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Abstract: Given the increasing competition among household appliance enterprises, accurately
predicting household appliance demand is crucial for enterprise supply chain management and
marketing. This paper proposes a combined model integrating deep learning and ensemble learning—
LSTM-RF-XGBoost—to assist enterprises in identifying customer demand, thereby addressing the
complexity and uncertainty of the household appliance market demand. In this study, Long Short-
Term Memory Network (LSTM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)
models are established separately. Then, the three individual algorithms are used as the base models
in the first layer, with the multiple linear regression (MLR) algorithm serving as the meta-model
in the second layer, merging the demand prediction model based on the hybrid model into the
overall demand prediction model. This study demonstrates that the accuracy and stability of demand
prediction using the LSTM–RF–XGBoost model significantly outperform traditional single models,
highlighting the significant advantages of using a combined model. This research offers practical and
innovative solutions for enterprises seeking rational resource allocation through demand prediction.

Keywords: demand forecasting; home appliances; LSTM-RF-XGBoost model; machine learning;
decision making

1. Introduction

The modern appliance market is characterized by a growing diversity and complexity
of consumer behaviors. In addition to price and quality considerations, consumers are
interested in functionality, intelligence, and connection with other household devices [1,2].
This trend may be related to the quick pace of modern life and the need for convenience.
As technology advances, the demand for household appliances grows [3]. However, due to
the rapid changes in the market, traditional methods for demand forecasting have become
overwhelmed. Therefore, sophisticated technologies like machine learning have been
employed in the household appliance business to better predict customer demand and
respond to market shifts and particular consumer needs [4,5].

Machine learning is a branch of artificial intelligence that allows computer systems to
learn from data and improve their performance without requiring explicit programming.
Machine-learning-based forecasting techniques fall into two categories: single-model fore-
casting and combined-model forecasting. The former is based on a specialized algorithm
that can effectively forecast future trends in changes, allowing for effective control over
such future changes. Fusion-model prediction is the combination of different prediction
models to obtain a more accurate prediction result. The fusion model can be implemented
using weighted average, voting, stacking, and other techniques to improve prediction
accuracy. Demand forecasting is an important part of forecasting, and its accuracy has a
direct impact on a company’s production schedule, inventory levels, and customer satisfac-
tion. Machine learning approaches are commonly utilized to solve demand problems in
retail [6–8], logistics [9,10], finance [11,12], and healthcare [13,14].
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In recent years, there have been many studies on demand forecasting, but most of them
have focused on the improvement of a single algorithm [15,16]. Some studies have focused
on model accuracy improvement, such as [17], where a demand forecasting method based
on multi-layer LSTM networks was designed to build a strong capability for predicting
highly fluctuating demand data. The improved random forest algorithm was introduced to
enhance the accuracy of demand and travel time forecasts in [18]. Ref. [19] compared the
performances of nine state-of-the-art machine learning and three forecasting algorithms.
It was proven that the XGBoost algorithm with gradient enhancement could improve the
prediction performances of multivariate features for multi-season datasets. Furthermore,
some studies have addressed related issues by improving the evaluation of feature metrics.
Thus, for example, ref. [20] proposed a new framework based on the Variable Neighborhood
Search (VNS) heuristic, which is used to enhance the generalization ability of machine
learning methods through feature selection. Ref. [21] employed the filtered feature selection
method, which increased the classification accuracy of music popularity.

There are other studies that have combined separate models to create a more com-
prehensive analysis, resulting in more accurate and informed prediction models. Ref. [22]
suggested a combined xDeepFM–LSTM forecasting model for a clothes retailer’s sales data.
First, the xDeepFM model was used to mine the correlations between the features, followed
by the LSTM for sales forecasting, providing a scientific basis for garment companies to
alter their demand plans. Ref. [23] provided an integrated model based on DT–RF–XGBoost
for predicting smart home energy usage in order to monitor the situation. Ref. [24] of-
fered the ARIMA–LSTM–XGBoost model to improve maximum temperature prediction
accuracy. Ref. [25] proposed a combined granulation-based Long Short-Term Memory
(LSTM)–Random Forest (RF) model for accurately predicting Sea Surface Temperature
(SST), which was capable of adequately capturing the feature dependencies involved in
the SST series’ fluctuations, reducing cumulative error during the iteration process, and
extending the prediction range.

