, we examined random
search and GWO with a 10-fold cross-validation (CV).

• Random Search:
Random search explores a specified number of random hyperparameter combinations.
It is faster than grid search but does not guarantee finding the optimal combination.
Here, the RandomizedSearchCV function from sklearn was used with 20 iterations to
find the best hyperparameters [58].

• GWO-based hyperparameters tuning:
GWO is a nature-inspired algorithm. It is faster and more likely to find the best solution
compared to random search. The GWO algorithm was used for hyperparameter tuning
with the NatureInspiredSearchCV function from the sklearn_nature_inspired_algorithms
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library. Parameters such as the model name, population size and maximum stagnating
generation were set for the optimization process [57,59]. Here, the population size is set to
50 and the max stagnating generation is 20.

Different hyperparameter combinations were searched using random and GWO-based
search algorithms, and the values yielding the highest model accuracy on the validation set
were selected. For a comprehensive list of hyperparameters, refer to Table 4.

Table 4. The different values of models’ hyperparameters used in our study.

Model Name Hyperparameter Name Definition Hyperparameter Value Range

Support Vector Machine (SVM)

C value The penalty parameter (0.1, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 0.25, 0.5,
0.75, 10, 100)

Kernel Defining the algorithm linear, rbf, poly, and sigmoid

Degree The degree of the polynomial kernel
function (‘poly’) 1, 2, 3, 4, 5, 6

Gamma Kernel coefficient scale, auto

Decision Tree (DT)
Criterion The function to measure the quality of a

split Gini and entropy

Max_depth The maximum depth of the tree None, 2, 4, 6, 8, 10, or 12

Random forest (RF)

N_estimators Number of estimators 10, 20, 50, 64, 100, 140, 200, and 256

Min_samples split Minimal sample count necessary to
split an internal node 1, 2, 3, 6

Min_samples_leaf Minimum amount of samples at the
tree’s leaves 1, 6, and 10

Max_features The number of features to consider for
the best split sqrt, log2, None

Criterion of trees The function to measure the quality of a
split Gini and entropy

Max depth The maximum depth of the tree None, 2, 4, 5, 6, 7, 8, 16, or 30

Naïve Bayes (NB) Smoothing Laplace smoothing technique helps
tackle the problem of zero probability

(1 × 10−1, 1 × 10−2, 1 × 10−3, 1 × 10−4,
1 × 10−5, 1 × 10−6, 1 × 10−7, 1 × 10−8,

1 × 10−9 )

Extreme Gradient Boosting (XGB)

Max depth Maximum depth of the individual
estimators/trees 3, 4, 5, 6, 8, 10, 12, 15

Gamma Minimum loss reduction required to
partition a leaf node of the tree 0, 0.1, 0.2, 0.3, 0.4

Colsample by tree subsample ratio of columns when
constructing each tree 0.3, 0.4, 0.5, 0.7, 1

Learning rate Step size shrinkage used in update to
prevents overfitting 0.05, 0.10, 0.15, 0.20, 0.25, 0.3

Min child weight Minimum sum of instance weight
needed in a child 1, 3, 5, 7

Category Boosting (CatBoost)

Depth Depth of the tree 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Learning rate
The rate at which the model weights

are updated after working through each
batch of training examples

0.01, 0.02, 0.03, 0.04, 0.009

Iteration The maximum number of trees that can
be built

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250,
500

Multi-layer Perceptron (MLP)

Hidden layer sizes Number of hidden layers (50,50,50), (50,100,50), (100), (10,30,10),
(100, 3), (3,3), and (20)

Activation Activation function for the hidden layer ‘identity’, ‘logistic’, ‘tanh’, or ‘relu’.

Solver The solver for weight optimization ‘lbfgs’, ‘sgd’, or ‘adam’

Alpha Strength of the L2 regularization term 0.0001, 1 × 10−5, and 0.05

Learning rate Learning rate schedule for
weight updates ‘constant’, ‘invscaling’, ‘adaptive’
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3.6. Model Testing and Performance Evaluation

K-fold CV is a commonly used technique to evaluate algorithm performance and
optimize hyperparameters. The dataset is divided into k subsets, with one subset used as
the validation set and the remaining subsets as the training dataset. This process is repeated
k times, ensuring that each subset serves as the validation set once.

