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Abstract: Diabetic macular edema (DME) is a leading cause of vision impairment in diabetic patients,
necessitating a timely and accurate diagnosis. This paper proposes a comprehensive system for
DME grading using retinal fundus images. Our approach integrates multiple deep learning modules,
each designed to address key aspects of the diagnostic process. The first module employs the Con-
vUNeXt model for segmenting hard exudates (HaEx), crucial indicators of DME. The second module
uses RetinaNet for precise optic disc (OD) localization, which is essential for subsequent macula
localization. The third module refines macula localization, leveraging preprocessing techniques to
enhance image clarity. Finally, our system consolidates these results to provide interpretable DME
grading. Experimental evaluations were conducted on the Messidor dataset, demonstrating the
system’s robust performance. The HaEx segmentation module achieved a mean IoU of 70.5% and a
Dice coefficient of 0.64. The OD localization module showed perfect accuracy, recall, and precision
at 1.0. For macula localization, our method satisfied the 1R criterion with 99.38% accuracy. The DME
grading module achieved an overall accuracy of 91.12%, with an AUC of 0.9334. Our method offers a
balanced performance across accuracy, sensitivity, and specificity compared to other non-interpretable
and partially interpretable methods.

Keywords: diabetic macular edema; fundus images; deep learning; hard exudates; optic disc; macula;
DME grading

1. Introduction

Diabetes mellitus, colloquially termed diabetes, is a persistent medical ailment caused
by the body’s incapacity to effectively modulate blood glucose levels. As per the Inter-
national Diabetes Federation, approximately 171 million adults globally were reported
to be living with diabetes in 2000. Projections anticipate a surge to 366 million by the
year 2030 and 700 million by the year 2045 [1,2]. Diabetic retinopathy (DR) stands as a
significant complication capable of culminating in partial vision loss and, in severe cases,
total blindness. Initially, DR may not exhibit symptoms, but over time, it can exacerbate
and lead to the loss of vision [3]. DR can manifest various abnormalities in the retina, such
as microaneurysms, hard and soft exudates, hemorrhages, neovascularization, and macular
edema. Generally, DR is categorized into four stages according to its severity, which are
mild non-proliferative DR, moderate non-proliferative DR, severe non-proliferative DR,
and proliferative DR (PDR) [4].

Diabetic macular edema (DME), an associated complication of DR, can be regarded
as an additional stage of DR. DME typically results from the leakage of tissue fluid from
macular vessels or retinal thickening, manifesting at any DR stage [5]. The leakage of
tissue fluid causes Hard Exudates (HaExs), which is a typical lesion related to DME. This
lesion forms clusters with varying sizes and shapes, and it can appear in any position of
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the retina. Following the clinical grading standard for DME, the positional relationship
between HaExs and the macular center serves as a critical criterion for severity grading.
The severity of DME has three grades: grade 0, grade 1, and grade 2, representing no
visual DME, non-clinically significant macular edema (NCSME), and clinically significant
macular edema (CSME), respectively [6]. The DME grading provided by the Messidor
website is given in Table 1. Independent of the DR grade, the early and timely detection of
CSME is very important to avoid partial and total vision loss because the macula region is
responsible for acquiring clear visual information, and any damage to this region would
cause important visual impairment. The ophthalmologist first checks whether the quality
of the fundus image is sufficient to make a diagnosis. Once it is determined that the
image quality is adequate for diagnosis, the ophthalmologist examines the presence of
HaExs within the macular area to determine if the grade is CSME or not to decide on an
appropriate treatment [7].

Table 1. DME grading criteria provided by [5].

Grade Severity Details

0 Healthy No visible HaExs near the macula

1 NCSME Distance between macula and HaExs >
one papilla diameter

2 CSME Distance between the macula and HaExs
<= one papilla diameter

In the literature, there are two approaches for DME grading: one is handcrafted
feature-based methods [8–11] and the other involves deep neural networks [5,12–20]. In
the early stage of the DME grading schemes, almost all proposals belong to the former
approach, in which the two distinct stages, the feature extraction stage and the grade
assignment stage using the extracted features, are required to carry out the DME grading.
Recently, with the rise of deep learning, several proposals have begun to use different
structures of deep neural networks for DME grading tasks. This approach uses a so-called
end-to-end strategy, integrating both processes within the algorithm itself. Generally,
algorithms based on deep neural networks provide higher grading accuracy compared
with handcrafted-based methods. However, algorithms based on deep neural networks
can be seen as a black box for users [21,22] and the decision-making process taken by
AI-based algorithms is somewhat opaque. In computer-aided diagnostics in the medical
field, obtained classification or grading results must be interpretable for clinicians, who
finally make the decision to provide the most appropriate treatment to his/her patients.

