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Abstract: Semantic segmentation-based Complex Waterway Scene Understanding has shown great
promise in the environmental perception of Unmanned Surface Vehicles. Existing methods struggle
with estimating the edges of obstacles under conditions of blurred water surfaces. To address this,
we propose the Lightweight Dual-branch Mamba Network (LDMNet), which includes a CNN-based
Deep Dual-branch Network for extracting image features and a Mamba-based fusion module for
aggregating and integrating global information. Specifically, we improve the Deep Dual-branch Net-
work structure by incorporating multiple Atrous branches for local fusion; we design a Convolution-
based Recombine Attention Module, which serves as the gate activation condition for Mamba-2 to
enhance feature interaction and global information fusion from both spatial and channel dimensions.
Moreover, to tackle the directional sensitivity of image serialization and the impact of the State Space
Model’s forgetting strategy on non-causal data modeling, we introduce a Hilbert curve scanning
mechanism to achieve multi-scale feature serialization. By stacking feature sequences, we alleviate the
local bias of Mamba-2 towards image sequence data. LDMNet integrates the Deep Dual-branch Net-
work, Recombine Attention, and Mamba-2 blocks, effectively capturing the long-range dependencies
and multi-scale global context information of Complex Waterway Scene images. The experimental
results on four benchmarks show that the proposed LDMNet significantly improves obstacle edge
segmentation performance and outperforms existing methods across various performance metrics.

Keywords: Deep Dual-branch Network; Mamba-2; complex waterway scenes; attention fusion
strategies; obstacle detection

1. Introduction

The rapid development of computer vision and autonomous driving technology has
driven the advancement of Unmanned Surface Vehicles (USVs) and has also led to an
increasing demand for image analysis in complex environments. Similar to autonomous
driving, semantic segmentation in different waterway scenes is a key component of USVs’
environmental perception tasks. However, in some scenes, the uncertainty in the size and
quantity of obstacles, as well as the impact of weather and reflection conditions on camera
imaging, can blur the edges of obstacles in the line of sight. This makes it difficult for
traditional semantic segmentation algorithms to achieve good results in such complex
waterway scenes. The accuracy of the segmentation algorithm determines whether the
USV can detect and avoid nearby obstacles in a timely manner to achieve a high level of
autonomous navigation, which is crucial for ensuring the safe navigation of vessels and
improving navigation efficiency. Thanks to the exploration in the field of autonomous
driving, some works [1–3] have introduced the integration of various sensors such as
RADAR and LIDAR and achieved certain results. However, considering the aspect of
lightweight, cameras [4–6] still show great potential as portable and flexible sensors.

In recent years, semantic segmentation networks have demonstrated the ability to
obtain rich feature information in complex scenes and achieved significant segmentation
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results [7–9]. At the same time, attention mechanisms have been proven to significantly
enhance the model’s global capturing ability regarding key information [10]. However, the
encoder–decoder structure based on the Transformer architecture [11] has difficulties in real-
time or resource-constrained scenarios like USVs due to hardware utilization defects during
attention operations and quadratic time complexity issues. Mamba [12] addresses the two
major issues of the Transformer architecture by using hardware-parallel optimization and
selective state space to efficiently capture feature information of long sequences, achieving
a powerful global context modeling ability with linear complexity. Benefiting from the
successful practice of Transformers in the field of vision, Mamba has been rapidly applied
to image tasks, especially in the field of image segmentation, such as VMamba [13], VM-
UNet [14], VM-UNetV2 [15], CM-UNet [16], etc. They have proven that high-precision
image segmentation can be achieved by stacking improved Mamba blocks combined with
UNet [17,18]. However, Mamba uses forget gates [19] to provide positional information
and local bias, forcing the model to adopt a recursive approach for training and inference.
This recursive computation inevitably reduces the model’s throughput. Therefore, using a
deep dual-branch backbone for feature extraction combined with Mamba-2 [11] for global
context information extraction has become a simple and practical strategy.

To enhance the scene-parsing capabilities of USVs operating in complex waterway
environments under various weather conditions and reduce the misidentification rate
of edges, this paper proposes a Lightweight Dual-branch Mamba Network based on
image processing. Unlike the blocky U-Net architecture [14–16,20,21] and encoder–decoder
frameworks [22–25], we are the first to attempt the use of a deep dual-branch backbone
combined with Mamba-2 [11] to efficiently obtain the final feature map. Additionally, we
have identified that directly fusing feature maps with high-resolution discrepancies can
lead to imbalances and mismatches in features. To address this, we designed a Convolution-
based Recombine Attention Module to apply weighted attention to both spatial and channel
dimensions of the features, refining edge information. In consideration of the spatial
information loss and directional sensitivity when images are unfolded into one-dimensional
sequences, a Hilbert curve scanning mechanism is proposed to achieve multi-scale feature
serialization. By stacking the feature sequences, this approach mitigates the local bias of
Mamba-2 for non-causal data [19], thereby enabling more accurate global modeling and
water edge segmentation.

The main contributions are summarized as follows:

• We have improved the Deep Dual-branch Network by adding an Atrous branch to
increase the receptive field and enhance the information complementarity between
the detail branch and the context branch. Furthermore, we are the first to integrate
the deep dual-branch backbone with Mamba-2, thereby enabling Mamba-2 to more
effectively acquire global contextual information.

• We designed a Recombine Attention Module based on convolution, which serves as a
gate activation condition for Mamba-2 to enhance feature interaction and global-local
information fusion from both spatial and channel dimensions.

• We proposed a Hilbert curve-scanning mechanism to realize the serialization of multi-
scale features, and through feature sequence stacking, we alleviated the local bias of
Mamba-2 toward non-causal data.

• The experimental results of four datasets show that the LDMNet network demon-
strated strong applicability and edge prediction capabilities in both waterway envi-
ronments and urban road environments.