In many studies, the value of k set to 10 strikes a balance between comprehensive
testing, computational efficiency, and unbiased estimation of model performance. By
using K-fold CV, a more robust assessment of the algorithm’s general performance can be
obtained compared to using a single train-test split or different values of k [11].

To evaluate the performance of our models, we employed three metrics: accuracy,
sensitivity (Sen), and specificity (Spe). In binary classification tasks, sensitivity (also known
as the true positive rate) measures the proportion of positive instances correctly identified,
specifically the percentage of individuals with ASD who are accurately classified as having
the disorder. On the other hand, specificity (also known as the true negative rate) quantifies
the proportion of negative instances correctly identified, representing the percentage of
TD individuals correctly classified as not having the disorder. Accuracy, the third metric,
indicates the overall percentage of correctly classified instances across all classes [5].

4. Results and Discussion
4.1. Result Analysis

Three experiments were conducted using Python v3.11 and Jupyter Notebook v6.4.5,
as described in Section 3.

4.1.1. Experiment 1 Results

Experiment 1 assessed the feasibility of using brain morphological features for classi-
fying ASD and TD individuals. Two sub-experiments were conducted using 80% of the
ABIDE dataset, employing the 10-fold CV technique with or without random search for hy-
perparameter tuning. The experimental results, presented in Figure 9, enable a comparison
of the performance of the tested models based on the extracted descriptors.

(a) Mean accuracy of baseline models (b) Mean accuracy of models after using random search

Figure 9. Mean ASD classification accuracy of the seven models on features sets in Experiment 1:
(a) without random search; (b) with random search. Within each subplot, callouts are used to highlight
the models with the lowest accuracy (indicated by a red frame), highest accuracy (indicated by a
green frame), and models that achieved an accuracy of 65% or higher (indicated by a yellow frame).

The accuracy of ASD classification varied across different algorithms and features sets.
However, upon analyzing the above figure, it is clear that the baseline models did not con-
sistently perform well across all feature sets. The mean accuracy values ranged from 51.4%
to 65.3%, depending on the feature set. The DT model in the F3 group had the lowest mean
accuracy, while the RF model in the F6 group, which incorporated 342 biomarkers/features
from all brain regions, achieved the highest mean accuracy.
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Table 5 presents the performance results of the best baseline model in terms of average
CV accuracy among the seven models studied for classifying ASD based on different brain
feature sets.

Table 5. Experiment 1: performance results of the best baseline models (according to average cross-
validation accuracy) for each feature set.

Experiment 1.1 : Baseline Models

Model Performance on Training Dataset Prediction Performance on Testing Dataset
ABIDE I + ABIDE II KAUModel Feature Set/Number of Features Mean Accuracy Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

CatBoost F1: cortical region’s volumes/66 62.94 58.81 57.81 56.76 63.64 63.64 61.84

SVM F2: volumes of sub-cortical
regions/68 61.18 61.94 60.94 60.46 69.7 69.7 67.11

CatBoost F3: surface area of sub-cortical
regions/70 59.61 62.72 61.72 60.39 54.55 54.55 53.01

CatBoost F4: cortical thickness of
sub-cortical regions/70 63.73 61.16 60.16 58.03 72.73 72.73 67.86

CatBoost F5: mean curvatures of
sub-cortical regions/68 64.12 69.75 68.75 67.47 63.64 63.64 62.78

RF F6: all features/342 65.29 65.84 62.5 61.56 48.48 48.48 44.92

Based on the results presented in Table 5, it is evident that the CatBoost model consis-
tently outperforms the other models across most feature sets. The SVM and RF models also
demonstrate good performance.

The random search process for hyperparameter tuning was limited to 20 iterations, as
further improvements were not expected beyond that point. In each iteration, hyperparam-
eters were tuned, and performance analysis was conducted to identify the parameters with
the best performance.

Figure 9 indicates improved performance for most models after hyperparameter
tuning. The RF model with F3 achieved the lowest accuracy (52.55%), while CatBoost with
F6 achieved the highest accuracy (66.28%). The best hyperparameters were a learning rate
of 0.02, 60 iterations, and a depth of 6.

Table 6 presents the results of the best model for each feature set. CatBoost demon-
strates excellence once again, and XGB also exhibits good performance.

Table 6. Experiment 1: performance results of the best baseline models (according to average cross-
validation accuracy) for each feature set after using the random search technique.