In this paper, we propose an interpretable DME grading system to support oph-
thalmologists in making a decision about the most adequate treatment. The proposed
system is composed of four stages. In the first stage, HaExs, key lesions of DME, are
segmented using optimized ConvUNext, and an optic disc (OD) is detected using Reti-
naNet, which is the second stage. Then, using OD positional information obtained in the
second stage, the macula region is localized in the third stage. Finally, as the fourth stage,
combining all results of the three previous stages, a DME grade is assigned. Considering
real application, in which retinal images are captured by different fundus cameras under
different environments, we applied two different preprocessing to enhance the input im-
age. The majority voting scheme is applied to obtain the final DME grade with a high
confidence rate, obtaining a performance accuracy of 91.12%, sensitivity of 91.12%, and
specificity of 93.00%.

While Optical Coherent Tomography (OCT) has become a reliable method for effi-
ciently detecting DME, we opted to utilize retinal images as input data due to the high
cost of OCT equipment. In many developing countries, this equipment is only accessible
in major hospitals or specialized eye clinics located in urban areas. Given the potential
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application of our proposed system in remote areas or within telemedicine frameworks,
retinal images serve as more suitable input data.

The rest of the paper is organized as follows. In Section 2, we briefly describe some
related works previously reported in the literature and a detailed description of the pro-
posed system is provided in Section 3. Experimental results are shown in Section 4, and in
Section 5, we provide a discussion about some limitations and challenges of the proposed
algorithm. Finally, the conclusions and future works derived from this paper are provided
in Section 6. Additionally, mathematical developments of some concepts are provided in
the Appendix A.

2. Related Works

In this section, we describe previous works on the DME grading system. As mentioned
before, previous works are categorized into two approaches: a handcrafted feature-based
approach and a deep learning-based approach. Some works try to increase the interpretabil-
ity of the results obtained using the deep learning-based approach. We also mention these
works in this section.

2.1. Handcrafted Feature-Based Approach

Almost all the early works rely on handcrafted feature-based approaches. Despite
their limited performance, these approaches are similar to the methodology used by oph-
thalmologists to determine the severity of DME. In this sense, the results obtained can be
interpretable for them. The authors of [8] proposed an automatic DME grading system
utilizing the Particle Swarm Optimization (PSO) algorithm for HaExs segmentation. The
detection of the OD and fovea relies on mathematical morphology, and the severity of the
DME is determined based on the locations of lesions HaExs with respect to the OD. In
reference [9], texture features are extracted from the area surrounding the macula, and
DME grading is performed using a Support Vector Machine (SVM), achieving an accuracy
rate of 86%. The authors of [10] utilized CLAHE (Contrast Limit Adaptive Histogram
Equalization) for image enhancement. Following this, HaExs were identified through a
segmentation technique, and the DME grading was conducted based on the spatial location
of HaExs within the macula region. Another handcrafted-based approach outlined in [11]
involves localizing the macula using its anatomical features and determining its location
with respect to the OD. Subsequently, HaExs are detected using a vector quantization
technique and a semi-supervised method, followed by DME grading based on the location
of HaExs and the macula coordinates.

2.2. Deep Learning-Based Approach

Deep learning, especially convolutional neural networks (CNNs), is gaining widespread
popularity and finding increased application in various domains, notably in medical image
processing. This approach, distinct from traditional feature engineering techniques de-
scribed in Section 2.1, addresses challenges such as medical image segmentation, detection,
and classification, achieving substantial success. To diagnose various ocular diseases from
fundus images, different algorithms based on deep learning have been developed, generally
showing high performance [23–27]. The deep learning-based approach lies in its ability to
automatically learn feature extraction through a backbone network, primarily composed of
convolutional and pooling layers. An antecedent study employing deep learning in DME
grading is found in [12], where the authors presented a deep neural network comprising 13
convolutional layers for feature extraction and two dense layers dedicated to DME grading.
The model demonstrated noteworthy performance, achieving accuracy, sensitivity, and
specificity values of 88.8%, 74.7%, and 96.5%, respectively.

Some other authors demonstrated that ensemble methods perform well for DME
grading, as in the work outlined in [18], where the authors advocated a two-stage ap-
proach. In the initial stage, the algorithm discerns the presence or absence of DME. Upon
confirming the presence of DME, the image is then subjected to the second stage, where
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grading is conducted based on the severity of the condition. Both stages integrate the
proposed technique, termed the Hierarchical Ensemble of Convolutional Neural Networks
(HE-CNN). The results demonstrated notable accuracy, sensitivity, and specificity values of
95.47%, 94.68%, and 97.19%, respectively.