2. Relative Work

Accurate and efficient obstacle segmentation in waterway environments is crucial for
the safe navigation of Unmanned Surface Vehicles (USVs). In this section, we primarily
introduce two types of work: efficient network architectures and attention fusion strategies.
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2.1. Efficient Network Architectures

Efficient neural network architectures play a significant role in handling large amounts
of data and complex tasks, addressing the challenge of maintaining model performance with
limited computational resources. In mobile devices and embedded systems, lightweight net-
work structures such as [26–28] improve computational efficiency by altering convolution
structures and reducing complexity. However, this often comes at the expense of greater
precision, and their effectiveness may not be as pronounced in more complex datasets. In
recent years, the architectures represented by [9,29,30], which feature encoder–decoder
structures, have emerged. These designs reduce spatial dimensions in the encoder and
recover details in the decoder, with their symmetrical architecture aiding in the precise
localization and segmentation of target objects. Nevertheless, such network architectures
tend to suffer from more information loss, especially during the encoding process and
particularly for high-resolution images. Overcoming this loss of information is a significant
challenge in current research. Concurrently, multi-branch network architectures, repre-
sented by [7,8,31], have also seen rapid development in various fields. They typically
excel in parallel processing capabilities and offer flexible methods of information fusion.
By incorporating advanced design principles and technologies, they can maintain high
performance while reducing the consumption of computational resources, making them
suitable for a variety of complex visual tasks. Unlike [8], which employs frequent bilateral
feature fusion, LDMNet achieves efficient complementary feature information through
special cross-stage fusion, making it an efficient backbone designed specifically for dense
prediction tasks.

2.2. Attention Fusion Strategies

Attention fusion strategies have been widely adopted in fields such as computer vision,
natural language processing, and speech recognition. In the realm of computer vision,
early fusion methods primarily involved Concatenation and Sum, which were widely used
due to their fast computation speed and high interpretability. Subsequently, in order to
capture both detailed information and high-level semantic information simultaneously,
multi-scale feature fusion schemes [32,33] were developed based on these methods. These
schemes innovated the fusion mechanism significantly and made the fusion structure
more flexible. However, simply aggregating multi-level information does not guarantee
effective information propagation. To achieve better feature fusion, works like [34–36]
utilize learned attention weights for different branches to aggregate multi-level information.
Nevertheless, traditional attention paradigms based on the Transformer structure are
often characterized by high complexity and large computational requirements, which
are not suitable for lightweight model intentions. In recent years, with the introduction
of [37], several attention calculation methods specifically for images have begun to gain
attention. Many outstanding works have focused on enhancing the feature representation
of specific branches before fusion, such as [38,39], which emphasized exploring new feature
enhancement methods with good portability using attention. However, this also leads
to a fixed application scenario for the modules, making it difficult to tap into deeper
performance capabilities. Other works focus on feature selection during fusion, such
as [7,40,41], which carefully designs combinations of convolutions and nonlinear functions.
However, these often concentrate on fully learning feature information while neglecting
the astonishing capability of feature attention itself to enhance feature expression.

2.3. State Space Model

The State Space Model (SSM) is a mathematical model that describes the behavior
of dynamic systems, characterized by its inherent cyclic linear representation [19]. Some
works [42,43] have achieved satisfactory results based on SSM. However, Mamba [12] points
out that SSM models are unable to perform context-based reasoning and proposes the
use of the Selection Mechanism and Hardware-aware Algorithm to achieve efficient long-
sequence modeling. Based on this, Bi-Mamba [44] introduces a bidirectional Mamba for
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DNA sequence modeling, and Mamba-2 [11] transforms SSM from a single-head sequence
to a multi-head sequence conversion. Subsequently, researchers have attempted to apply
Mamba to visual tasks, such as Vision Mamba [45] introducing bidirectional SSM for global
context modeling of non-causal data, VM-UNet series [14,15] combining Mamba with UNet
to achieve precise segmentation of gastrointestinal and skin lesion semantic segmentation
samples, and VMamba [13] proposing a 2D Selective Scan (SS2D) to bridge the gap between
1D array scanning and 2D plane traversal.

3. Methods

The overall network architecture of LDMNet is shown in Figure 1. The network
backbone consists of an improved Deep Dual-branch Network, with the neck being the
Mamba Fusion Block, which is composed of the Recombine Attention Module (RAM) and
Feature Fusion Mamba (FFM). In this section, we will provide a detailed introduction to
the entire pipeline of LDMNet.
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Figure 1. The overall architecture of LDMNet, including the Mamba Fusion Block and the detailed
structure of the cross-stage fusion branches. The notations such as ½ and 1/4 represent the down-
sampling multiples of the feature maps by the residual basic blocks. RAM denotes the Recombine
Attention Module, FFM stands for Feature Fusion Mamba, and Seg. Head refers to the segmentation
head. The detailed structure of the Cross-stage Branch is depicted within the dashed box.

3.1. Deep Dual-Branch Network

We aim to achieve efficient feature extraction for specific scenes by leveraging multi-
scale information and complementing multi-level information. To this end, we have
redesigned the deep dual-branch backbone structure. Firstly, starting from the first down-
sampling, the network is divided into 7 stages (labeled as stages 0 to 6). After stage 2, an
additional high-resolution branch is introduced. When the input image is 1024 × 1024, the
high-resolution branch is fixed at 128 × 128, while the low-resolution branch extracts deep
feature information through multiple downsamplings, ultimately resulting in an 8 × 8
feature map. Secondly, to enhance the information exchange between the two branches,
spatial and semantic information is shared once more among them through 4 Cross-stage
Branches. The detailed structure is shown in Table 1.

Regarding the design philosophy of the network architecture, as illustrated in Figure 1,
the approach can be broken down into specific steps. Firstly, to reduce computational
complexity, a Downsampling Block is constructed by stacking two consecutive 3 × 3
convolutional layers, and a bottleneck block is added at the end of each branch to expand
the output dimensions. Secondly, the cross-stage fusion of the Atrous branch includes
bilateral Cross-stage Branches 1⃝~ 2⃝ (encompassing high-to-low and low-to-high fusion),
the Cross-stage Branch 3⃝ on the low-resolution branch (high-to-low fusion), and the Cross-
stage Branch 4⃝ on the high-resolution branch (channel fusion). For high-to-low fusion,
there are two cases depending on the stage:
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(a) Between stage 3 and stage 4, bilateral feature fusion is conducted using a convolutional
block consisting of a “3 × 3 convolution + BN + ReLU” sequence, followed by a
downsampling operation with an Atrous convolution with a 3 × 3 kernel and a
dilation rate of 2. This is then followed by a 1 × 1 convolution for channel reduction
and finally fusion with the context branch.

(b) Between stage 4 and stage 5, the convolutional block is doubled in sequence, with the
rest of the settings remaining the same as in case a.

