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Abstract: Motivation is a primary driver of goal-directed behavior. Therefore, the development of
cost-effective and easily applicable systems to objectively quantify motivational states is needed.
To achieve our goal, this study investigated the feasibility of classifying high- and low-motivation
states by machine learning based on a diversity of features obtained by non-contact measurement
of physiological responses and facial expression analysis. A random forest classifier with feature
selection yielded modest success in the classification of high- and low-motivation states. Further
analysis linked high-motivation states to the indices of autonomic nervous system activation reflec-
tive of reduced sympathetic activation and stronger, more intense expressions of happiness. The
performance of motivational state classification systems should be further improved by incorporating
different varieties of non-contact measurements.

Keywords: motivation; non-contact measurement; pulse wave; facial expression; action uni; ma-
chine learning

1. Introduction

Motivation is the primary driver of goal-directed behavior, and highly motivated
individuals can make continuous efforts to achieve their final goals. In the psychological
literature, motivation has been grouped into two classes depending on the type of moti-
vator [1]. One can be motivated to take certain actions guided by external, often tangible,
reinforcers, such as money and food. Motivation induced by reward is termed “external
motivation” [1]. By contrast, humans and other species can be committed to certain activ-
ities owing to the enjoyment and interest in the activity itself, regardless of whether the
activity leads to the attainment of an external reward. This type of motivation is termed
“intrinsic motivation” [1]. Since a pioneering study on intrinsic motivation in rhesus mon-
keys [2], several studies have been conducted on human participants. These studies have
consistently linked high levels of intrinsic motivation to performance improvement and
expertise in many domains of mental and physical activity [2,3].

An overarching goal of educational engineering is to develop learning-assistive tech-
nology to help people learn novel materials efficiently. Considering the close link between
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students’ intrinsic motivation and academic achievement [4,5], it is indispensable to develop
an educational system that sustains students’ intrinsic motivation for learning.

Importantly, there are great individual differences in learning styles and the mastery
of academic subjects. Thus, educational materials should be personalized for each learner
to enhance their intrinsic motivation to learn. One promising solution to achieve this is real-
time monitoring of intrinsic motivation. By objectively evaluating temporal fluctuations in
intrinsic motivation, the presentation schedule and type of educational materials can be
adaptively determined to sustain an appropriate level of motivation in learners, thereby
increasing learning efficiency and productivity.

There are several established ways to ascertain whether a person is engaged in an
ongoing activity out of intrinsic motivation or not. Activities out of intrinsic motivation
are often accompanied by positive feelings of curiosity, enjoyment and interest and are
more likely to be deemed as “fun” rather than “work” [3]. Based on these observations,
researchers have often utilized self-reports of subjective feeling during an ongoing activity
or participant categorization of the activity as “fun” or “work” as a surrogate measure
of intrinsic motivation [6,7]. As a more objective measure of intrinsic motivation, some
researchers relied on the time one spends on the activity of interest without any tangible
reward [8]. In addition to the measurement of intrinsic motivation, experimental method-
ology to manipulate the state of intrinsic motivation is valuable in investigations into
the mechanisms of intrinsic motivation. However, many previous studies on intrinsic
motivation relied on surveys or field experiments [3]. Thus, there are few alternatives to
experimentally induce states with high and low intrinsic motivation. Today, one of the
most widely accepted methods to experimentally manipulate the state of intrinsic moti-
vation is the stopwatch (SW)/watch-stop (WS) paradigm [9] first introduced in a seminal
functional magnetic resonance imaging (fMRI) study investigating the neural mechanisms
of the undermining effect [10], i.e., the detrimental effect of external rewards on intrinsic
motivation [8]. In the stopwatch (SW) task in this paradigm, participants were instructed to
stop a stopwatch at a predefined time by mentally tracking the time elapsed. This game-like
task was enjoyable and induced a high level of intrinsic motivation. In the watch-stop (WS)
task, the stopwatch stopped automatically, and the participants were instructed to respond
by pressing a button as soon as the stopwatch stopped counting. Compared with the SW
task, the WS task was less engaging and even boring, and it induced low levels of intrinsic
motivation. Since its introduction, the SW /WS paradigm tasks have been successfully used
in several psychophysiological studies on intrinsic motivation [11-13].