In due course, natural language processing algorithms found applications in computer
vision, leveraging their notable performance in natural language applications. Conse-
quently, certain researchers began implementing these algorithms for DME grading. A
notable example is the research documented in [5], where the authors introduced an innova-
tive end-to-end architecture incorporating ResNet50 along with channel attention (SENet)
for feature extraction. Moreover, they introduced a disease attention module to enhance
disease-specific information related to DME. The outcomes demonstrated an accuracy value
of 97.06%. In other research presented in [20], the authors introduced a three-component
system encompassing the backbone, the neck, and the head. The Swin Transformer served
as the framework’s backbone, incorporating window multi-head self-attention (W-MSA)
and mobile window multi-head self-attention (SW-MSA). The neck of the framework was
composed of Global Average Pooling (GAP), while the head utilized linear CLS (class
token). This modular design contributes to the model’s simplicity and ease of training,
as it ensures a clear mapping between features and categories. The results were 98.66%,
98.66%, 99.32%, and 98.66% for accuracy, sensitivity, specificity, and F1-score, respectively.
It is worth mentioning that the above four methods use the public Messidor data set to
grade the three severity degrees of DME. Other methods [13,15,16,19] use private data sets
or their classification is binary (presence or absence of DME).

2.3. Interpretable Machine Learning Approach

Instead of treating a deep learning model as a black box, some authors have pursued
an approach where deep learning algorithms are only employed as extractors of relevant
information about the DME. They utilize these extracted features to conduct DME grading,
employing a conventional machine learning classifier. This method offers some degree of
interpretability since the DME grade assignment is based on the retinal anatomical features
extracted in the first stage.

For example, in [14], the authors advocated the utilization of a deep learning model to
extract features from fundus images. The training process involved incorporating these
multi-scale features from the image, such as hard exudate masks, macular masks, and
macular images. Subsequently, XGBoost is used for DME grading, which introduces these
data. This work can be considered partially interpretable because input data, such as
the positional relationship between HaExs and macula, is interpretable data, which is
generally used by ophthalmologists to determine the severity of the DME. However, the
decision-making performed by XGBoost is still a black box.

In reference [17], the authors developed an end-to-end deep fusion model based on
EfficientNet as a backbone network. This network is used not only for binary classification,
DME or non-DME but also HaExs localization, combined with a bi-directional feature
pyramid network (BiFPN). This fusion model was trained using a loss function, which
is a linear combination of classification loss and detection loss. Although the decision
about the presence or absence of DME was taken by a black box like CNN, the fact that
a part of the same CNN is used for the detection of HaExs increases the interpretability
of results. Additionally, the authors detected optic discs and macula using YOLOv3 to
provide additional information for ophthalmologists, although the system does not provide
the three grades of the DME shown in Table 1.

3. Proposed System

The proposed system consists of four modules: the HaEx segmentation module, optic
disc localization module, macula localization module, and finally the DME grading module
that uses all the information provided by the previous three modules. The input image
obtained from ophthalmoscopy is pre-processed to crop the unwanted background which
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is introduced into three modules: the HaEx segmentation module, optic disc localization
module, and macular localization module. Each module executes different tasks with the
intention of combining the results to create an interpretable diagnosis decision to help
ophthalmologists determine the grade of DME from eye fundus images that are the input
of our system. Figure 1 shows a diagram of the proposed system with all modules and
their relationship. Each module will be described in detail in the following subsections.
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3.1. Hard Exudates (HaExs) Segmentation Module

The objective of the first module is to segment HaEx lesions utilizing CNN from RGB
fundus images to obtain a binary mask of these lesions. Figure 2 presents the processes
inside the module in detail.
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Figure 2. HaEx segmentation module subprocesses.

For dataset preparation, three datasets, Messidor [28], Retinal Lesions [29], and
DDR [30] were considered. Retinal Lesions and DDR are public datasets with RGB retinal
images and ground truth (GT) masks of DR lesions, which are labeled based on the consen-
sus of several ophthalmologists [29,30]. In the case of Messidor, the GT masks are privately
generated by two ophthalmologists based on the Messidor RGB images. The final GT masks
were decided by their consensus. Each dataset provides different types of ground truth
masks for HaExs. For example, Messidor and Retinal Lesions provide rough segmentation,
grouping agglomeration of exudate spots. Meanwhile, in the DDR dataset, each exudate
spot is segmented separately. Figure 3 shows examples of images and corresponding GT
masks from three datasets. We decided to use the Messidor dataset and Retinal Lesions
dataset to train and evaluate the HaEx segmentation module because the amount and
shape of the leak of lipids play an important role in causing HaEx lesions identified by
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yellowish-white deposits [31]. Therefore, rough segmentation used in Messidor and Retinal
Lesion is more adequate for the segmentation module.
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A cropping process was employed on the images to keep only the region of interest,
removing the greater black background as shown in Figure 1. Then the datasets are divided
into two sets: train and test with approximately 80% and 20% of the images. Table 2
presents the number of images in training and test sets.

Table 2. Datasets and their respective division into training and test sets.