However, while a number of studies have presented in-depth evaluations of the de-
mand forecasting problem, relatively few studies have explored it considering products in
the appliance industry, and the methodologies continue to have defects and limits. Accord-
ing to the cited literature, some approaches may rely too much on the features of a particular
dataset, resulting in poor generalization across different datasets. In addition, there are
too many influencing factors for home appliances to consider, such as products, seasons,
festivals, and environments [26,27], whereas technological advancements have resulted in
an increase in purchasing channels and an overabundance of choices for consumers, rather
than a lack of available products [28]. To address these issues, this paper proposes the
LSTM–RF–XGBoost model. Based on [17–19], the selection procedure for the first layer of a
single model was determined. Given the typical cyclical and seasonal challenges in demand
forecasting for home appliances, we propose incorporating the LSTM model, which effec-
tively identifies and predicts cyclical fluctuations by capturing long-term dependencies in
time series data. To address the large fluctuations in demand and enhance the accuracy and
robustness of predictions, we also introduce the Random Forest (RF) and XGBoost models.
The RF model, by integrating multiple decision trees, mitigates the risk of overfitting and
ensures robustness and stability across different datasets. Simultaneously, XGBoost’s strong
capability to handle noise and outliers allows for precise forecasting, even under conditions
of significant data fluctuations. Building on these models, we conduct feature interaction
and feature selection to further improve the models’ predictive performance. We also
choose more than 100,000 data points from a home appliance manufacturing industry in
China from January 2018 to December 2022 to support the study and verify the validity
and accuracy of this model.

Compared with previous studies, the contributions and novelties of our research are
summarized below. First, we present a hybrid LSTM–RF–XGBoost model for forecasting
home appliance demand. We combine the strengths of various models and further refine
them to capture the complex dynamics of appliance demand through feature interaction and
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filtering, enabling us to account for the multiple factors that influence consumer demand for
home appliances. Second, we create four distinct feature clusters: time, product attributes,
target volume trends, and environmental factors, and our study offers the prospect of
capturing a broader range of elements influencing the demand for appliance product
analysis. Our study offers analytical suggestions for home appliance products with a wide
range of influencing features. Finally, we discover that the five features of shipments,
total sales, e-commerce festivals, seasons, and productions have the greatest impact on air
conditioner demand. This result can provide analytical ideas for home appliances with
a clearly cyclical demand profile, such as air conditioners, as well as fresh insights into
demand management in the home appliance business.

The rest of this paper is arranged as follows: Section 2 introduces the demand pre-
diction models for this paper. Section 3 analyzes the data distribution and screens the
effective features and experimental process used for the basis of this paper. Section 4
offers a summary of our findings and conclusions, along with suggestions for future
research directions.

2. The Proposed Method

In this section, Long Short-Term Memory Network (LSTM), Random Forest (RF),
Extreme Gradient Boosting (XGBoost), and the proposed LSTM–RF–XGBoost model are
introduced, respectively.

Home appliances cover a diverse customer base, including distributors and direct
stores. Changes in market demand are affected by a variety of factors, including product
performance and reputation, the market environment, and price factors. The uncertainty
of these factors makes the task of demand forecasting more complicated and leads to a
lower forecasting accuracy. LSTM can capture the long-term dependencies in time series
data, which is better for predicting demand data with temporal correlations and can
effectively capture the dynamic changes in such data. RF can handle datasets with a large
number of features. XGBoost improves the prediction performance by integrating multiple
decision tree models, which can provide a high level of accuracy and generalization
ability in demand prediction tasks. Therefore, combining the three single models aims to
forecast the demand for home appliances in order to improve the accuracy and reliability
of forecasting results.

2.1. Long Short-Term Memory Network (LSTM)

LSTM is an advanced recurrent neural network with three independent logic control
units [29]. In this paper, an LSTM network will be utilized to study the demand prediction
problem by training historical data, building a prediction model, evaluating the prediction,
and comparing its accuracy with the test data. Meanwhile, in order to better improve
the performance of LSTM, the Adam Optimizer is used to optimize the parameters. The
network architecture is shown in Figure 1.

2.2. Random Forest (RF)

The Random Forest model is an effective method used to solve a variety of nonlinear
regression problems that affect product demand [30]. This study will create a Random
Forest forecasting model to better understand the demand forecasting challenge. The
Random Forest parameters are critical to the model’s effectiveness, and this paper uses
Bayesian optimization to tweak them. The algorithmic model architecture is shown in
Figure 2.
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2.3. Extreme Gradient Boosting (XGBoost)

XGBoost is an integrated machine learning algorithm based on decision trees, using
gradient boosting as a framework [31]. In this study, the process of constructing a demand
forecasting model based on XGBoost is shown below. Bayesian optimization was also used
to tune the parameters of the XGBoost demand forecasting model. The algorithmic model
architecture is illustrated in Figure 3.

2.4. Blending Ensemble Models

For complex demand change scenarios, a single demand forecasting methodology
model suffers from the problem of limited expressiveness in multiple dimensions. For this
reason, this study proposes the multi-model fusion approach known as blending for opti-
mization, which uses multiple sub-models to model, predict, and fuse data. Multi-model
fusion can better cope with complex demand changes and improve accuracy in multi-
ple dimensions compared to traditional single models or traditional demand forecasting
methods [32].