Relatively little attention had been paid to the method for detecting motivational states
or the “diagnosis” of problems in learning motivation [14], as pointed out in [15]. Though
the number is still limited, several previous studies proposed systems for estimating mo-
tivational states from objectively quantifiable measures of behavioral and physiological
signals. For example, Organero et al. analyzed behavioral data on an e-learning plat-
form and succeeded in predicting intrinsic motivation by analyzing student behavioral
data [16]. Of particular note, Chattopadhyay et al. proposed a method for detecting
intrinsic motivation using electroencephalography (EEG) signals [17]. Specifically, they
detected motivational states with 88% accuracy based on EEG data with the help of a
Residual-in-Residual Convolutional Neural Network that enables feature learning with
relatively small-sized data.

Thus, motivation state prediction based on physiological data reflective of nervous
system activation is promising. However, when a system for physiological measurement is
deployed in actual educational settings, the need for electrode attachment may interfere
with and hinder the learning process. Thus, it is desirable to develop a system for moti-
vation estimation based on psychophysiological signals that can be acquired without the
attachment of cumbersome sensors.

In this study, we aimed to develop a method for estimating motivational states based
on non-contact measurements of physiological and behavioral (facial expression) informa-
tion from images of faces taken from videos. To achieve this, we developed a classifier to
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dissociate the states of high and low intrinsic motivation induced by the SW/WS paradigm
tasks based on indices of autonomic nervous system activation and facial expressions
extracted from videos featuring faces. As stated above, previous studies have indicated that
a state of high intrinsic motivation is often accompanied by positive emotion [6,7]. Thus,
one promising approach to classify states of intrinsic motivation is to quantify emotional
states during an activity. In a dimensional model of emotion [18], emotional states, defined
as emotional arousal and valence, can be mapped in a two-dimensional space. Many
psychophysiological studies have linked a state of arousal to sympathetic nervous system
activation [19-21]. In a state of high arousal, the sympathetic nervous system is activated
relative to the parasympathetic nervous system [19-21]. This change in balance between
sympathetic and parasympathetic nervous system activation leads to phasic change in
cardiac and pulse wave responses in the periphery [19-21]. We have formerly shown that
pulse wave response can be estimated from the fluctuation in facial skin coloration [22]. On
the basis of these, we decided to adopt a non-contact measurement of pulse wave responses
to quantify the arousal of participants. One’s facial expression conveys varying information
on one’s emotional state [21], including the intensity of positive and negative valence. Thus,
we decided to incorporate a non-contact estimation of facial expression intensity based on
videos featuring faces of participants.

There are several alternative methods of cardiac response measurement such as elec-
trocardiography (ECG) [23] and photoplethysmography (PPG) [24,25]. ECG is suitable for
a variety of biomedical applications, including heart rate measurement, examination of
heart rhythm, diagnosis of cardiac abnormalities and biometric identification [23]. PPG
can be measured non-invasively and provides valuable information about cardiovascular,
respiratory and nervous system functions. Relevant to this study, emotion recognition
using EEG and PPG signals has attracted attention in recent years. For instance, Shahid
et al. proposed a system that recognizes four emotional states (happiness, sadness, fear
and disgust) based on the features extracted from ECG and PPG. The resultant model
for emotion classification achieved an accuracy of 85.7% [26]. In another study, Lee et al.
utilized a single PPG signal to classify valence and arousal [27]. They segmented the PPG
signal obtained with a contact pulse wavemeter into short segments and submitted them
into a 1-Dimensional Convolutional Neural Network for feature extraction and emotion
classification. Their proposed model achieved 75.3% accuracy for valence and 76.2% ac-
curacy for arousal, enabling emotion recognition in a short period of time. These studies
demonstrate the usefulness of ECG and PPG in emotion recognition, but, to the best of
our knowledge, no study to date has utilized peripheral measurements of the autonomic
nervous system, such as ECG and PPG, for the prediction of motivational state.

ECG and PPG contain large amounts of information, but adhesion of electrodes or
sensors onto skin surface is required to measure these signals. Therefore, it is impractical
to measure physiological responses in the natural environment using these methods. By
contrast, a non-contact measurement of pulse wave does not require the adhesion of sensors
on a participant’s skin and, as such, poses a relatively small burden on participants. Thus,
our proposed system has the potential to be utilized in the quantification of psychophys-
iological responses under wide-ranging situations. For example, images of faces taken
from videos can be collected remotely. Thus, motivation monitoring based on images of
faces taken from videos potentially opens up a way to improve learning motivation in
home schoolers.

2. Pulse Wave Feature Acquisition Method

In a stressed or highly aroused state, the sympathetic nervous system is activated,
whereas the activation of the parasympathetic nervous system is inhibited [19,28]. It is well
established that the activation of the autonomic nervous system, and hence the balance
between sympathetic and parasympathetic nervous system activation, is reflected in the
temporal pattern of cardiac pulsation. Consequently, researchers in many fields have
relied on electroencephalography and pulse wave measurements to estimate a person’s
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internal and emotional state [19,20]. As an application of this principle, Okubo et al.
estimated autonomic nervous system activation based on pulse-wave data and proposed a
biofeedback system to maintain driver alertness [29].