Experiment 1.2 : Models with Random Search

Model Performance on Training Dataset Prediction Performance on Testing Dataset
ABIDE I + ABIDE II KAUModel Feature Set /Number of Features Mean Accuracy Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

CatBoost F1: cortical region’s volumes/66 64.91 59.59 58.59 57.68 78.79 78.79 78.76

CatBoost F2: volumes of sub-cortical
regions/68 61.57 64.28 63.28 61.99 72.73 72.73 71.62

XGB F3: surface area of sub-cortical
regions/70 60.78 59.59 58.59 58.68 57.58 57.58 55.64

XGB 63.53 60.38 59.38 58.95 66.67 66.67 63.53
CatBoost

F4: cortical thickness
of sub-cortical regions/70 63.92 62.72 61.72 58.91 84.85 84.85 82.14

CatBoost F5: mean curvatures of sub-cortical
regions/68 64.91 69.75 68.75 66.72 72.73 72.73 73.50

CatBoost F6: all features/342 66.27 65.84 64.84 63.09 51.5 48.49 44.92

4.1.2. Experiment 2 Results

Experiment 2 aimed to assess the impact of three different FS techniques: RFECV,
Boruta, and a GWO-based algorithm on the overall performance of the models. Each
technique was evaluated individually to determine its effectiveness.

RFECV and Boruta were applied after the random search hyperparameter tuning algo-
rithm. This approach enabled the selection of optimal hyperparameters while considering
the FS process.
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On the other hand, the GWO-based algorithm encompassed both hyperparameter
tuning and FS within a unified optimization framework, combining both aspects in sepa-
rate steps.

The results of Experiment 2 can be seen in Figure 10.

(a) Mean cross-validation results after using RFECV

(b) Mean cross-validation results after using Boruta

(c) Mean cross-validation results after using GWO-based FS

Figure 10. Mean ASD classification accuracy of the seven models on features sets in Experiment
2: (a) with recursive feature elimination with cross-validation; (b) with Boruta algorithm; (c) with
GWO-based FS algorithm. Within each subplot, callouts are used to highlight the models with the
lowest accuracy (indicated by a red frame), highest accuracy (indicated by a green frame), and models
that achieved an accuracy of 65% or higher (indicated by a yellow frame).

In Experiment 2, RFECV resulted in mean validation accuracies ranging from 54.90%
to 67.28%. The best accuracy (67.28%) was achieved by the DT model with 16 features from
the F6 set (learning rate = 0.04, iterations = 250, depth = 6). On the ABIDE test dataset, the
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DT model achieved 61.2% accuracy, while on the KAU data it achieved 45.5%. The lowest
classification accuracy was obtained by NB with the F3 set.

In the Boruta sub-experiment, CatBoost with the F5 set achieved the highest accuracy
(67.5%), while DT with the F2 set had the lowest accuracy (57.65%). CatBoost selected only
four left-brain features as the most important, with a learning rate of 0.03, 100 iterations,
and a maximum depth of 10. On the ABIDE and KAU test datasets, CatBoost achieved
accuracies of 62.7% and 72.7%, respectively.

In the GWO-based sub-experiment, the mean validation accuracies ranged from 57.06%
to 70.20%. The highest accuracy was achieved by SVM with 11 features from the F5 set
(70%) and 62 features from the F6 set. The lowest accuracies were obtained by NB with
14 features from the F3 set and NB with 19 features from the F4 set. On the ABIDE test set,
SVM achieved an accuracy of 65.8% with the F6 set and 63.5% with the F5 set. On the KAU
test set, SVM achieved an accuracy of 57.6% with the F6 set and 69.7% with the F5 set.

Table 7 displays the results of the best-performing model, determined by mean accu-
racy, for each feature set in the optimization experiments.

Table 7. Experiment 2: performance results of the best optimized models (according to average
cross-validation accuracy) for each feature set after using feature selection algorithms.