Appl. Sci. 2024, 14, 7658 5 of 17
Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 18 
 

 
Figure 3. XGBoost algorithm model architecture. 

2.4. Blending Ensemble Models 
For complex demand change scenarios, a single demand forecasting methodology 

model suffers from the problem of limited expressiveness in multiple dimensions. For this 
reason, this study proposes the multi-model fusion approach known as blending for 
optimization, which uses multiple sub-models to model, predict, and fuse data. Multi-
model fusion can better cope with complex demand changes and improve accuracy in 
multiple dimensions compared to traditional single models or traditional demand 
forecasting methods [32]. 

In the previous three subsections, the LSTM, RF, and XGBoost models, respectively, 
were established. These three single prediction models produce good results for the 
demand forecasting problem and have differentiation, which is in line with the 
requirements of the first-layer diversity-based model. Given that home appliances have a 
large number of features and quantities, and feature interactions can reveal more complex 
relationships between variables, we add feature interactions to the first-layer model 
results. To improve the prediction accuracy, we use the mutual information method to 
identify the interacting features that contribute the most. For the selection of the second 
layer of the meta-learner, a multiple linear regression (MLR) algorithm is used, while 
regularization is introduced to avoid overfitting. The LSTM–RF–XGBoost algorithmic 
model architecture is illustrated in Figure 4. 

Figure 3. XGBoost algorithm model architecture.

In the previous three subsections, the LSTM, RF, and XGBoost models, respectively,
were established. These three single prediction models produce good results for the demand
forecasting problem and have differentiation, which is in line with the requirements of
the first-layer diversity-based model. Given that home appliances have a large number
of features and quantities, and feature interactions can reveal more complex relationships
between variables, we add feature interactions to the first-layer model results. To improve
the prediction accuracy, we use the mutual information method to identify the interacting
features that contribute the most. For the selection of the second layer of the meta-learner,
a multiple linear regression (MLR) algorithm is used, while regularization is introduced to
avoid overfitting. The LSTM–RF–XGBoost algorithmic model architecture is illustrated in
Figure 4.

This blending framework consists of two layers of models. The first layer of the base
learner includes three models consisting of LSTM, RF, and XGBoost, which are trained
on the original training set. The base learners have different learning and prediction
capabilities, and the outputs can be considered to be learning results under different feature
dimensions. In the second layer, multivariate linear regression is used as a meta-learner, and
the results of the first layer of base learners are used as inputs to output the final predicted
values. The steps of the Blending Demand Prediction Fusion Model are as follows:

Layer 1: In this study, the dataset is divided into two parts, a training set and a test
set. The training set is further split into a primary training set and a primary validation
set. The primary training set is used to train the LSTM, RF, and XGBoost models, and the
resulting base models are then used to make predictions on the primary validation set and
primary test set, respectively. Next, we apply feature interaction and filtering to the results
from both the primary validation and test sets. The filtered interaction features from the
primary validation set, along with its results, are combined to form the secondary training
set, which is used to train the metamodel in the second layer. Finally, the results and filtered
interaction features from the primary test set are fed into the trained metamodel for testing.
The training set lasts 48 months, from January 2018 to December 2021. The primary training
set lasts from January 2018 to December 2020. The primary validation set lasts from January
2021 to December 2021. The test set lasts from January 2022 to December 2022.
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We create the feature interactions using PolynomialFeatures with degree = 2, interac-
tion_only = True, and include_bias = False. We choose 0.03 as the screening threshold for
mutual information.

Mutual information is exploited to quantify the information shared by two variables,
and mutual information I(X; Y) between two variables X and Y can be defined as:

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
(1)

Layer 2: The MLR is trained using the secondary training set. The process expression
for MLR is shown in Equation (2).

yi = ω0 + ω1x11 + ω2x12 + . . . + ωkxik + bi (2)

where yi is the dependent variable, x11 to xik denote the independent variables, ω0 to ωk
are the partial regression coefficients, and bi is the error term. The parameters are adjusted
to obtain the matrix Equations (3) and (4).

Y =

(y1
y2

...
yn

)
, X =


1 x11 x12
1 x21 x22
· · · · · · · · ·

· · · x1k
· · · x2k
· · · · · ·

1 xn1 xn2 · · · xnk

, ω =

(ω0
ω1

...
ωk

)
, b =

(b1
b2

...
bn

)
. (3)

Y = ωX + b (4)

The main purpose of this procedure is to estimate the regression coefficient ω. Specifi-
cally, a set of observations {xi1, xi2, . . . , xik; yi} is selected, and the observations are brought
into the multiple regression equation to obtain ŷi = ω̂0 + ω̂1x11 + · · ·+ ω̂kxnk. The least
squares method is then used to find the regression coefficient, which is the minimum of
the sum of squares of the deviations in the estimated values from the sample target values.
At the same time, an L1 regularization term is added to the loss function to constrain the
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regression coefficient, and by minimizing the loss function after the above regularization,
we can obtain the optimized regression coefficient ω, so the above MLR model is completed.