Dataset Training Set Test Set

Messidor [28] 900 236
Retinal Lesions [29] 400 96

ConvUNeXt [32] was used to achieve our goal of accurate HaEx segmentation be-
cause it is a model based on UNet for medical image segmentation with the advantage
of reducing the number of parameters and enhancing the convolution blocks by using
large convolution kernels and depth-wise separable convolution. This parameter reduction
allows ConvUNeXt to achieve a lightweight design while maintaining segmentation perfor-
mance. It also integrates a gating mechanism for feature fusion and a lightweight attention
mechanism (Attention Gate) to filter out noise and highlight relevant information. These
mechanisms enhance the model’s ability to capture both high-level and low-level semantic
information, resulting in more accurate segmentation outcomes [32]. The attention gate
mechanism controls the importance of features at different spatial locations, allowing the
model to suppress irrelevant areas in the input image while highlighting relevant features
in specific local areas, leading to improved accuracy in medical image segmentation tasks,
as shown by a review paper [33].

The quality of retinal images is highly variable and influenced by several factors,
including the type of ophthalmoscopy employed, the precision of the ophthalmoscopic
focus, and the environmental conditions during image acquisition, such as the level of
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illumination. Therefore, in some cases, the preprocessing stage to enhance HaEx lesions
is required to obtain accurate segmentation. We consider two image-enhancing methods:
contrast enhancement (CE) [34] and the conversion in CIELAB color space from RGB. The
CE preprocessing is given by (1).

ICE(x, y) = αI(x, y) + βG(x, y; σ)⊛ I(x, y) + µ (1)

where ICE is the enhanced image and I is the original image, the values of α, β, σ and µ are
constant values set as 4, −4, 300/30, and 128, respectively, and G(x, y; σ) is a Gaussian filter
with the variance σ. The operation ⊛ means convolution. This process involves subtracting
the Gaussian-filtered image from the original image to enhance contrast, with µ serving as
a baseline shift for the grayscale.

The second preprocessing method started by converting the RGB images to CIELAB
color space. From the A and B channels, we calculated the minimum and maximum pixel
values and the a and b variables, respectively. We applied a linear transformation to enhance
the contrast of the image including a gamma correction term (2).

y =

(
x − a
b − a

)γ

(d − c) + c (2)

where γ is the gamma value used for the transformation. If γ > 1, the transformation
compresses the range of pixel values towards the lower end, making the image appear
darker. The variable x corresponds to the input in channels A or B, and the c and d values
are set to 0 and 255. The final image It is obtained concatenating two times the transformed
channel B, yB and one the transformed channel A, yA as shown by (3).

It = concat(yB, yB, yA) (3)

Because the level of distortion of the incoming retinal images cannot be known in
advance, we trained three ConvUNeXt for each input image: input image without prepro-
cessing, input image enhanced by CE, and input image in CIELAB color space. Hyperpa-
rameters of each of the three ConvUNeXt are adjusted empirically, which are shown in
Table 3. We denominated these three networks as ConvUNeXt-Original, ConvUNeXt -CE,
and ConvUNeXt-CIELAB.

Table 3. Hyperparameters used to train three ConvUNeXts according to three treatments of
input images.

Hyperparameter ConvUNeXt-
Original ConvUNeXt-CE ConvUNeXT-

CIELAB

Learning rate 1 × 10−4 1 × 10−3 1 × 10−3

Weight decay 5 × 10−5 5 × 10−4 5 × 10−4

Epochs 100 100 100
Loss function Combination of Cross-Entropy and Dice loss

Optimizer AdamW
Batch size 2

Data augmentations Random resize, random crop, horizontal and vertical flip

3.2. Optic Disc (OD) Localization Module

This module aims to localize the Optic Disc and obtain its coordinates to use in the
next module for calculating the macula area. To conduct the experiments, the DRIVE [35]
and Messidor datasets were selected under the supervision of ophthalmologists.

In this case, we define RetinaNet as a model due to its strong performance in detecting
small objects and capability for accurate object localization with high precision and recall
rates [36]. RetinaNet achieves this by utilizing a feature pyramid network (FPN) due to its
ability to provide multi-scale feature representation, enhance localization accuracy, improve
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efficiency, adapt to object scales, and capture contextual information. By leveraging the
hierarchical structure of the pyramid-shaped network, object detectors like RetinaNet can
achieve high accuracy and robust performance in detecting objects of varying sizes and
complexities, as well as a Focal Loss function that introduces a modulating factor to the
cross-entropy loss given by (4).

FL(pt) = −(1 − pt)
γ log(pt) (4)

where pt is the probability of the ground truth class, which is the output of the classification
model for the true class label, (1 − pt)

γ is the Modulating factor that down-weights the loss
for well-classified examples (where pt > 0.5) and amplifies the loss for hard, misclassified
examples (where pt ≤ 0.5) and γ is the focusing parameter that controls the modulating
term. When γ = 0, the Focal Loss reduces to the standard cross-entropy loss.