Model Performance on Training Dataset Prediction Performance on Testing Dataset
ABIDE I + ABIDE II KAUModel Feature Set/Number of Features Mean Accuracy Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Experiment 2.1: models with random search and recursive feature elimination with cross-validation (RFECV)

XGB F1: cortical region’s volumes/12 66.08 59.59 58.59 57.43 63.64 63.64 63.72

MLP F2: volumes of sub-cortical regions/17 65.49 64.28 63.28 61.74 69.7 69.7 67.11

DT 60.59 58.81 57.81 59.01 66.67 66.67 63.53
XGB F3: surface area of sub-cortical regions/16 60.98 55.69 54.69 53.05 57.58 57.58 57.52

XGB F4: cortical thickness of sub-cortical regions/19 64.31 61.94 60.94 58.67 66.67 66.67 62.59

CatBoost F5: mean curvatures of sub-cortical regions/29 65.69 65.84 64.84 62.84 69.7 69.7 68.05

DT F6: all features/342 67.24 61.16 60.16 59.03 45.45 45.45 41.35

Experiment 2.2: models with random search and Boruta

XGB 64.90 54.91 53.91 51.88 60.61 60.61 63.91
CatBoost F1: cortical region’s volumes/6 64.71 61.94 60.94 60.21 66.67 66.67 60.71

SVM F2: volumes of sub-cortical regions/4 62.35 65.84 64.84 63.84 66.67 66.67 67.29

XGB F3: surface area of sub-cortical regions/3 62.35 56.47 56.48 54.98 48.48 48.48 48.68
XGB 63.53 58.81 57.81 57.3 57.58 57.58 54.7
CatBoost F4: cortical thickness of sub-cortical regions / 4 63.73 58.81 57.81 56.91 66.67 66.67 61.65

CatBoost F5: mean curvatures of sub-cortical regions/4 67.45 62.72 61.72 60.14 72.73 72.73 72.56

NB 70.13 65.84 64.84 60.01 60.61 60.61 55.45
SVM 70.08 60.38 59.38 56.86 54.55 54.55 52.08
RF

F6: all features/8
70.05 58.03 57.03 55.09 66.67 51.52 52.26

Experiment 2.3: models with random search and grey wolf-based optimizer (GWO)

SVM 67.06 61.94 60.94 59.46 54.55 54.55 49.25
XGB 67.25 55.69 54.69 53.80 60.61 60.61 58.27
MLP

F1: cortical region’s volumes/16
67.06 59.59 58.59 57.18 60.61 60.61 56.39

SVM F2: volumes of sub-cortical regions/19 65 60.38 59.38 57.86 57.86 57.58 56.58

SVM F3: surface area of sub-cortical regions/14 66.86 55.69 54.69 53.30 54.55 54.55 51.13

XGB 63.53 60.38 59.38 58.95 66.67 66.67 63.53
CatBoost F4: cortical thickness of sub-cortical regions/19 68.63 61.16 60.16 58.03 66.67 66.67 62.59

SVM F5: mean curvatures of sub-cortical regions/11 70 63.5 62.5 60.31 69.7 69.7 67.12

SVM F6: all features/62 70 65.84 64.84 63.34 57.58 57.58 54.69

Across these three experiments, the SVM model consistently demonstrated good
performance, followed by the ensemble models CatBoost and XGB, particularly when
using the F5 and F6 feature sets. On the other hand, the F3 feature set consistently resulted
in the worst performance. Notably, NB and DT classifiers consistently had the lowest
mean validation accuracy, which may be attributed to their assumption of equal statistical
relevance among features.

4.1.3. Experiment 3 Results

In the final experiment, the optimal brain features identified in the top three models
from Experiment 2 were combined with age and gender features. The hyperparameters
of these models were then tuned using the GWO-based hyperparameter optimization
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algorithm. To assess the potential improvement in ASD classification, these models were
re-evaluated using a 10-fold CV scheme, and their mean validation accuracy was measured.

Figure 11 and Table 8 showcase the results of the three models, ranked by mean
accuracy, in the third experiment.

Figure 11. Mean ASD classification accuracy of the models in Experiment 3. Models with a green
frame indicate the highest accuracy, while models with a yellow frame indicate the best results among
the remaining models.

In this experiment, the mean validation accuracy values ranged from 67.06% to 71%.
The SVM model achieved the highest accuracy with 62 features from the F6 set, while the
XGB model achieved the lowest accuracy with 13 features from the F5 set.

Table 8. Experiment 3: performance results of the best optimized models (according to average cross-
validation accuracy) that use selected features from the brain combined with age and gender information.