Table 1. Parameters of the Cross-stage Branch in LDMNet. It can be observed that we employ four
different fusion methods, and each one concludes with a 1 × 1 convolution for channel compression.
To increase the receptive field, we incorporate Atrous convolutions in the first three types of cross-
stage fusions.

Branch Name Cross-Stage Branch in LDMNet Setting

Kernel (Size/Stride/Padding) Channels Dilation Rate Repeating Times

Cross-stage Branch 1⃝
3 × 3/2/1 64 1 x = 1
3 × 3/2/2 256 2 x = 1

1 × 1 512 - x = 1

Cross-stage Branch 2⃝
3 × 3/2/1 64/256 1 x = 2
3 × 3/2/2 512 2 x = 1

1 × 1 1024 - x = 1

Cross-stage Branch 3⃝
3 × 3/2/1 128 s1 x = 1
3 × 3/2/2 512 2 x = 1

1 × 1 1024 - x = 1

Cross-stage Branch 4⃝ 3 × 3/1/1 64 1 x = 1
1 × 1 256 - x = 1

For low-to-high fusion at the stage 4 position, the output features of the context branch
are first compressed through 1 × 1 convolution. They are then upscaled to 1/8 feature
size using bilinear interpolation before being merged into the high-resolution branch. For
channel fusion, only 1 × 1 convolution is used to compress the feature channels.

If XHi and XLi represent the high-resolution and low-resolution feature maps of the
i-th stage, respectively, then the cross-stage fusion branches of the 4th and 5th stages can be
represented as follows:

XH4 = TL−H FLXL4 + R(FHXH3)
XH5 = TH−H FHXH3 + R(FHXH4)
XL4 = TH−LFHXH3 + R(FLXL3)
XL5 = TL−LFLXL3 + TH−LFHXH4 + R(FLXL4)

(1)

where FH and FL correspond to sequences of residual basic blocks with high and low
resolutions, respectively, and TL−H , TH−L, TH−H , and TL−L represent the transformation
functions from low to high, from high to low, from high to high, and from low to low,
respectively. R(·) denotes the ReLU function. Finally, the context branch has one additional
stage 6 compared to the high-resolution branch, which is used to downsample the feature
map to 1/128 of the original feature map. The Mamba Fusion Block then performs further
multi-scale fusion using the stage 5 feature map from the high-resolution branch and the
stage 5 and stage 6 feature maps from the context branch.

3.2. Mamba Fusion Block

The Mamba Fusion Block consists of the Recombine Attention Module (RAM) and
the Feature Fusion Mamba (FFM). The RAM can be regarded as a computational unit
designed to enhance the expressive power of features while learning the most suitable
fusion strategy between branches. The FFM is aimed at helping the model delve deeper
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into contextual information. Below, we will introduce the detailed structures and functions
of each component.

3.2.1. Recombine Attention Module

Inspired by convolutional attention mechanisms such as Squeeze-and-Excitation At-
tention [37] and Coordinate Attention Blocks [39], we propose a Recombine Attention
Module (RAM) to address the issues of information conflict and inconsistency that arise
during the fusion of feature maps with high-resolution differences. This module enables
each pixel to focus on more specific contextual information from multi-level features during
the aggregation phase, as illustrated in Figure 2. To explain in detail, given two input
feature maps with different resolutions, corresponding to Figure 2b,d, let us assume Y is
the feature map from a deeper level. In our network, this can be specifically represented as:

• Cross-branch connection scenario: X is the detail feature map output from stage 5 of
the high-resolution branch, and Y is the context feature map output from stage 5 of
the low-resolution branch.

• Cross-stage connection scenario: X is the output feature map from the cross-branch connec-
tion, and Y is the deep feature map output from stage 6 of the low-resolution branch.
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Figure 2. Schematic diagram of the Recombine Attention Module (RAM) structure. In the diagram,
the spatial dimensions of the feature maps at each stage are indicated. The images within the
dashed boxes represent intermediate process feature maps, which are connected to the corresponding
positions in the RAM with dashed lines. The two input branches on the left represent the input
feature maps with high-resolution differences, corresponding to feature maps (b,d). After processing,
the feature maps of each branch can be compared with (b) and (d) by (c) and (e), respectively. The
feature maps after passing through the RAM can be compared with (a,f).

To enhance the RAM’s overall grasp of spatial and texture information, as well as its
sensitivity to the spatial location of information, the input features X and Y are first fused
to obtain feature (a), which is then input into a carefully designed attention calculation
unit to acquire attention weights, as shown in the dashed box in Figure 2. Specifically, the
fused feature map (a) of X + Y is input into global average pooling and global max pooling
layers in parallel, obtaining a pair of location-aware feature encodings along the H and
W dimensions. At this stage, the transformation output of the global average pooling at
height H in channel c can be represented as:

zh
c (h) =

1
W ∑

0≤i≤W
f X+Y
c (h, i). (2)
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where zh
c ∈ Rc×H×1 and f X+Y

c represent the fused feature map of X + Y in channel c. Similarly,
if we let Max(·) denote the global max pooling transformation function, then the transformation
output of the global max pooling at width W in channel c can be represented as:

zw
c (w) = Max( f X+Y

c (h, w)). (3)

Next, the feature sequences obtained from the aforementioned transformations are
projected into the same spatial dimension for concatenation. The concatenated feature
map is then processed by a combined transformation function F, which consists of “1 × 1
convolution + BN + ReLU”, to encode the spatial information of the feature map in both
the horizontal and vertical directions, resulting in:

f = F([zh, zw]) (4)

where f ∈ Rc/r×(H+W)×1 represents the intermediate feature map generated and r denotes
the channel reduction ratio, which is used to control the number of parameters in the
computation process. The notation [·, ·] represents the concatenation operation.

Finally, the ƒ is split into two tensors, and each is processed through a 1 × 1 convolution
transformation. The width and height of the two convolutions are restored to match those
of zw and zh, respectively. The outputs of the two convolutions are then multiplied and
transformed to match the spatial dimensions of the input X, thus producing:

g = σ(Fh( f h)× Fw( f w)) (5)

where f h and f w represent the two tensors that are split, Fh and Fw represent the 1 × 1
convolution transformation functions, and σ is the sigmoid function.