The Focal Loss function is crucial in object detection tasks due to its ability to address
class imbalance, focus on hard examples, improve learning dynamics, enhance object
localization, and provide flexibility for better generalization. By incorporating this function,
object detectors like RetinaNet can achieve higher accuracy, robustness, and efficiency in
detecting objects in challenging real-world scenarios. These characteristics make RetinaNet
suitable for applications where accurate object localization is essential, and it is also suitable
for real-time applications.

For the training phase, we used DRIVE, split into training and test sets with 32 and
8 images, respectively. The hyperparameters used to train the model were: a learning
rate of 1 × 10−4, batch size of 4, 8 steps, and 50 epochs with a backbone of resnet50 using
pre-trained weights on the CoCo dataset [37].

After the detection of OD, the center of OD and diameter of OD (DD) are calculated
as follows.

CODx = BBxmin +
(BBxmax − BBxmin)

2
(5)

CODy = BBymin +

(
BBymax − BBymin

)
2

(6)

where
(
CODx, CODy

)
is the coordinate of the center of OD,

(
BBxmin,BBymin

)
and(

BBxmax,BBymax
)

are coordinates of the lower-left and upper-right of the bounding box
obtained by RetinaNet.5

The OD diameter (DD) was calculated according to (7), using BBxmin and BBxmax:

DD = BBxmax − BBxmin (7)

3.3. Macula Localization Module

As mentioned before, the functionality of this module relies upon the outcomes
generated by the OD Localization Module to conduct calculations pertinent to macula
localization. Figure 4 illustrates the subprocesses inside the module.

Due to the variations in color intensity and luminosity within fundus images, which
consequently impact the visibility of the macula, we decided to employ two preprocessing
methodologies aimed at enhancing the color representation of the macula region. First, we
selected an image from the DRIVE dataset with suitable color and brightness for macula
discrimination. Secondly, we applied the iterative robust homomorphic surface fitting
(IRHSF) preprocessing [38] to the selected image to create a new one that serves as a
reference to perform a histogram specification across the entire training dataset. The
creation of the reference image was performed only once, and it is used to apply the
histogram specification to any other retinal images. The details of the IRHSF preprocessing
and histogram specification are described in the Appendix A.
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Figure 4. Macula Localization module subprocesses indicated by a red dot-line box.

The initial images or their preprocessed counterparts, the histogram specification
results, and coordinates corresponding to the OD were employed as inputs for this module
to determine the macula area. To begin with, the calculations of the images, the OD center
coordinates, and the DD were parsed, followed by the pre-processed images to split them
into three channels: red, green, and blue.

According to the literature the center of the macula, the fovea, is located at approxi-
mately 2.5 DD from the center of the OD with a little horizontal angle and is the darkest
area of a fundus image. For this reason, a candidate area for its localization is defined as a
rectangle of 2 DD length and 2.5 DD width as shown in Figure 5 [39].
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Additionally, image processing techniques were used to highlight the exact location of
the fovea within the designated rectangle. This entails employing contrast enhancement
methods, such as CLAHE, in the green channel of the image to produce a new version.
Subsequently, a binary image of the previous outcome was created using Otsu binarization
to choose the optimal threshold value for each image. Finally, a median blur filter was
applied. The Hough circles algorithm detected the circles and their centers within the result
pre-processed designated area. In cases where multiple circles were identified, they were
averaged to obtain a single result. This one was considered the center of the fovea. To end
the process in the original fundus image the quadrants, OD, OD center, the macula area
defined as a circle of 1 DD, and fovea were drawn.
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3.4. DME Grading Module

This module consolidates the outcomes obtained from all preceding components
to assign the DME grading. To perform an interpretable DME grading, HaEx masks
segmented by the HaEx segmentation module, and the macula area localized by the macula
localization module are combined. The macula area is inside of a circle whose center is
the fovea and whose diameter is 1DD as mentioned in Section 3.3. The assessment was
conducted by determining whether the distance between the segmented HaEx masks and
the position of the macula signifies a potential danger based on the criterion presented in
Table 1. It means that if some pixels of the HaEx mask are located within the macula area,
grade 2 (CSME) is assigned. Grade 1 (NCSME) is assigned if all pixels of the HaEx mask
are located outside the macula area and grade 0 (Healthy) if no HaEx mask is presented in
the image.

Once the grading was performed, HaExs within the macular region were accentuated
using different colors corresponding to the designated DME severity grade, as well as the
plotted macular area and OD position bounding box. Thus, facilitating comprehensible
grading outcomes for ophthalmologists.