L =
1
n

n

∑
i=1

(yi − ŷi)
2 + λ

k

∑
j=1

∣∣ωj
∣∣ (5)

ω∗ = argmin
ω

{
1
n

n

∑
i=1

(yi − ŷi)
2 + λ

k

∑
j=1

∣∣ωj
∣∣} (6)

3. Experiment and Discussion

The overall network framework is implemented, and the research results in this paper
are mainly based on model accuracy. Four indicators, MAE, MSE, RMSE, and R2, are
chosen as the evaluation indexes of the model with the following formulas:

MAE (Mean Absolute Error) is used to measure the average absolute difference
between the predicted and actual values. The smaller the MAE value, the higher the model
accuracy.

MAE =
1
n

n

∑
i=1

|ŷi − yi| (7)

MSE (Mean Squared Error) is a measure of the average of the sum of the squares of
the differences between the predicted and actual values. The smaller the MSE value, the
more accurate the prediction of the model.

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (8)

RMSE (Root Mean Squared Error) is a measure of the mean squared difference be-
tween actual and predicted values. The smaller the value, the smaller the model bias.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

R2 (R-squared) is the goodness of fit, which measures the extent to which all the
characteristic variables explain the variance of the target variable, and can intuitively reflect
the model regression fitting effect. The range of results is [0, 1]. The closer the R2 value
is to 1, the better the model fitting effect, and the closer it is to 0, the worse the model
fitting effect.

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 (10)

In the above four equations, n is the number of samples, i is the current sample, ŷi is
the predicted value, yi is the true value, and yi is the mean of the true value.

3.1. Datasets

The datasets used in this study were obtained from a home appliance group in China.
Given the variability among appliances, the study used one appliance category as the data
source. The air conditioning product is one of the group’s best-selling categories, its sales
are relatively stable, and there are more historical data to facilitate predictive analysis,
so we selected the air conditioning product as the object of analysis, considering factors
such as time, product model, model iteration, and other factors. We selected some models
of data collection and summarized the findings. Eventually, more than 100,000 pieces of
historical data were collected for a total of 60 months from January 2018 to December 2022.
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3.2. Construction of Demand Forecasting Influencing Factors

This preliminary study collects the influencing factors related to demand forecasting
for the air conditioning category and summarizes 19 categories of factors that may affect
the demand forecasting for air conditioning products, which are divided into two major
segments: internal data and external data. Internal data are further divided into two main
bodies: inbound and outbound sales and inventory data and product data.

Among them, the inbound and outbound data in the internal data contain production
data, sales data, shipment data, planning data, inventory data, and logistics data. The
product data in the internal data contain parameters, specifications, price, sales volume,
evaluation data, promotions, and time-to-market. The external data contain weather,
festivals, home-appliance-related policies, stock indices, environment, and competitors.

3.3. Data Distribution Analysis

After data collection is completed, due to the possibility of sampling bias [33], demand
distribution needs to be analyzed to determine the distribution of the data and allow for
the detection of any significant cyclical trends [34].

Therefore, in the process of data processing, the data are summarized according to
the monthly granularity, and the results of the demand distributivity analysis are shown
in Figure 5. As can be seen in Figure 5, it is evident that there are variations in the sales
figures. The market demand falls before and after promotional events such as 618 (China’s e-
commerce midyear promotion day), Double 11 (China’s e-commerce end-of-year promotion
day), and other e-commerce festivals; nonetheless, this reduction is explainable. Because
consumers anticipate promotional events, they often wait for them to begin before making
purchases, resulting in a fall in demand. Following the conclusion of the advertising
period, a considerable number of consumers have already made household appliance
purchases, thereby meeting the market’s demand, subsequently leading to a decline in
purchasing activity.
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The long-term pattern of demand is stable and slightly increasing, but the monthly
granularity observation demonstrates that there are noticeable peaks and troughs. Peaks
typically occur during hot weather months and sales promotions, while troughs occur
during holiday months such as the Chinese New Year. Nevertheless, consumer demand
may dip during the Chinese New Year, which is a natural market fluctuation. This pattern
indicates that customer behavior and sales promotions have a substantial impact on the
demand for air cooling equipment. Meanwhile, the reduced annual demand in 2020 shows
that the COVID-19 outbreak had a significant influence on the broader home appliance
industry, contributing to a market downturn. Consumers’ propensity to buy was signif-
icantly impacted by the pandemic, and they became more cautious and conservative in
the face of the risk of economic instability and uncertainty. Furthermore, the government’s
efforts to prevent and contain the outbreak had a substantial impact on home appliance
sales and production, limiting market expansion and releasing demand.
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3.4. Feature Group Construction

Combining the features collected in the previous section, this paper constructs four
different feature clusters, which are the time feature cluster, product attribute feature cluster,
target volume trend feature cluster, and environmental factor feature cluster.