In this way, the weights learned by the attention calculation unit will further refine
and modulate the (b) branch and the (d) branch, ultimately achieving the most suitable
fusion state. As shown in the dashed box in Figure 2, if we view the above calculation unit
as a transformation function M, then the overall operation scenario can be summarized as:

M(X + Y)× X + (1 − M(X + Y))× Y (6)

3.2.2. Feature Fusion Mamba

In image segmentation tasks, contextual information plays a crucial role in helping
models resolve ambiguities and improve edge detection. To effectively capture contextual
information, it is necessary to have a comprehensive grasp of features enhanced by attention
at various scales. As shown in Figure 3, the data processing in the Feature Fusion Mamba
(FFM) involves two steps: Hilbert curve scanning and Mamba-2 [11] processing. Firstly, the
features at various scales are encoded in parallel using the Hilbert curve, which expands
them into a one-dimensional sequence based on coordinate encoding. Then, the one-
dimensional sequences from each scale are stacked to form a new sequence. Finally, this
new sequence is input into Mamba-2 for selective scanning.

During the process of transforming two-dimensional features into a one-dimensional
sequence, simple row-first or column-first interleaved scanning [13] is prone to causing
information loss, especially for spatial proximity information. The Feature Fusion Mamba
(FFM) adopts the Hilbert curve as the traversal path, which can maintain a certain degree
of spatial proximity. Moreover, the Hilbert curve can reduce the distortion of information
caused by serialization, allowing Mamba-2 to better simulate the way the human visual sys-
tem pays attention to high-dimensional data when scanning the one-dimensional sequence.
This will help the model to better capture contextual information.

Additionally, the non-causal nature of image data constrains the effective reasoning of
the Mamba series framework [13,14,19]. The FFM achieves single-pass multiple selective
scanning by stacking multi-scale features, effectively integrating information at different
scales and establishing a global receptive field in two-dimensional space.
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4. Experiment

In this section, we begin by introducing the training details, including the dataset,
training setup, hardware, and evaluation metrics. We then assess the performance of
LDMNet by comparing it with benchmark networks on four datasets: MaSTr1325 [46],
LaRS [47], Water Segmentation in the USVInland [48], and Cityscapes [49],as shown in
Table 2. Finally, we conduct ablation experiments on LDMNet from two perspectives, the
Mamba Fusion Block and the overall architecture, and analyze and discuss the results.

Table 2. Important parameters of the datasets used.

Dataset Type Train Val. Resolution Class

MaSTr1325 Marine Obstacle Segmentation 1060 265 512 × 512 3
LaRS Marine Obstacle Segmentation 2605 198 1024 × 1024 3

Water Segmentation Distinguishing between Reflections and the
Actual Division of Water and Land 1166 234 640 × 640 2

Cityscapes Semantic Segmentation of Cityscapes 2975 500 1024 × 1024 19

4.1. Dataset
4.1.1. Waterway Environment Dataset

MaSTr1325: MaSTr1325 [46] is a large-scale marine semantic segmentation dataset
specifically designed for developing obstacle detection methods for small Unmanned
Surface Vehicles (USVs). It contains 1325 different images captured by real USVs and
annotated with pixel-level semantic labels. The labels are categorized into three classes:
ocean, sky, and environment. To facilitate the training and comparison of various models,
the dataset is divided into training and validation sets in a ratio of 8:2.

LaRS: LaRS [47] is currently the most diverse dataset for marine obstacle detection,
capable of performing both semantic segmentation and panoramic segmentation tasks. All
images are annotated with 20 scene-level attributes and categorized into three object classes
and eight obstacle (dynamic obstacle) classes. The semantic segmentation dataset includes
2605 training images, 1203 test images, and 198 validation images.

Water Segmentation in the USVInland: Water Segmentation is a subset of the USVIn-
land [48] series dataset, used to distinguish reflections from real objects. The dataset consists
of 364 high-resolution images (1280 × 640) and 1036 low-resolution images (640 × 320). We
have reorganized the dataset by incorporating some validation set images into the training
set, resulting in an ultimate training set of 1166 images and a validation set of 234 images.

4.1.2. Classic Datasets for Autonomous Driving

Cityscapes: Cityscapes [49] is a classic dataset in the field of autonomous driving,
focusing on the semantic understanding of urban street scenes. It contains 5000 finely
annotated images, with 2975 of them being used for training, 500 for validation, and 1525
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for testing. The images in the dataset have a resolution of 2048 × 1024 and are categorized
into 19 classes. During training, no additional 20,000 roughly labeled images are used.

4.2. Train Setting

All experiments are based on the MMSegmentation [50] framework. The specific
training setup is as follows: using the Poly strategy to update the learning rate, AdamW
optimizer, initial learning rate of 0.00006, exponential decay rates for the first and second
moments of the estimate set to 0.9 and 0.999, respectively, and weight decay set to 0.01. For
LaRS and Cityscapes, images are randomly cropped to 1024 × 1024, while for MaSTr1325
and Water Segmentation in the USVInland, they are randomly cropped to 512 × 512
and 640 × 640, respectively. During training, data augmentation operations are added,
including random cropping of images, random horizontal flipping, and random scaling
within the range of 0.5 to 2.0. An online hard example mining pixel sampler (OHEM Pixel
Sampler) [51] is used, and during training, pixel values with confidence scores below 0.7
are sampled, with at least 100,000 pixel values retained. OHEM cross-entropy loss [51] is
also used. To accelerate training, gradient accumulation is performed, with parameters
updated four times before each update. To ensure thorough learning, all models are trained
for 300 K iterations, with validation performed every 30 K iterations. The batch size is 2,
and the training is conducted on a single 3070Ti GPU.

4.3. Evaluation Metrics

The most commonly used evaluation metrics in the semantic segmentation field are
adopted, which are Mean Intersection over Union (mIoU), Mean Pixel Accuracy (mPA),
Mean Dice Coefficient (mDice), Recall (Re), F1 Score (F1), Frames Per Second (FPS), and
in terms of model complexity, Giga Floating-point Operations Per Second (GFLOPs) and
Params. mIoU measures the average of the ratio of the intersection and union of the pre-
dicted mask and the ground truth mask for all types, mPA is the average pixel accuracy for
all types, and mDice is used to measure the average overlap between the predicted segmen-
tation and the true segmentation for each category. Re represents recall, F1 represents the
F1-Score, FPS is the number of frames processed per second by the model, GFLOPs is the
number of floating-point operations per second, and Params is the number of parameters
produced by the model.