4. Experimental Results

In this section, we present the findings from our proposed system for DME grading
based on retinal fundus images. The results were analyzed in terms of accuracy, precision,
recall, and other relevant metrics. The following subsections detail the performance of
each module, demonstrating the effectiveness and robustness of our approach. The results
highlight the segmentation accuracy of HaEx lesions, the precision of OD detection and
macula localization, and the reliability of the DME grading module. Visual examples and
quantitative metrics are provided to support our findings. These results are crucial for vali-
dating the efficacy of our system and its potential application in assisting ophthalmologists
with DME diagnosis.

4.1. Hard Exudates (HaEx) Segmentation Module Results

The HaEx segmentation module, employing the ConvUNeXt model, demonstrated
effective performance in segmenting lesions from RGB fundus images. The evaluation was
conducted using the Messidor dataset, described in the methodology section.

In Figure 6, we can observe examples of test results evaluating Messidor’s original
images with the ConvUNeXt-trained segmentation model.
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The results of both preprocessing methods, Contrast Enhancement (CE) and CIELAB,
improve identifying areas with hard exudates as seen in the first row of Figure 7, while in
images without exudates, such as those shown in the second row, there are no highlighted
areas in yellow or blue depending on the preprocessing applied.
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The metric values of the three models are shown in Table 4. Both preprocessing
methods, CE and CIELAB, improve the IoU, indicating enhanced capability to detect
affected areas.

Table 4. Metrics results for HaEx segmentation of three models.

Model Mean IoU Dice Coefficient

ConvUNeXt-Original 69.5 0.64
ConvUNeXt-CE 70.4 0.34

ConvUNeXt-CIELAB 70.5 0.42

4.2. Optic Disc (OD) Localization Module Results

The OD localization module utilizing RetinaNet demonstrated robust performance in
detecting the OD, as evidenced by the metrics in Table 5. Figure 8a–d provides examples of
the OD localization results from the Messidor dataset.

Table 5. Metrics results for OD localization using IoU threshold of 0.5.

Method mAP Accuracy Recall Precision

Basit, A. [40] - 0.9861 - -
Ali, H.M. [41] 0.996 1.0 0.996 0.996
Our Method 1.0 1.0 1.0 1.0
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4.3. Macula Localization Module Results

To assess the performance of the macula localization, we utilized the macula annota-
tions provided by [42] for a subset of 1136 images. For quantitative results, we calculated
the 1R criterion, which refers to a specific method used in medical imaging, particularly
in ophthalmology, for identifying the macula in retinal images. The “1R” criterion refers
to the difference between the ground truth (GT) foveal position and the predicted foveal
position, which should be within one optic disc (OD) radius. We computed the 1R criterion
using the ground truth annotations and predictions. Table 6 contains the 1/2R, 1R, and 2R
results and a comparison with two previous methods that used the same 1136 images.

Table 6. Comparison of macula detection scores in percentage.

Method 1/2R 1R 2R

Aquino, A. [43] 91.28 98.24 99.56
Molina-Casado, J. [44] 96.08 98.58 99.50

Our Method 79.40 99.38 99.91

Figure 9 illustrates examples of the macula localization outcomes using the
Messidor dataset.
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The value achieved by our method significantly ensures precise identification of the
macula, which is crucial for the accurate grading of DME. Such a high accuracy provides
consistent and reliable results, reducing variability and enhancing the dependability of
diagnoses across different images and patients. Furthermore, automated systems with
this level of precision can screen large volumes of retinal images swiftly and efficiently,
aiding in the early detection and management of DME. By minimizing errors in identifying
the macula and grading DME, these systems yield more reliable results. Finally, precise
macula detection facilitates consistent monitoring of the progression or regression of DME,
enabling effective follow-up care and treatment adjustments.

4.4. DME Grading Module Results

We employed the Risk of Macular Edema data from the Messidor dataset to evaluate
our results. Table 7 displays the performance metrics obtained from three experiments
conducted with different preprocessing methods: No preprocessing (Original), Contrast
Enhancement (CE), and CIELAB preprocessing of images. Majority voting is used to
calculate metric values, especially in ensemble methods. In this approach, multiple models
are trained on the same dataset, and their predictions are combined to make a final decision.
This method has benefits, such as improving prediction accuracy by leveraging the strengths
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of multiple models and reducing the impact of noise or incorrect predictions from individual
models.

Table 7. DME grading metrics results.

Metric Value

Accuracy 91.12%
Precision 91.31%

Recall 91.12%
F1-Score 90.72%

Specificity 93.00%
Sensitivity 91.12%

AUC 0.9334

Figure 10 presents examples of the grading results obtained with the proposed system
for each case.
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Finally, a comparison with other non-interpretable and interpretable methods is pre-
sented in Table 8.

Table 8. Comparison of the proposed method with other non-interpretable and interpretable DME
grading methods on MESSIDOR.