Experiment 3: Models with GWO-Based Hyperparameter Tuning and Feature Selection Algorithms + Age and Gender

Model Performance on Training Dataset Prediction Performance on Testing Dataset
ABIDE I + ABIDE II KAUModel Feature Set/Number of Features Mean Accuracy Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

SVM 70.19 63.5 62.5 60.31 69.67 69.67 67.12
XGB 67.06 58.03 57.03 55.33 78.79 78.79 75
CatBoost F5: mean curvatures of sub-cortical regions/13 69.80 62.72 61.72 60.14 63.64 69.7 66.17

SVM 71 64.28 63.28 61.74 57.58 57.58 53.76
XGB 68.63 59.59 58.59 57.18 45.45 45.45 43.23
CatBoost

F6: all features/62
69.02 62.72 61.72 60.14 52.51 51.52 50.38

According to the table, under the 10-fold CV scheme, the SVM model with the F6 set
demonstrated an improvement in performance, increasing from 70% in Experiment 2 to
71% in this experiment. This accuracy represents the highest achieved thus far. However,
the test accuracy on the test datasets remained unchanged. The best-performing SVM
model on the F6 test set from ABIDE achieved an accuracy of 64.28%, while on the KAU
test set it achieved an accuracy of 57.58%. The hyperparameters for this model were set as
C = 1, kernel = ’rbf’, and gamma = 0.01. Detailed performance measures for all models in
all experiments can be found in the Supplementary Materials (Tables S2–S5).

4.2. Discussion

This study explored ASD classification using seven models based on morphological
features from various sMRI datasets of children aged 5–10 years. Different algorithms
applied to the same data yielded a wide range of classification results.

The baseline models demonstrated limited reliability and accuracy. However, the
performance of tuned models improved, with a mean accuracy ranging from 52.55% to
66.28%. Notably, certain classifiers, such as NB and MLP, did not perform well, potentially
due to insufficient training data relative to the number of dimensions, as well as variations
arising from data sources, imaging techniques, and participant characteristics.
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Additionally, grid search exhaustively explores all combinations of hyperparameter
values but is computationally expensive, while random search tries a subset of values to
adjust the models [60]. However, both methods lack informative selection. In the recent
experiment, nature-based methods efficiently searched for optimal hyperparameter values.
The informative GWO algorithm, applied here for the first time in ASD studies, shows
promise for future researchers to explore other sophisticated algorithms and enhance
classification accuracy.

The primary objective of this paper is not only to improve the accuracy of ASD classi-
fication but also to investigate the structural evidence associated with ASD. Recognizing
that not all features carry equal importance, each feature contributes to the overall ASD
classification score. In Experiment 2, various FS techniques, including RFECV, Boruta,
and GWO-based algorithms, were employed to enhance model accuracy by reducing
complexity, avoiding overfitting, and addressing the curse of dimensionality.

Previous studies [16] without FS procedures reported low accuracy, especially with
large, multi-source datasets containing redundancy and irrelevant data. By highlighting
the major abnormal regions that house essential morphological features, the early diagnosis
of ASD can be facilitated. The effectiveness of the features selected through FS techniques,
particularly when multiple techniques agree on their significance and stability, demon-
strates their value in improving ASD classification accuracy and providing insights into the
underlying structural abnormalities associated with ASD.

Figure 12 presents the number of features selected by the FS algorithms for each
feature set.

Figure 12. Number of the selected features from the morphological sets using the different feature
selection techniques.

A notable finding is the significant reduction in the number of features, indicating
the effectiveness of the FS algorithms in identifying relevant features and eliminating
unnecessary or redundant ones.

Figure 13 shows the features selected by the GWO algorithm in the F6 group, which
achieved the highest average accuracy. Some features consistently selected by multiple FS
algorithms, emphasizing their importance and robustness. Supplementary Material Figure S2
provides a comprehensive overview of all selected features across different feature sets using
the FS methods.
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Figure 13. The selected features from the F6 sets using GWO-based feature selection techniques
(GWO: Grey Wolf Optimization). Pink highlights indicate features consistently selected by multiple
feature selection algorithms.

Then, to address the statistical question “Does the mean MRI advantage differ between
individuals with ASD and those without ASD”?, we employed the independent t-test in
IBM SPSS [61]. The figure encodes the results obtained from the analysis. Furthermore, in
the Supplementary Material, Tables S6 and S7 provide detailed statistics, including mean,
standard deviation, and mean standard error for the ASD and TD groups, as well as the
results of the independent t-test for ABIDE subjects across all features.