4.4. Speed and Accuracy Comparisons

During inference, the batch size is set to 1, using cuda 11.1, CUDNN 8004, and
Pytorch 1.9.1 + cu111. Through fair comparison with other benchmarks on datasets such as
MaSTr1325, LaRS, Water Segmentation in the USVInland, and Cityscapes, the results are
presented in Tables 3–6.

Table 3. Accuracy comparison of LDMNet with other advanced methods on MaSTr1325. Among
them, "-" indicates a lack of relevant data.

Model Type GPU Resolution Params ↓ mIoU (%) ↑ Speed (FPS) ↑

Deeplab V3+ [22] CNN V100 512 × 512 - 85.4 0.56
SegNet [23] CNN V100 512 × 512 - 81.8 0.85
WODIS [52] CNN V100 512 × 384 89.5 M 91.3 43.2

Fast SCNN [25] CNN 3070Ti 512 × 512 1.36 M 93.5 67.5
DDRNet-s [8] CNN 3070Ti 512 × 512 17.05 M 94.5 79

Segmenter(vit-s) [24] Transformer 3070Ti 512 × 512 - 94.8 53.4
TransNeXt-t [53] Transformer 4090Ti 512 × 512 28.2 M 95.4 10.3

UNetformer(R18) [20] Transformer 3070Ti 512 × 512 11.69 M 94.2 5.6

VMamba-s [13] Mamba 3070Ti 512 × 512 70 M 93.6 52
VM-UNet [14] Mamba 3070Ti 512 × 512 34.62 M 93.4 21.1

VM-UNetV2 [15] Mamba 3070Ti 512 × 512 17.91 M 94.8 32
CM-UNet [16] Mamba 3070Ti 512 × 512 12.89 M 93.7 8.5

LDMNet CNN&Mamba 3070Ti 512 × 512 12.53 M 96.2 80
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Table 4. Accuracy comparison of LDMNet with other advanced methods on LaRS.

Model Type mIoU (%) ↑ Re (%) ↑ F1 ↑
ICNet [54] CNN 93.3 49.7 44.9
STDC2 [55] CNN 93.5 54.3 54.3
PiDNet-s [7] CNN 94.1 61.8 52.2
SFNet [56] CNN 95.2 62.4 58.1

Segmenter [24] Transformer 95.1 59.5 55.2
MLLA [19] Transformer 95.3 63.5 59.4

UNetformer [20] Transformer 93.5 61.5 54.3
TransNeXt-t [53] Transformer 94.9 61.3 53.1

RSMamba [57] Mamba 94.2 60.1 52.9
VM-UNet [14] Mamba 95.1 64.2 61.3
CM-UNet [16] Mamba 95.4 65.4 62.8
VMamba-s [13] Mamba 94.2 60.5 54.2

LDMNet CNN&Mamba 95.6 78.6 75.2

Table 5. Accuracy comparison of LDMNet with other advanced methods on Water Segmentation in
the USVInland.

Model Resolution mIoU (%) ↑ mDice (%) ↑
BisenetV2 [58] 640 × 640 97.68 98.46
DDRNet-s [8] 640 × 640 98.64 99.15

Segmenter(vit-s) [24] 640 × 640 98.80 99.23
LDMNet 640 × 640 99.02 99.51

Table 6. Accuracy comparison of LDMNet with other advanced methods on Cityscapes. Among
them, "-" indicates a lack of relevant data.

Model Resolution mIoU (%) ↑ GFLOPs ↓
SFNet(DF1) [56] 2048 × 1024 74.5 24.7

STDC2-Seg75 [55] 1536 × 768 76.8 -
PP-LiteSeg-T2 [9] 1536 × 768 74.9 -
HyperSeg-M [30] 1024 × 512 75.8 7.5

PIDNet-S [7] 2048 × 1024 77.1 46.3
DDRNet-s [8] 2048 × 1024 77.2 34.2

LDMNet 2048 × 1024 80.7 32.9

MaSTr1325: From Table 3, it can be observed that LDMNet achieves a good compro-
mise between accuracy and real-time performance. On the MaSTr1325 test set, LDMNet
reaches a mIoU of 96.2% at a speed of 80 FPS under the aforementioned hardware envi-
ronment, which is 1.7% higher than DDRNet-s with a similar speed. Other methods, such
as Segmenter and Fast SCNN, are outperformed by LDMNet on the test set with mIoU
improvements of 1.4% and 2.7%, respectively, and LDMNet also operates faster than both
of them. WODIS, proposed specifically for the detection of surface obstacles on maritime
autonomous surface vehicles, achieves an mIoU of 91.3% at 43.2 FPS on the MaSTr1325
test set, but this result is 4.9% lower than our proposed method and 36.8% slower in terms
of speed. In comparison with many models based on the Transformer architecture and
Mamba architecture, LDMNet outperforms TransNeXt-t by 0.8 mIoU and improves over
other methods by 1.4% to 2.8% mIoU. We visualize the inference results of LDMNet and
other methods on MaSTr1325 in Figures 4 and 5. By comparing the segmentation effects of
near and distant targets, it is evident that LDMNet can handle the edges of target objects
more finely and demonstrates its strong capability in capturing details for elongated and
small target edges.



Appl. Sci. 2024, 14, 7706 11 of 18

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 19 
 

SFNet(DF1) [56] 2048 × 1024 74.5 24.7 
STDC2-Seg75 [55] 1536 × 768 76.8 - 
PP-LiteSeg-T2 [9] 1536 × 768 74.9 - 
HyperSeg-M [30] 1024 × 512 75.8 7.5 

PIDNet-S [7] 2048 × 1024 77.1 46.3 
DDRNet-s [8] 2048 × 1024 77.2 34.2 

LDMNet 2048 × 1024 80.7 32.9 

MaSTr1325: From Table 3, it can be observed that LDMNet achieves a good compro-
mise between accuracy and real-time performance. On the MaSTr1325 test set, LDMNet 
reaches a mIoU of 96.2% at a speed of 80 FPS under the aforementioned hardware envi-
ronment, which is 1.7% higher than DDRNet-s with a similar speed. Other methods, such 
as Segmenter and Fast SCNN, are outperformed by LDMNet on the test set with mIoU 
improvements of 1.4% and 2.7%, respectively, and LDMNet also operates faster than both 
of them. WODIS, proposed specifically for the detection of surface obstacles on maritime 
autonomous surface vehicles, achieves an mIoU of 91.3% at 43.2 FPS on the MaSTr1325 
test set, but this result is 4.9% lower than our proposed method and 36.8% slower in terms 
of speed. In comparison with many models based on the Transformer architecture and 
Mamba architecture, LDMNet outperforms TransNeXt-t by 0.8 mIoU and improves over 
other methods by 1.4% to 2.8% mIoU. We visualize the inference results of LDMNet and 
other methods on MaSTr1325 in Figures 4 and 5. By comparing the segmentation effects 
of near and distant targets, it is evident that LDMNet can handle the edges of target objects 
more finely and demonstrates its strong capability in capturing details for elongated and 
small target edges. 