Method Accuracy Sensitivity Specificity

Non-interpretable methods
Al-Bander, B. [12] 88.8% 74.4% 96.5%
Singh, R.K. [18] 95.47% 94.68% 97.19%

Fu, Y. [5] 97.06% - -
Yao, Z. [20] 98.66% 98.66% 99.32%

Partially Interpretable Methods
He, X. [14] 96.33% - -

Wang, T.Y [17] 86.3% 79.5% 87.7%
Totally Interpretable Method

Our Method 91.12% 91.12% 93.00%
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The results show that non-interpretable methods generally perform better in accuracy,
sensitivity, and specificity. While our method shows slightly lower accuracy than some of
the non-interpretable methods, it maintains balanced sensitivity and specificity, suggesting
a robust performance in DME grading. However, interpretable methods like ours demon-
strate competitive performance while providing insights into the modules, which may be
advantageous in certain contexts, such as clinical decision-making or model interpretability.

4.5. Ablation Studies

In this section, we assessed the significance and impact of various image preprocessing
techniques in the HaEx Segmentation and Macula Localization modules on the overall
performance of the DME grading system. For the HaEx Segmentation module, consider a
scenario where the original fundus images have poor contrast and varying illumination.
Without preprocessing, the segmentation model struggles to distinguish HaEx from other
retinal structures, resulting in suboptimal performance. Enhancing the quality of the input
images using contrast enhancement (CE) and CIELAB preprocessing methods leads to
more accurate segmentation. These results are shown in Table 2.

Because input image quality is unknown, we cannot select an enhancement method
for all possible input images. To alleviate the negative impact of the low-quality input
image on the DME grading accuracy, we introduced the majority voting mechanism to
the DME grading. Table 9 shows the DME grading accuracy and AUC obtained using
two enhancement methods individually and without any enhancement method which
are compared with the proposed majority voting. From Table 9, we can observe that the
majority voting mechanism is necessary.

Table 9. Ablation study about the preprocessing effect on the DME grading.

Model with Preprocessing Accuracy (%) AUC

ConvUNeXt-Original only 80.98 0.9334
ConvUNeXt-CE only 78.86 0.8836
ConvUNeXt-CIELAB only 88.12 0.9069
Majority Voting 91.12 0.9334

In the Macula Localization Module, several preprocessing techniques were applied
sequentially to the original fundus images for accurate detection of the macula area. This
sequence of preprocesses is composed of IRHSF, histogram specification, CLAHE, and
Otsu binarization in this order. It is not possible to eliminate one of these processes from
the sequence because the output of the previous process is the input of the next process.
Table 10 shows the percentage of Messidor images whose macular area can be detected
with/without the sequence of preprocesses. From Table 10, we can conclude that the
sequence of preprocesses is indispensable for macula area detection. If this sequence is
eliminated, only 43.36% of Messidor images can be evaluated in the DME grading module.

Table 10. Ablation study about the impact of the sequence of preprocesses on macula area detection.

With the Sequence Without the Sequence

Percentage of images 100% 43.46%

5. Discussion

As mentioned before, the main objective of the proposed system is to provide an
interpretable DME grading system that can be used in any local region, including low-
resource areas and in telemedicine frameworks. Considering this context, it is desirable
for the proposed system to work on a mobile device or any common personal computer.
The time elapsed from introducing an input retinal image to obtaining the DME grade is
measured on a personal computer with an Intel® i7 processor and 16 GB RAM, obtaining
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approximately 3.8 s per input image. This processing time may be short enough, but if
multiple images are required per patient, the processing time must be reduced.

Although the proposed system employs several image enhancement techniques to
mitigate the impact of low-quality images on the accuracy of the grading, the relatively
inexpensive ophthalmoscopies used in low-resource areas typically provide low-resolution
images that may lead to misclassification of DME grading. Considering that the quality of
some retinal images can be too low to diagnose, these low-quality images must be detected
before their introduction to the proposed system because adapting the proposed algorithm
to any low-quality retinal images is a very challenging task.

Recently, optical coherence tomography (OCT) has been used to detect various eye
diseases such as DME, macular holes, age-related macular degeneration, and so on. Apply-
ing deep learning techniques to images generated by spectral-domain OCT (SD-OCT) can
result in a high DME detection rate of over 99% [37]. Undoubtedly, the combination of OCT
technology and deep learning will become the main methodology for diagnosing DME.
However, at present, OCT equipment is still expensive for any local hospital in developing
countries compared to traditional ophthalmoscopies, making it difficult to use OCT.

In segmentation tasks, constructing accurate GT masks is crucial during both the
training and testing phases. As mentioned before, the shapes of the GT masks for Messidor
and Retinal Lesions are very similar, allowing for proper training and testing. To evaluate
possible bias produced by the private GT masks, we obtained Mean IoU using test images,
without enhancement, from only the Retinal Lesions dataset. The obtained mean IoU is
66.4, which is 3 points lower than the mean IoU obtained from all test images (69.5) as
shown in Table 4. In this sense, there is a small bias due to private GT masks or different
types of retinal images used in Retinal Lesions.