The time feature group is determined by analyzing the trend of historical time data, as
can be seen from Figure 5, whether a month has become an important sales node such as
618 or Double 11, whether it is the January before or after e-commerce festivals, and what
the month of big home appliance promotions is, so this study considers the use of monthly
granularity as a time dimension.

The product attribute feature group is extracted by analyzing the product itself to
construct a feature group of product attributes. This feature group includes the product’s
own attributes and its market attributes, for example, volume, weight, color, and yes/no
frequency, which represent the product’s own attributes.

The target volume trend characteristics group indicates the characteristics associ-
ated with the trend changes in target volume. The inventory level of a product and the
distribution volume can be used to reflect the trend changes in the target volume.

The external factor feature group mainly refers to the extraction of features that are
relevant to the market environment. For example, an analysis of relevant competitors, in-
cluding competitor price gap and competitor market share. It also includes seasonal factors.

3.5. Feature Screening

Among the methods of feature selection, the correlation coefficient method and vari-
ance selection method are the traditional feature selection methods, but they cannot deal
with high-dimensional features and the complex relationships between features. However,
tree-model-based feature selection methods can automatically capture the nonlinear rela-
tionships between features, handle missing values, and evaluate features. In the tree model,
shallow nodes tend to have a better feature classification ability, meaning that important
features are more likely to appear in shallow nodes and appear more frequently, so we can
use the index of the number of times each feature appears in the tree model to calculate its
importance ranking. This applies to high-dimensional data problems and complex data
distributions.

Therefore, in this study, the variance selection method, the correlation coefficient
method, and the tree-model-based feature selection method are used for feature selection,
respectively, and an external evaluator, XGBoost, is used for the evaluation of feature
subsets to compare the performance advantages and disadvantages of these three feature
selection methods. In the screening process of feature subsets, parameters such as a learning
rate of 0.3, single tree depth of 6, and random sampling ratio of 0.7 are used to select R2 as
the evaluation index. After comparing the feature selection schemes, the tree-model-based
feature selection method is determined to be more effective, as shown in Table 1.

Table 1. Comparison of feature screening goodness-of-fit.

Feature Selection Method Goodness-of-Fit (R2)

Feature complete 0.7016
Variance selection method 0.7512

Correlation coefficient method 0.7608
Tree-model-based feature selection method 0.7996

Since we collected the features of air conditioning products before, in this section, we
rank the importance of the features of the tree model, excluding the product name and
product number. The importance ranking of the influencing factors is shown in Table 2,
and the influencing factors with the top 30 importance rankings are used in this study.
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Table 2. Top 30 influencing factors table.

Ranking Factor Ranking Factor Ranking Factor

1 Shipment 11 Discounted price 21 Competitor market share

2 Total sales 12 Sales volume compared with
the same period last year 22 Promotional or not

3 E-commerce holiday 13 Home Appliances to the
Countryside Label 23 The company’s stock index rose

or fell
4 Season 14 Total income from sales 24 Product positioning
5 Production 15 Horsepower 25 Product market share
6 Stockpile 16 Traditional holidays 26 Lowest price
7 Product price 17 Sales volume chain 27 Heating power

8 Promotional efforts 18 Planned volume for the first
three months 28 Real estate market environment

9 Favorable evaluation rate 19 Cooling power 29 Competitor price gap

10 Efficiency ratings 20 Is it a month before an
e-commerce festival? 30 Enterprise market share

The significance analysis demonstrates that different factors have varying degrees of
influence on demand prediction. The top two shipment data and total sales data are the
primary link between a company’s supply chain and the market, and they are critical for
businesses to effectively estimate market demand. Sales volume serves as a crucial indicator
for gauging product quality, as it is reflective of consumer preference. Consequently, a high
sales volume may suggest that the product is capable of aligning with consumer demand
in terms of both quality and price. The proper utilization of these data can provide better
feedback on consumer demand while also increasing product sales and competitiveness.