 
Figure 4. Visualization of the inference of LDMNet compared to TransNeXt [53] and VM-UNet V2 
[15] on the MaSTr1325 for close-up targets. We have marked the detailed differences with red boxes. 
Figure 4. Visualization of the inference of LDMNet compared to TransNeXt [53] and VM-UNet V2 [15]
on the MaSTr1325 for close-up targets. We have marked the detailed differences with red boxes.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 19 
 

 
Figure 5. Visualization of the inference of LDMNet compared to TransNeXt and VM-UNet V2 on 
the MaSTr1325 for distant targets. We have marked the detailed differences with red boxes. 

LaRS: As shown in Table 4, in order to fully utilize the information retention capabil-
ity of the Deep Dual-branch Network for high-resolution images, the images on the LaRS 
are cropped to 1024 × 1024. The experimental results show that networks based on the 
Mamba architecture generally perform well, with the highest mIoU achieved by CM-UNet 
at 95.4%, and other methods also exceed 94.2% mIoU, demonstrating the advanced nature 
of Mamba in handling long-sequence data. It is worth noting that CMU-Net also uses 
CNN attention modules in conjunction with Mamba blocks, which confirms the compati-
bility and effectiveness of CNN and Mamba in long-sequence modeling. The MLLA based 
on Transformer also achieves a score of 95.3%, leveraging the advantages of the Mamba 
architecture to improve the shortcomings of linear attention, showing great potential, but 
its accuracy is still 0.3% mIoU lower than LDMNet. Methods solely based on CNN net-
works, except for SFNet, do not show competitiveness, which is related to the lack of 
global information modeling capability in CNN networks, which is also one of the reasons 
we tried to integrate Mamba into global modeling. Figure 6 demonstrates LDMNet’s 
strong capability in detail and edge processing. We also analyzed the accuracy of various 
prediction results of LDMNet and baseline methods on the LaRS, as shown in Figure 7. It 
can be seen that the segmentation accuracy of all methods tends to stabilize for the “water” 
and “sky” categories, while the segmentation accuracy of the “obstacles and environ-
ment” category determines whether the overall segmentation accuracy can be improved. 

 

Figure 5. Visualization of the inference of LDMNet compared to TransNeXt and VM-UNet V2 on the
MaSTr1325 for distant targets. We have marked the detailed differences with red boxes.

LaRS: As shown in Table 4, in order to fully utilize the information retention capability
of the Deep Dual-branch Network for high-resolution images, the images on the LaRS
are cropped to 1024 × 1024. The experimental results show that networks based on the
Mamba architecture generally perform well, with the highest mIoU achieved by CM-UNet
at 95.4%, and other methods also exceed 94.2% mIoU, demonstrating the advanced nature
of Mamba in handling long-sequence data. It is worth noting that CMU-Net also uses CNN
attention modules in conjunction with Mamba blocks, which confirms the compatibility
and effectiveness of CNN and Mamba in long-sequence modeling. The MLLA based
on Transformer also achieves a score of 95.3%, leveraging the advantages of the Mamba
architecture to improve the shortcomings of linear attention, showing great potential,
but its accuracy is still 0.3% mIoU lower than LDMNet. Methods solely based on CNN
networks, except for SFNet, do not show competitiveness, which is related to the lack of
global information modeling capability in CNN networks, which is also one of the reasons
we tried to integrate Mamba into global modeling. Figure 6 demonstrates LDMNet’s
strong capability in detail and edge processing. We also analyzed the accuracy of various
prediction results of LDMNet and baseline methods on the LaRS, as shown in Figure 7. It
can be seen that the segmentation accuracy of all methods tends to stabilize for the “water”
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and “sky” categories, while the segmentation accuracy of the “obstacles and environment”
category determines whether the overall segmentation accuracy can be improved.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 19 
 

 
Figure 5. Visualization of the inference of LDMNet compared to TransNeXt and VM-UNet V2 on 
the MaSTr1325 for distant targets. We have marked the detailed differences with red boxes. 

LaRS: As shown in Table 4, in order to fully utilize the information retention capabil-
ity of the Deep Dual-branch Network for high-resolution images, the images on the LaRS 
are cropped to 1024 × 1024. The experimental results show that networks based on the 
Mamba architecture generally perform well, with the highest mIoU achieved by CM-UNet 
at 95.4%, and other methods also exceed 94.2% mIoU, demonstrating the advanced nature 
of Mamba in handling long-sequence data. It is worth noting that CMU-Net also uses 
CNN attention modules in conjunction with Mamba blocks, which confirms the compati-
bility and effectiveness of CNN and Mamba in long-sequence modeling. The MLLA based 
on Transformer also achieves a score of 95.3%, leveraging the advantages of the Mamba 
architecture to improve the shortcomings of linear attention, showing great potential, but 
its accuracy is still 0.3% mIoU lower than LDMNet. Methods solely based on CNN net-
works, except for SFNet, do not show competitiveness, which is related to the lack of 
global information modeling capability in CNN networks, which is also one of the reasons 
we tried to integrate Mamba into global modeling. Figure 6 demonstrates LDMNet’s 
strong capability in detail and edge processing. We also analyzed the accuracy of various 
prediction results of LDMNet and baseline methods on the LaRS, as shown in Figure 7. It 
can be seen that the segmentation accuracy of all methods tends to stabilize for the “water” 
and “sky” categories, while the segmentation accuracy of the “obstacles and environ-
ment” category determines whether the overall segmentation accuracy can be improved. 