6. Conclusions

The proposed system offers a comprehensive approach to diabetic macular edema
(DME) grading, addressing the critical need for early detection and classification of this
condition. With diabetes becoming increasingly prevalent worldwide, the risk of DME-
related vision loss emphasizes the urgency for accurate diagnostic tools. Leveraging
advances in medical imaging and deep learning, our system integrates multiple modules
to provide interpretable and clinically relevant DME grading.

In the first module, our system employs ConvUNeXt to segment hard exudates (HaEx),
a key indicator of DME, from retinal fundus images. Through rigorous experimentation
and dataset comparisons, we demonstrate the effectiveness of our segmentation approach
across diverse datasets, ensuring robust performance under varying conditions. After that,
our system proceeds to localize the optic disc (OD), a crucial reference point for subsequent
macula localization. Utilizing RetinaNet, we achieve precise OD localization, laying the
groundwork for accurate macula area calculations. The macula localization module refines
our system’s capabilities by employing preprocessing techniques to enhance macula visibil-
ity and optimize image representations to facilitate accurate macula localization, which is
crucial for DME severity assessment.

In the final stage, our system consolidates the outcomes from all preceding modules
to assign DME grades, providing practical insights for ophthalmologists. By integrating
segmentation results, OD coordinates, and macula localization information, our system
offers interpretable grading outcomes, facilitating informed clinical decision-making.

Experimental results demonstrate the effectiveness of our system across multiple
performance metrics, with competitive accuracy, sensitivity, and specificity compared to
existing methods. While non-interpretable methods often excel in certain metrics, our
system maintains the balance between performance and interpretability, offering valuable
insights into the decision-making process.

As a future work, we will consider adding retinal image quality assessment into the
proposed algorithm to discard some low-quality images that make it difficult to perform
accurate DME grading.
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Appendix A

In this section, we provide mathematical development of IRHSF preprocessing and
histogram specification, which are used in the “Macula Localization module”.

IRHSF preprocessing is used to reduce the illumination variation of an image (intra-
image variation). It considers an image as a product of two components: illumination Is
which can be regarded as the background, and Ir, the fundus image without illumination,
as shown in (A1).

I(x, y, λ) = Is(x, y, λ)× Ir(x, y, λ) (A1)

where (x, y) are the image coordinates and λ is the light wavelength, which is determined
for each color channel, R, G, and B. Applying the natural logarithm to (A1) we have
IL(x, y, λ) = log(Is(x, y, λ)) + log(Ir(x, y, λ)). According to [38] the value of the coordi-
nates (x, y) of IL can be calculated with a polynomial function of order 4 with respect to
the coordinates of IL.

IL = SP (A2)

where IL =



IL(0, 0)
IL(0, 1)

...
IL(x, y)

...
IL(N, M)


is the logarithm of the image I with size NxM ordered in vector

form by the coordinate, S is a matrix that represents (x, y) variable of the 4th-order poly-
nomial and P is the coefficient vector of the 15 elements of the polynomial, which are as
follows:

S =



0000 0100 . . . 0103 0004

0010 0110 · · · 0113 0014

...
... · · ·

...
...

x0y0 x1y0 · · · x1y3 x0y4

...
... · · ·

...
...

N0M0 N1M0 · · · N1M3 N0M4


, P = [p1, p2, p3, · · · , p14, p15]

T (A3)

https://www.adcis.net/en/third-party/messidor2/
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://github.com/nkicsl/DDR-dataset
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To obtain P considering the anatomical structures of the retina, such as blood ves-
sels and optic disc, a diagonal matrix W of size, NMxNM with the value 1, whose
pixel positions belong to anatomical structures, is considered. Multiplying STW in (A2),
we obtain STWIL = STWSP and solving with respect to the coefficient vector P, we
obtain (A4).

P =
(

STWS
)−1(

STWIL

)
(A4)

Once P is obtained, the background illumination image without anatomical elements
Is(x, y, λ) and the retina image without considering background illumination variation
Ir(x, y, λ) can be obtained in (A5).

Is(x, y, λ) = exp(SP)
Ir(x, y, λ) = exp(IL(x, y, λ)− SP)

(A5)

The histogram specification process can be described as shown in (A6).

M(i) = min
{

j
∣∣Gtarget(j) ≥ Ginput(i)

}
(A6)

where Ginput(i) represents the Cumulative Distribution Function (CDF) calculated using the
input image histogram, Gtarget(j) is the CDF calculated using the target image histogram,
and M(i) is the mapping function that maps intensity levels in the input image to intensity
levels in the target histogram. This is typically performed by matching the CDF values of
the input image to the closest CDF values of the target histogram.
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