The performance results obtained in our study confirm the variability in the discrim-
inatory power of individual morphometric feature sets. Notably, F5 and F6 consistently
demonstrate the highest accuracy scores across most models in our experiments. F1 and F4
also exhibit occasional good performance, while F3 and F2 show relatively poor performance.

These findings align with the conclusions of Jiao et al. [62], who stated that diagnostic
models based on CT are preferable to volume-based models. Their study revealed specific
changes in CT in various brain regions in children with ASD compared to controls. These
regions include the left and right pars triangularis, left medial orbitofrontal gyrus, left
parahippocampal gyrus, left frontal pole, left caudal anterior cingulate, and left precuneus.
These regions are associated with social behavior regulation, social brain and mirror system
hypothesis, cognitive regulation of behavior, and learning and repetitive behaviors [8,14,62].
However, our results highlight the importance of curvature in the F5 feature set and the
use of multi-measurements in the F6 feature set.

Previous research [63] confirmed noticeable cortical shape changes in children aged
7.5 to 12.5 years, supporting their relevance in ASD. The F1 feature set and volume mea-
surements have shown classification potential. WM analysis is valuable for tracking
abnormal congenital processes, particularly in cortico-cortical connections and neuronal
migration [64]. Another study found increased CT in frontal lobe regions and reduced SA in
the orbitofrontal cortex and posterior cingulum in ASD subjects compared to controls [65].
Our study replicated these findings. Morever, we identified anomalies in CT and volume
in the precentral region, impacting motor area stimulation along the precentral gyrus. The
consistent agreement validates the reliability of these biomarkers.

CatBoost, XGB, and SVM consistently achieved high performance with minimal
variations in mean validation accuracy across our experiments. CatBoost generally had
the highest accuracy, except in GWO-based experiments where SVM outperformed it,
highlighting SVM’s effectiveness with dimension-reduced medical data. On the other
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hand, ensemble models offered stability and resilience, but CatBoost’s interpretability was
reduced due to its complexity [66]. NB performed poorly, possibly due to its assumption
of equal feature significance. Including age and gender features improved GWO-SVM
accuracy slightly to 71%, suggesting sample generalization can be influenced by age or
gender distribution [66]. The GWO-SVM model, utilizing hyperparameter tuning and FS,
achieved an accuracy of 64 on ABIDE test data. Empirically, 62 selected features out of
342 optimized the trade-off between the number of features and predictive power.

Additionally, we assessed the models in terms of sensitivity and specificity across
various sample features. We observed higher sensitivity than specificity across various
sample features, consistent with [23] findings in younger age groups, indicating greater
feasibility of ASD detection in those under 10 years old.

Moreover, we note that the significant features for ASD classification varied among
subsets. In our best model, GWO-SVM with F6, the frontal lobe and pars triangular regions,
followed by the temporal lobe, parietal lobe, and to a lesser extent, the occipital lobe regions,
along with age and gender features, played prominent roles. These regions are associated
with movement, emotional and social behavior, memory, language, and eye-gaze direction
perception [5,14,22,47]. Figure 14 illustrates the roles of some of these brain regions.

Figure 14. Some of the important regions of the brain, which are affected by autism, with their roles.

Comparison with Previous Methods

To facilitate comparison with prior research, we focused on studies utilizing ABIDE I
and ABIDE II datasets to diagnose ASD in children within our target age group. Table 9
presents accuracy-based comparisons. Akhavan and Ke’s papers are the only ones, to
our knowledge, employing ML on both the ABIDE I and ABIDE II datasets for ASD
classification [25,26].
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Table 9. Comparison between the proposed pipeline and previous results from the literature.