 

Figure 6. Visualization of the inference of PIDNet-s, UNetformer, CM-UNet, and LDMNet on the
LaRS. We have marked the detailed differences with red boxes and red arrows.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 19 
 

Figure 6. Visualization of the inference of PIDNet-s, UNetformer, CM-UNet, and LDMNet on the 
LaRS. We have marked the detailed differences with red boxes and red arrows. 

 
Figure 7. Comparison of the IoU of different methods in predicting various categories on the LaRS. 
Among them, the green solid line with circles indicates the mIoU difference between different 
models on LaRS. 

Water Segmentation in the USVInland: To test LDMNet’s performance in resisting 
light reflection on the water’s surface, we trained LDMNet on the Water Segmentation in 
the USVInland and compared it with BiseNetV2, DDRNet-s, and Segmenter. The results 
are shown in Table 5. LDMNet significantly outperforms the benchmarks, with a mDice 
of 99.51% and a mIoU of 99.02%. Compared to Segmenter (vit-s) and DDRNet-s, the mDice 
is 0.28% and 0.36% higher, respectively, and the mIoU is 0.22% and 0.38% higher, respec-
tively. We visualized the inference results of LDMNet and the benchmark methods Bise-
NetV2, DDRNet-s, and Segmenter in Figure 8. It is evident that LDMNet pays more atten-
tion to details in the treatment of boundaries compared to other methods, is more sensitive 
to edge features, and demonstrates strong fitting ability. 

 
Figure 8. Visualizes the inference of LDMNet compared to BisenetV2 and DDRNet-s on the Water 
Segmentation in the USVInland for water–shore segmentation. We have marked the detailed differ-
ences with boxes and arrows. It can be seen that in complex environments where the reflection of 
the water surface is overcome, LDMNet still demonstrates high accuracy in demarcating the bound-
aries between the water and the shore.  

Cityscapes: To verify LDMNet’s applicability on different types of datasets, we ap-
plied LDMNet to Cityscapes in the autonomous driving field for validation. The experi-
mental results are shown in Table 6. LDMNet still outperforms the methods listed in the 

Figure 7. Comparison of the IoU of different methods in predicting various categories on the LaRS.
Among them, the green solid line with circles indicates the mIoU difference between different models
on LaRS.

Water Segmentation in the USVInland: To test LDMNet’s performance in resisting
light reflection on the water’s surface, we trained LDMNet on the Water Segmentation in
the USVInland and compared it with BiseNetV2, DDRNet-s, and Segmenter. The results
are shown in Table 5. LDMNet significantly outperforms the benchmarks, with a mDice of
99.51% and a mIoU of 99.02%. Compared to Segmenter (vit-s) and DDRNet-s, the mDice is
0.28% and 0.36% higher, respectively, and the mIoU is 0.22% and 0.38% higher, respectively.
We visualized the inference results of LDMNet and the benchmark methods BiseNetV2,
DDRNet-s, and Segmenter in Figure 8. It is evident that LDMNet pays more attention to
details in the treatment of boundaries compared to other methods, is more sensitive to edge
features, and demonstrates strong fitting ability.

Cityscapes: To verify LDMNet’s applicability on different types of datasets, we applied
LDMNet to Cityscapes in the autonomous driving field for validation. The experimen-
tal results are shown in Table 6. LDMNet still outperforms the methods listed in the
table, achieving real-time detection with an mIoU of 80.7% on the Cityscapes validation
set, outperforming SFNet and PP-LiteSeg-T2 by more than 5.8%. The speed is close to
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STDC2-Seg75 and HyperSeg-M, but the mIoU is 3.9% and 4.9% higher, respectively. We also
compared it with the current most advanced multi-branch network PIDNet-s. Although
the inference speed is slightly behind, LDMNet’s mIoU is 3.6% higher than PIDNet-s,
indicating the strong applicability of the Dual-branch Network across different types of
datasets and its potential to excel in the field of water and land unmanned driving.
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4.5. Comparison of Performance with Advanced Counterparts in Similar Modules

To compare the performance of our designed module with advanced counterparts in
similar modules, we conducted a comparative experiment. In this experiment, the backbone
was replaced with DDRNet-s and LDMNet, and different Mamba scanning mechanisms
were tried at the Neck position, each paired with RAM and AFF in a cross combination.
The experimental results are presented in Tables 7 and 8.

Table 7. Comparison of the number of parameters between RAM and AFF [28], showing that RAM
has fewer parameters than AFF.

Method Params

AFF [28] 39.71 k
RAM 39.58 k

Regarding the Recombine Attention Module, in LDMNet, we introduce the Recombine
Attention Module (RAM) to address the issues of feature imbalance and mismatch that arise
during the fusion of branches with high-resolution differences. As indicated by the data
in Tables 7 and 8, when all other module configurations remain the same, substituting the
fusion strategy with RAM yields an increase in mIoU of 0.69% to 1.34% and in mPA of 0.38%
to 0.66%, with a reduction in the number of parameters of 0.13 k. Specifically, when using
the DDRNet-s-Mamba-AFF combination as the baseline, under the same experimental
conditions, replacing AFF with RAM results in an increase in mIoU of 1.34% and mPA of
0.59%; if the backbone remains unchanged while both the Mamba scanning mechanism
and RAM are replaced, mIoU and mPA increase by 1.43% and 0.71%, respectively; finally,
when the Backbone is replaced with LDMNet, comparing LDMNet-Mamba-RAM with
DDRNet-s-Mamba-AFF, mIoU and mPA increase by 1.63% and 0.95%, respectively. This
demonstrates that RAM is capable of better adaptive selection and retention of more image
features during feature fusion, and it exhibits greater applicability in tasks that require
important detailed information such as edge textures.
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Table 8. Comparison of the enhancement effects of RAM and AFF [28] on different Backbones on
MaSTr1325, where SS represents the Sequential Scan Module, SS2D [53] denotes the 2D Selective
Scan Module, and OSSM [57] signifies the Omnidirectional Selective Scan Module. δ is the change
obtained by subtracting the corresponding items of AFF from RAM, with DDRNet + Mamba (SS) as
the comparison object. "-" indicates that the current row is used as the baseline.