Furthermore, the third component is e-commerce festival data, which include some of
the most prominent e-commerce festivals (for example, 618 and Double 11). This aspect
demonstrates that e-commerce festivals significantly impact current customer behavior
regarding home appliances. The fourth component is the seasonal factor, which indicates
that air conditioner sales are affected by the seasons, and when the temperature rises in
the summer, the sales volume generally rises. When temperatures drop in the autumn and
winter, sales often fall. The fifth and sixth criteria are production and inventory, respectively.
High output and inventory means can swiftly meet market demand; demand forecasting
also has some reference relevance. The seventh factor is the product’s pricing. Price is an
essential factor in determining whether or not a consumer will buy a product, especially
when goods’ qualities are identical. Buyers are more likely to choose the lowest-priced
option. There is a consensus that price can have a positive or negative effect on sales. The
eighth factor is the effectiveness of promotions, which has a considerable influence on
consumer inclination to purchase. The ninth factor is the positive feedback rate, which
indicates the degree of consumer approval of the product, and customers may decide
whether to buy or not based on the positive feedback rate of reviews. The tenth factor is
the energy efficiency rating row. Air conditioners consume a lot of electricity, which can
lead to high electricity bills and increase the cost of living. Additionally, the consumer’s
desire to buy can have an impact.

The net weight of the internal unit, net weight of the external unit, size of the external
unit, year of launch, and color are in the last five places of the importance ranking, indicating
that consumers do not pay much attention to the specifications of air conditioners, and
they have less influence on the purchasing decision.

Through this analysis, the impact of each feature on the model’s prediction results
is clearly understood, thus effectively improving the model’s performance. Analyzing
the importance of influencing factors also helps to reduce the time and computational
resources for the model training and improve the efficiency of the model. In addition, the
interpretability of the model can be improved, making the model’s prediction results easier
to understand and interpret.
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3.6. Parameter Settings

In this study, the base models LSTM, RF, and XGBoost need to be parameterized.
Moreover, we compared the performance of the LSTM–RF–XGBoost model with two
classic machine learning algorithms: Support Vector Regression (SVR) and K-Nearest
Neighbors (K-NN). SVR is a robust algorithm grounded in Support Vector Machines, adept
at handling both linear and non-linear regression challenges. By employing various kernel
functions such as linear, polynomial, or radial basis kernels, SVR effectively captures data
complexity. This approach is particularly well-suited for high-dimensional data, offering
strong generalization capabilities. K-NN is a straightforward, nonparametric method ideal
for both classification and regression tasks. K-NN operates by computing the distances
between data points to make predictions, making it both easy to implement and interpret.
This simplicity and intuitiveness make K-NN a versatile and accessible choice for many
data analysis scenarios.

First, the parameters of the LSTM model are shown in Table 3, and we introduce Adam
to optimize the LSTM model.

Table 3. LSTM Parameters.

Parameter Parameterization Parameter Parameterization

learing_rate 0.001 output_size 1
epoch 120 batch size 60

input_size 30 dropout 0.4
num_layers 2 time_step 12
hidden_size 30, 30 loss MSE

bias True optimizer adam

The performance of random forests is affected by several parameters. The fixed
parameters in the Random Forest prediction model are shown in Table 4.

Table 4. Fixed parameters of Random Forest model.

Parameter Meaning Parameterization

criterion Decision tree splitting criteria MSE
oob_score Out-of-Bag Sample True

min_impurity_split Node splitting minimal impurity Le-7

The Bayesian optimizer is applied to tune the main parameters. For the Bayesian
optimizer, the Gaussian Process is selected as its surrogate function, EI (Expected Improve-
ment) is chosen as its acquisition function, the number of iterations is 80, and the objective
function evaluation process is shown in Table 5.

Table 5. Bayesian parameter optimization diagram of Random Forest.

Parameter Initialization Parameter Optimized Parameter

max_depth 5 14
n_estimators 100 110

min_samples_split 2 3
max_features 0.6 0.5

There are three categories of parameters for the XGBoost prediction model: the first
category, generalized parameters, serves to control the model as a macro function. The
second category, boosting parameters, is used to improve the model effect. The third cate-
gory, learning parameters, guides the execution of optimization tasks. Its fixed parameter
settings are shown in Table 6.
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Table 6. Fixed parameters of XGBoost model.

Parameter Meaning Parameterization

objective Loss function type reg:squarederror
booster Base learner type gbtree

eval_metric Evaluation indicator MSE

Bayesian optimization is also used to tune the boosting parameters. For the Bayesian
optimizer, the Gaussian Process is selected as its surrogate function, EI is chosen as its
acquisition function, the number of iterations is 80, and the objective function evaluation
process is shown in Table 7.

Table 7. Bayesian parameter optimization diagram of XGBoost.

Parameter Initialization Parameter Optimized Parameter

learning_rate 0.3 0.12
gamma 0 0.7

max_depth 6 5
min_child_weight 1 4

subsample 0.7 0.6
colsample_bytree 1 0.58

lambda 1 2
alpha 0 5

scale_pos_weight 1 0.7

The parameters of SVR and K-NN are shown in Table 8.

Table 8. SVR and K-NN parameters.