Immediately after cardiac pulsation, fresh red arterial blood circulates throughout the
body. Synchronously with this “pulse wave”, redness, the color of oxygenated hemoglobin,
becomes slightly intensified in the surface of the skin. Thus, pulse waves can be extracted
as a time series of hemoglobin component intensities in a non-contact manner by analyzing
skin pigmentation captured in a video [28].

In this study, we estimated the intensity of the hemoglobin component from faces
taken from videos captured by an RGB camera, as proposed by Kurita et al. [22], while
the participants were engaged in an SW/WS task. We extracted the time and frequency
domain features based on the pulse wave (as described in the “6. Calculation of Pulse
Wave Features”).

3. Hemoglobin and Shade Separation from Faces in Images

Independent component analysis (ICA) is a multivariate analysis technique that esti-
mates the original signal from a mixture of independent signals without any information
about the signals themselves or their composition. Here, independence refers to the state
in which variables are orthogonal to each other, and the distribution of the variables
is invariant.

Tsumura et al. applied ICA to faces in images and separated the pigment components
of the skin [30]. In this procedure, the RGB values of a face in an image are used as
observation signals in the ICA to estimate the pigment density distribution of the face.
Here, we established the relationship between the RGB values of a face in an image and
skin pigment density.

Figure 1a shows the human skin model proposed by Tsumura et al. [30]. The human
skin is composed of three major layers: the epidermis, dermis and subcutaneous tissue.
Skin coloration is determined by various pigments, among which melanin and hemoglobin
are the most important. Melanin is found in the epidermis, whereas hemoglobin is found
in the dermis. Therefore, under the simplified assumption that the epidermis is composed
of melanin and that the dermis is composed of hemoglobin, the spatial distributions of
melanin and hemoglobin can be considered independent.
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Figure 1. (a) Schematic representation of the skin model adopted in this study. (b) Observed signals
and three independent signals [31]. (c) Example of bandpass-filtered pulse-wave signal.

Light incident on the skin is divided into surface-reflected light, which is reflected
on the skin surface, and internally reflected light, which enters the skin and is repeatedly
scattered before being emitted outside the skin. Surface-reflected light is not affected
by skin pigmentation and expresses the color of the light source. By contrast, internally
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reflected light represents the skin color because it is emitted after repeated absorption and
scattering by pigments inside the skin.

Based on the optical skin model, the relationship between the pixel values and the
observed signal (that is, the skin image) was extended to a mathematical model. The pixel
values of the skin image can be defined as the sensor response of the camera in terms of the
observed signal. The sensor response, v;, of the camera is described by Equation (1),

0i(x,y) = k [ L(x,y, A)si(A)dA, &)

where i is an index identifying the color channel of the sensor; A is the wavelength; L(x,y, A)
is the spectral irradiance of the reflected light at position (x,y) on the skin surface; k is a
constant indicating the camera gain; and s; is the spectral sensitivity of the sensor. Applying
the modified Lambert-Beer law to the spectral irradiance L(x,y, A) of the reflected light,
Equation (2) can be derived from Equation (1).

vi(x,y) = k/ e Pm()Tm(Mle(V) =pu(xy)an WA E (x, 1, 1)s;(A)dA )

where E(x,y,A) is the spectral irradiance of incident light at position (x,y) on the skin
surface; p,; and pj, are the absorption cross section of melanin and hemoglobin, respectively;
and [, and [; are the optical path lengths of light passing through the epidermis and
dermis, respectively.

Since the spectral distribution of the skin is a smooth function along the wavelength
axis and the spectral reflectance of the skin is highly correlated with the spectral sensitivity
of the camera, the spectral sensitivity can be approximated as a narrow frequency band
with s;(A) ~ 6(A;). Furthermore, assuming a sufficient distance between the illumination
and the participant, the directional dependence of the illumination irradiance can be
neglected. Assuming a single spectral characteristic of illumination, it is simplified to
E(x,y,A) = p(x,y)E()), where p(x,y) is a variable indicating the change in shading owing
to the skin shape. The above simplification transforms Equation (2) into Equation (3).

vi(xl y) o ke_pﬂl (xry)‘Tm ()‘)lf(/\)_ph (xry)ah()‘)ld(/\) p(xr y)E(A) (3)

Equation (3) is transformed into Equation (4) by performing a log transformation on
the observed signal v;(x, y) and mapping it from a linear- to a log-scale space. The boldface
in Equation (4) represents a vector.