Ref., Year Modality Biomarker Feature Selection Method Dataset Subjects Age Preprocessing Tools Classifiers Validation Best ACC
Number of Final

Features

[25],
2018

sMRI + rs-fMRI
Regional based mean time series +

GM + WM
Unsupervised Dimensionality Reduction ABIDE I + ABIDE II ASD = 116, TD = 69 5–10 Years SPM 8 Deep Belief Network of depth 3 + LR 10-fold CV 65.56% 348

[26],
2020

sMRI 3D volumetric data - ABIDE I + ABIDE II ASD = 946, TD = 1046 8–40 Years old SPM 8
2D/3D CNN, 2D/3D STN, RNN,

class activation mapping, recurrent
attention model

10-fold CV
Highest ACC by

3D CNN + 3D STN:
60%

-

Our study
sMRI + Age and

gender data

Cortical regions thickness, volume,
mean curvature, surface area +

subcortical regions volumes
RFECV, Boruta, GWO-based algorithm ABIDE I + ABIDE II ASD:311 , TD:360 5–10 years old FreeSurfer

NB, DT, RF, SVM, CatBoost, XGB,
and MLP

10-fold CV Highest ACC by GWO-SVM:71% GWO-SVM: 62

Note: the best ACC refers to the highest achieved accuracy. ASD: autism spectrum disorder. TD: typically developing. GWO-SVM: GWO-based algorithm with support vector machine

classifier. CV: cross-validation. CNN: Convolutional Neural Networks. STN: Spatial Transformer Network. RNN: Recurrent Neural Network.



Appl. Sci. 2024, 14, 473 24 of 29

Few differences between our models and previous studies exist. Akhavan et al. [25]
utilized a combined sMRI and fMRI dataset from 180 subjects aged 5–10 and employed a
DBN + Logistic Regression model, achieving an accuracy of 65.56%. In contrast, our study
focused exclusively on sMRI data from over 600 children, prioritizing clinical diagnostic
effectiveness. Using conventional ML models, we achieved a higher accuracy of 71%,
demonstrating that accurate predictions can be obtained without relying on complex
and computationally expensive models. Additionally, while Akhavan et al. utilized
a single model with a DBN depth of 3 and a combination of rs-fMRI, GM, and WM
features, we explored seven models with varying levels of statistical complexity. Our
results revealed that utilizing structural features with SVM yielded superior accuracy
compared to their approach.

We also compared our study to Ke’s [26], which proposed 14 models encompassing
various network architectures, such as CNN, RNNs, spatial transformer networks, and
CAM-based feature visualization. Despite the complexity, their maximum accuracy using
3D CNN for detecting ASD in the ABIDE datasets was 61.7%, lower than our results.
Notably, our model outperformed 3D CNN by 9.7% in overall accuracy and avoided over-
fitting, which can occur when training complex DL models with limited datasets. Complex
DL models run the risk of memorizing training data rather than acquiring meaningful rep-
resentations. In contrast, ML models with simpler architectures tend to be less demanding
in terms of data requirements and can still achieve satisfactory performance, even with
smaller datasets.

Moreover, in contrast to Akhavan’s study [25], which utilized PCA for dimensionality
reduction and resulted in new meaningless features, we employed advanced FS methods to
select interpretable features. Our approach helped identify areas of damage and revealed
important brain regions for ASD classification, which turned out to be partially consistent
with the other studies discussed. Although significance may vary due to algorithm or
sample composition differences, interpretability is crucial in neuroscience research for
understanding biological processes and identifying meaningful biomarkers. ML models
with hand-crafted features offer transparent insights into feature-outcome relationships.

4.3. Limitations

Despite our efforts to address the research objectives, we acknowledge the following
limitations that may have influenced the findings and interpretations of our study:

• This work is limited to ASD and non-ASD (TD) classification tasks, and the accuracy
and classification of ASD subgroups are open questions.

• Several algorithms have been evaluated for classifying ASD based on age, sex, and
brain morphological features; behavioral features or clinical test results that could be
informative are not included.

• Limited availability of sMRI images for children in the studied age group poses
challenges for effective ML model training and increases the risk of overfitting.

• The findings are limited to the age group of 5–10 years, and applying them to dif-
ferent age groups may impact accuracy due to age-related brain differences. The
complexity of selecting stable and discriminating biomarkers between age groups
further contributes to these limitations.

• Relying on specific brain segmentation methods such as our method of segmentation
according to the DK atlas, may lead to biases and limitations. It should be emphasized
that our findings can be replicated using different data or atlases.

• The reported accuracy may be insufficient for clinical use due to data variability,
heterogeneity, and limitations of multi-site datasets used. However, we followed
ML best practices to the best of our knowledge. As data heterogeneity increases, the
training, validation, and testing folds used to evaluate a model’s performance can
diverge significantly. This divergence can lead to poor performance in fold testing,
ultimately reducing the cross-validated estimated generalized predictive performance
of the model.
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• An inherent limitation is the cross-sectional design chosen, which limits understanding
of potential changes over time. Longitudinal designs can provide a more nuanced
understanding of ASD.