Method
mIoU (%) ↑ mPA (%) ↑

δ

DDRNet + Mamba δ (mIoU) (%) ↑ δ (mPA) (%) ↑
+SS

+AFF 92.53 94.97 - -
+RAM 93.87 (+1.34) 95.56 (+0.59) +1.34 +0.59

+SS2D [53]
+AFF 93.09 94.68 −0.56 −0.29

+RAM 94.23 (+1.14) 95.34 (+0.66) +0.36 −0.22
+OSSM [57]

+AFF 93.04 94.37 +0.51 −0.60
+RAM 94.42 (+1.38) 95.48 (+1.11) +0.55 −0.08

+HCS
+AFF 94.68 97.02 +2.15 +2.05

+RAM 95.96 (+1.28) 97.68 (+0.66) +2.09 +2.12

LDMNet + Mamba
+SS

+AFF 93.43 95.42 +0.90 +0.45
+RAM 94.12 (+0.69) 95.80 (+0.38) +0.25 +0.24

+SS2D [53]
+AFF 94.17 95.94 +1.64 +0.97

+RAM 95.34 (+1.17) 96.84 (+0.90) +1.47 +1.28
+OSSM [57]

+AFF 94.47 96.02 +1.94 +1.05
+RAM 95.06 (+0.59) 96.51 (+0.49) +1.19 +0.95

+HCS
+AFF 95.32 97.38 +2.79 +2.41

+RAM 96.16 (+0.84) 97.92 (+0.54) +2.29 +2.36

Regarding the Hilbert Curve Scan, we designed four sets of experiments in conjunction
with different backbones, as shown in Table 8. SS denotes sequential scanning, SS2D [53]
represents the 2D Selective Scan Module, OSSM [57] represents the Omnidirectional Se-
lective Scan Module, and HCS denotes the Hilbert Curve Scan. The results indicate that
using SS as the baseline, SS2D improves mIoU by 0.36% and 1.22% through sequential
scanning from four directions of the image, while OSSM, using eight-directional sequential
scanning, increases mIoU by 0.55% and 0.94%. It is evident that merely increasing the
number of directions not only boosts computational load but also does not necessarily lead
to enhanced precision. Our proposed method of processing multi-scale images through
HCS and stacking them results in an improvement in mIoU of 2.09% and 2.04%. Therefore,
to enhance the model’s effective modeling of non-causal data, it is crucial to select an
appropriate scanning method. Our scanning method yielded more convincing results when
combined with the Deep Dual-branch Network and Mamba.

4.6. Ablative Experiments on MaSTr1325

We fixed the Backbone as LDMNet and reorganized the modules at the Neck position
for retraining. The Recombine Attention Module (RAM) focuses on better fusion of feature
maps with high differences, while the combination of Mamba and Hilbert Curve Scan (HCS)
enables effective extraction of contextual information from deep features. The experimental
results presented in Table 9 show that incrementally adding RAM and Mamba-2 (with
HCS) can improve the model’s mIoU by 0.87% and 1.22%, respectively. Moreover, using
HCS with Mamba can enhance the model’s mIoU by an additional 0.26%. Simultaneously
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incorporating all three modules results in an improvement of 1.6% in mIoU and 1.15% in
mPA, validating the effectiveness of these modules.

Table 9. Ablation experiments of LDMNet on MaSTr1325. Among them, "✓" indicates that this
module is retained, while "✗" indicates the opposite.

+RAM +HCS +Mamba-2 mIoU (%) ↑ mPA (%) ↑
✗ ✗ ✗ 94.56 96.77
✓ ✗ ✗ 95.43 97.04
✗ ✗ ✓ 95.52 97.16
✗ ✓ ✓ 95.78 97.56
✓ ✗ ✓ 96.09 97.80
✓ ✓ ✓ 96.16 97.92

4.7. Discussion

Our experimental evaluations on MaSTr1325, LaRS, Water Segmentation in the USVIn-
land, and Cityscapes have demonstrated the significant advantages of LDMNet in terms of
its sensitivity to object edges and its robustness in utilizing global information, highlighting
the practicality of LDMNet in real-world scenarios. Furthermore, we have compared our
proposed Reorganized Attention Module (RAM) and Hilbert Curve Scanning (HCS) with
advanced similar modules, as shown in Tables 7 and 8, illustrating their superiority. How-
ever, despite the encouraging results, our method is not without limitations. For instance,
the computational cost associated with HCS is still higher than that of traditional methods.
Additionally, although LDMNet has been proven to perform well on various datasets, its
performance may vary with different types of data, which warrants further investigation.

4.8. Impact on Future Intelligent Marine Traffic Systems

In the field of intelligent marine traffic systems, the research and application of efficient
networks for semantic segmentation tasks of Complex Waterway Scenes have provided
effective and practical solutions. Our proposed LDMNet, with its meticulously designed
network structure, achieves rapid and accurate identification of various objects and obsta-
cles within Complex Waterway Scenes. This provides crucial environmental information
for autonomous navigation and collision decision-making. As artificial intelligence al-
gorithms are applied in the field of Unmanned Surface Vehicles, they can significantly
accelerate the research, development, and application of USVs, enhancing the overall op-
erational capabilities of the system. With the maturation and advancement of technology,
there will be a drive to update relevant regulations and standards, ensuring navigation
safety and promoting technological progress and standardization in the entire waterborne
transportation industry.

5. Conclusions

This paper delves into the issue of inaccurate obstacle edge recognition in Complex
Waterway Scenes for Unmanned Surface Vehicles (USVs), which is caused by factors such
as lighting variations, surface fluctuations, and reflections. We propose a novel Lightweight
Dual-branch Mamba Network named LDMNet, which is the first method to combine a
Deep Dual-branch Network with Mamba-2 for semantic segmentation tasks in Complex
Waterway Scenes. Through a series of rigorous experimental evaluations, we demonstrate
the effectiveness of our approach in understanding Complex Waterway Scenes and achieve
significant performance improvements compared to previous works. In particular, to
address the spatial information loss and directional sensitivity issues that arise during
image serialization, we introduce the Hilbert curve scanning mechanism to achieve multi-
scale feature serialization. By stacking serialized feature maps, we alleviate the local bias
of Mamba-2 for non-causal data. This research offers a new perspective on solutions for
obstacle recognition in Complex Waterway Scenes. We believe that with the continuous
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advancement of technology and further research, LDMNet will play an even greater role in
the field of USV visual perception, driving development and innovation in related areas.
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