Model Parameter

SVR Kernel is rbf, C is 0.5, epsilon is 0.05, gamma is auto
K-NN Weight is distance, n_neighbors is 3, algorithm is ball_tree, leaf_size is 20, p is 1

3.7. Experimental Analysis

In this study, LSTM, Random Forest, XGBoost, SVR, K-NN, and the LSTM–RF–
XGBoost combination methods are used to forecast the demand for air conditioning prod-
ucts. Among them, LSTM can handle nonlinear features better, while also dealing with
multivariate time series problems and improving the fitting accuracy. When dealing with
complex nonlinear time series, introducing gating units successfully overcomes the prob-
lem of vanishing gradients and eliminates the step of differential smoothing. The Random
Forest model can effectively simulate a variety of complicated non-linear regressions using
two methods: data self-sampling and feature random sampling, resulting in a greater
generalization effect while simultaneously avoiding overfitting. XGBoost calculates the
minimal loss function using the second-order Taylor expansion to determine the splitting
node and achieve the optimal result.

According to the literature review [17–19], classical machine learning models such as
Random Forest (RF) and XGBoost, along with the deep learning model LSTM, were selected
and compared with the innovative LSTM–RF–XGBoost combination model proposed
in this study. The LSTM–RF–XGBoost combination model aims to integrate both time
series analysis elements and the fitting accuracy of deep learning neural networks. This
approach better addresses the high demand and cyclicality issues of home appliances while
improving prediction accuracy. In order to assess the accuracy of the model predictions,
we compared the evaluation results of the models, as shown in Table 9.
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Table 9. Comparison table for assessment of model indicators.

Prediction Model MAE RMSE R2

SVR 0.0797 0.1863 0.8010
k-NN 0.0852 0.2001 0.7810
LSTM 0.0758 0.1738 0.8161

RF 0.0776 0.1853 0.8018
XGBoost 0.0723 0.1695 0.8296
Blending 0.0625 0.1337 0.9116

As shown in Table 9, the parameter values of LSTM, RF, and XGBoost were significantly
better than those of SVR and K-NN, indicating that these three methods are more suitable
for predicting the demand for air conditioning products. The results in the table show
that the three single models exhibited relatively high MAE and RMSE metrics on the test
set. This indicates that there was a certain problem of a poor generalization ability, which
requires further adjustment of the model parameters. However, the models exhibited a
high R2 on both the training and test sets, indicating that they fit the data better.

In contrast, the blending model performed the best in prediction, and the evaluation
indexes were better than the single-model evaluation indexes. The model not only per-
formed optimally in terms of goodness of fit, with a result of 0.8682, but also had an MAE
value of 0.0658, while the RMSE value was 0.1407, both of which are the lowest among the
all models.

This shows that the blending model had an advantage in terms of both model accuracy
and stability. The combination of LSTM, RF, and XGBoost approaches leveraged the
strengths of each individual algorithm. With its recurrent neural network architecture,
LSTM effectively captures the long-term dependencies and temporal dynamics inherent in
demand data. RF excels at dealing with complicated features and mitigating overfitting,
improving the model’s stability and generalization capacity. Furthermore, XGBoost’s
ensemble learning strategy further addresses high demand volatility.

To better evaluate the prediction performance of each model, we plotted a comparison,
as shown in Figure 6. The predicted and actual demand values of all models were near the
perfect prediction line, indicating that these models fit the data well. Notably, the blending
model’s predictions were generally close to the perfect prediction line, highlighting its
effectiveness in handling high demand and periodicity issues, outperforming the other
models. The LSTM, RF, and XGBoost models also showed predictions closer to the actual
values, demonstrating high prediction accuracies. In contrast, the SVR and K-NN models
exhibited a more scattered distribution of prediction results and deviated further from the
perfect prediction line, indicating relatively poor prediction performances.

To further validate the performances of the dominant models in predicting actual
demand, we plotted the fitting curves of each model on the test set, as shown in Figure 7.
Figure 7 illustrates the comparison between the actual and predicted demand values on the
test set for the LSTM, RF, XGBoost and blending models, respectively. These curves not
only visualize the prediction ability of each model, but also provide a detailed analysis of
each model’s performance under different time periods and demand fluctuations.