Considering these limitations, future research should address these challenges to
refine ML-based diagnostic systems for ASD.

4.4. Future Works

Based on our research experience, we offer the following recommendations for future
work to enhance the accuracy of diagnosis, identify robust biomarkers, and support clinical
evaluation of the disorder:

• Gather comprehensive and diverse datasets to account for the heterogeneity of ASD
data and develop a robust, generalizable, and more clinically useful model.

• Conduct longitudinal studies to understand the developmental trajectory of ASD-
related brain changes, identify predictive biomarkers, and improve early detection
and intervention strategies.

• Investigate multimodal imaging-based classification by combining sMRI data with
other methods (fMRI, EEG, genetic data) to provide a more comprehensive understand-
ing of the neurobiological mechanisms underlying ASD, reveal additional biomarkers
and improve the accuracy of diagnosis [28].

• Perform fine-grained analysis of subtypes or phenotypic variations within the ASD
spectrum to identify unique biomarkers and enable personalized diagnostic ap-
proaches and targeted interventions.

• Validate ML-based diagnostic systems in real-world clinical settings to assess their
feasibility, acceptability, and clinical utility.

• DL methods differ from traditional ML models as they eliminate the need for manual
feature extraction and minimize information loss. However, training DL networks
and uncovering intricate patterns requires extensive datasets. In our research, we
intend to investigate DL models using large datasets, employing techniques such as
data augmentation, generative adversarial networks, and transfer learning [5,27].

• Integrate Explainable AI (XAI) techniques to improve the interpretability of DL al-
gorithms in the diagnostic process, enhancing their clinical utility and gaining trust
and acceptance from clinicians and stakeholders. XAI explores the decision-making
process, provides explanations for system behavior, and offers insights into future
performance [67].

• Use T7 scans to obtain accurate and clinically useful biomarkers for ASD diagnoses.
• Explore the potential of ML techniques for early classification of infants at risk for

ASD, addressing challenges associated with processing and interpreting MRI images
in pediatric brains.

• Explore the use of BrainSuite and DL-based FastSurfer tools as a more efficient alterna-
tives to FreeSurfer for neuroimaging data processing, whose high efficiency has been
demonstrated in numerous studies, such as epilepsy [68,69].

5. Conclusions

ASD poses challenges in understanding its biology and implementing effective inter-
ventions. Our research demonstrates the capability of ML algorithms to distinguish children
with ASD using sMRI-derived morphological features. We evaluated and compared seven
optimized ML models with hyperparameters tuning and features selection. The identified
putative biomarkers may aid in understanding the disorder’s causes, treatment, and psy-
chosocial interventions. Our best-performing models outperform the leading performers
in the previous literature, with the added benefits of reduced complexity and improved
interpretability. Including age and gender information further enhances performance. The
GWO with SVM model achieves the highest accuracy (71%). This research advances our
neurobiological understanding of ASD and behavior-based diagnosis. It also helps in iden-
tifying biomarkers of abnormalities and thus designing treatment options and directing
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the most successful interventions. However, further research and validation are needed
to improve the success of ML-based ASD diagnosis. Our findings lay the foundation for
future investigations and improvements in early and accurate ASD detection using sMRI
and ML.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14020473/s1, colorboxcyan Figure S1: Comparison between
cortical and subcortical regions in the DK atlas; Table S1: Anatomical regions of the DK atlas; Table
S2: Experiment 1: Baseline classifiers’ performance using 10-fold CV on training data (n = 510,
ABIDE) and prediction on test data (n = 128, ABIDE; n = 33, KAU); Table S3: Experiment 1 classifier
performance with random search on training data and prediction results on test data; Table S4:
Experiment 2 - Optimized classifier performance with RFECV, Boruta, and GWO feature selection
on training data and prediction results on test data; Table S5: Experiment 3: Optimized classifier
performance with GWO-based hyperparameter tuning, feature selection algorithms, age, and gender
on training data and prediction results on test data; Figure S2: Selected important features from
various morphological sets using different techniques (RFE: recursive feature elimination; GWO: grey
wolf optimization). ‘Rh’ and ‘Lh’ denote the right and left hemispheres of the brain, respectively;
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samples t- test results.
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