Figure 7a illustrates the fit of the LSTM model on the test set. The figure shows that
the LSTM model performed well in capturing long-term trends and seasonal variations in
the time series data. In contrast, Figure 7b demonstrates that the RF model could better
fit certain periods with abnormal fluctuations in real demand, highlighting its advantages
in dealing with complex non-linear relationships and high-dimensional data. Figure 7c
presents the prediction results of the XGBoost model, which combines the strengths of
gradient boosting and excels in handling a wide range of features and high-dimensional
data. The model’s prediction curves on the test set reasonably matched the actual demand
values, particularly during periods of high demand variation. Lastly, Figure 7d displays
the prediction results of the blending model. By integrating the strengths of LSTM, RF,
and XGBoost, the blending model showed outstanding performance in addressing high-
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demand and periodic issues. Its prediction curves exhibited the highest fit to the actual
demand values, further validating the effectiveness of this combined model.
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The synergistic integration of these algorithms enables the hybrid fusion model to
outperform individual techniques, demonstrating its effectiveness and utility in practical
demand forecasting applications. While single models perform well in specific scenarios,
their predictive effectiveness is limited in more complex demand environments. This un-
derscores the rationale for employing a composite model in this study. The blending model
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surpassed the single models in terms of its prediction accuracy and data representation,
particularly when handling multiple features and complex data relationships. The superior
performance of the blending model in predicting and managing fluctuating demand high-
lights its strong suitability for practical applications, ensuring more reliable and accurate
demand forecasts.

4. Conclusions

The research conducted in this paper considers addressing the modern home appliance
market’s response to the diversification of consumer demand. Focusing on the demand
forecasting of air conditioning products, the authors of this paper proposed a combined
forecasting model, LSTM–RF–XGBoost, which was then compared to traditional machine
learning models and classical deep learning single forecasting models. The influences and
performances of different models for the demand forecasting of air conditioning products
were discussed. The data showed that the MAE, RMSE, and R2 values of the combined
LSTM–RF–XGBoost model were 0.0658, 0.1407, and 0.8682, respectively, lower than the
single model.

In the future, it is still necessary to further verify the adaptability and stability of the
model on different home appliance datasets and datasets of different sizes. Other datasets
may have different feature distributions and data structures compared to the appliance
product dataset. For example, if the new dataset involves a different type of product or
service, its features and attributes may differ from the air conditioning product dataset,
and the model needs to be adjusted to reflect these new data features.

For large datasets, strategies like distributed computing and parallel processing are
considered to improve the efficiency of model training and prediction, thereby enhancing
their scalability. For limited datasets, data enhancement techniques are employed to
improve the generalization ability and stability of models, as well as to address the model
overfitting problem.

In addition, techniques such as migration learning can be considered to transfer the
model parameters trained on large datasets to small datasets, accelerating model training
and improving prediction. Throughout the migration process, models must consider data
quality and labeling accuracy. If the new dataset is of poor quality or the labels are incorrect,
it may affect the performance and generalization ability of a model. Therefore, adequate
data preprocessing and labeling adjustments are required when migrating models to ensure
that they can accurately capture the features and patterns of the new dataset.

Future research will involve the further collection and collation of datasets of different
types of household appliances, such as washing machines, refrigerators, televisions, etc., in
order to evaluate the applicability of our model on data from different home appliances. To
change the model parameters and optimize the model structure, it is required to consider
the feature differences and data distribution among household appliances. It is essential
to conduct comprehensive model evaluation and validation procedures to ascertain the
model’s adaptability and transferability across diverse home appliance datasets.

Additionally, the model’s inadequacies are apparent in its failure to adequately take
external environmental aspects into account. Economic conditions, regulatory changes,
societal trends, geographical disparities, and emergencies, for example, can all have a
substantial impact on the demand for household appliances. Specifically, macroeconomic
indicators, such as the GDP growth rate and unemployment rate, affect consumers’ purchas-
ing power, policy changes such as energy-saving subsidies and environmental regulations
change market demand, social trends and consumer preferences influence the popularity
of home appliances, and demand for air conditioners in the cold north may be lower than
in the hot south. Furthermore, unexpected events such as natural disasters and epidemics
might have an unanticipated effect on demand. As a result, the model should incorporate
economic indicators, policy information, social trend data, and geographical data into the
forecasting process using feature engineering and model adjustment. At the same time,
a dynamic updating mechanism should be implemented to obtain the most recent data
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on a frequent basis and update the model in real time to reflect changes in the market
environment, thereby improving the accuracy and stability of the model’s forecasts.

Meanwhile, although the hybrid model proposed in this paper is superior to single
prediction models at this stage, there is still room for further improvement in its prediction
accuracy. Future research could consider introducing more and better models for com-
parative analysis and increasing the variety of single models included in the composite
model to fully leverage the advantages of each model. Specifically, the exploration of
deep learning models and new integrated learning methods is encouraged. Additionally,
adjusting the parameters and structures of these models for different application scenarios
and data characteristics can further enhance their adaptability and generalization ability. By
continuously optimizing and expanding the model portfolio, we expect to further improve
the prediction accuracy of the models, thereby better meeting the complex requirements of
actual demand forecasting and providing more reliable and accurate decision support for
the industry.

In conclusion, this study shows that, compared with traditional machine learning
models and deep learning forecasting models, the combined LSTM–RF–XGBoost model
has a higher accuracy and forecasting performance, better captures periodicity, and has
a superior generalization ability. It is capable of producing accurate predictions about
different types of home appliance data.
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