08(x, y) = —pm(x, ¥)ow — pn(x, y¥)oy, + P8 (x, y)1 + €8 4)

where /%8 denotes the log-transformed observed signal; (x, y) is the pixel position; o (x, )
and py,(x, y) denote the density of melanin and hemoglobin, respectively; 0, and 03, denote
the absorption cross-section of melanin and hemoglobin, respectively; p'¢ is the shading
parameter due to skin shape; 1 is the intensity vector of shading; and ¢/°¢ is the bias vector.
To identify the independent signals, 0y, and 0y, ICA was applied to the observed signals
in a region where 1 and ¢/°¢ were constant. Figure 1b shows the relationship between the
observed and independent signals in the skin model.

4. Experiment
4.1. Participants

This study included 25 participants (5 females and 20 males) with a mean age of
24 years (standard deviation = 6.5). They participated in this study after giving written
informed consent. The protocol of this study was approved by the ethical committee of the
school of science and engineering in Kokushikan University (Approval No. R3-006).
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4.2. Experimental Settings

Figure 2 shows an actual experimental scene. Participants were filmed while per-
forming the assigned task on a laptop. Simultaneously, the pulse wave and EEG of the
participants were measured. The results of the EEG data analysis will be reported else-
where. An RGB camera (DFK33UX174, The Imaging Source, Bremen, Germany) was used
to capture faces in images with a resolution of 640 x 480 px and a frame rate of 30 fps. The
participants were photographed in a dark room with their faces fixed to a chin rest and as
immobile as possible during the task. Two light-emitting diode (LED) lights (Viltrox L116T,
Shenzhen Jueying Technology Co., Ltd., Shenzhen, China) were used as light sources, and
the color temperature of all the lights was set to 5000 K. The two light sources were placed
symmetrically around the participant.

Figure 2. Experimental setting. 1: light source, 2: RGB camera, 3: EEG electrode cap, 4: laptop, 5: chin rest.

4.3. Task

In this study, we adapted the modified SW/WS tasks from a previous study [9]. In
the SW task, the user tries to stop a stopwatch after exactly 5 s by mentally calculating the
elapsed time. This task creates a state of increased motivation. If the display is stopped
between 4.95 and 5.05 s, 1 point is added to the participant’s score, and the total score is
displayed at the top right corner of the screen. As previous studies have shown that people
have the greatest sense of achievement for tasks of medium difficulty [32], this task was
developed so that participants succeeded, on average, in half of the executions. A series of
pilot experiments showed that this SW task is moderately difficult and intrinsically inter-
esting for participants. By contrast, the WS task involves passively watching a stopwatch
and clicking on a computer’s mouse as soon as the stopwatch automatically stops after 5 s.
There was no feedback of successes or failures in the WS condition. This simple task was
intended to induce low motivation.

After each trial, the participant was prompted to provide a subjective rating of their
motivational state. Nine white panels were presented horizontally on the screen. The
leftmost panel represented the state of “Not at all motivated”, and the right most panel
represented “Highly motivated”. The participants clicked the panel that they thought most
appropriately reflected their feelings. After clicking a panel, the experiment proceeded
to the next trial. We also collected subjective ratings of “the sense of achievement”. The
results of this rating will be reported elsewhere.

Both the WS and SW tasks included 30 trials each per participant. Recording in the
WS and SW task lasted for approximately 6.5 min each. To avoid variations in the results
due to the order in which the tasks were performed, the order of the WS and SW tasks was
counterbalanced across the participants.
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5. Data Set

A small red LED was placed next to the face of the participant and captured in the
video together with participant’s face. This LED was lit at the beginning and the end of
each SW and WS task, respectively. Video frames submitted for further analysis were
determined based on the timing of LED lighting. Specifically, the first frame was the frame
just after the LED lighting at the beginning of a task, and the last frame was the frame just
before the LED lighting at the end of a task.

Each task lasted for about 6.5 min. The number of frames used in the analysis varied
from participant to participant because the duration of the task depended on the partici-
pant’s response speed. The videos recorded were classified into high- and low-motivation
states according to the subjective ratings (See “9. Machine Learning” below for the criteria
for determining data with high- and low-motivation states). Table 1 shows the number of
participants, the number of video data in each class and the number of frames.

Table 1. Description of the data set submitted for final analysis.

Number of participants 25
Number of classes 2 (High- vs. low-motivation state)

Number of video data in each class I]:hgh—mot.lvat.lon state 16

ow-motivation state 34
Maximum number of frames 12,945 frames
Minimum number of frames 10,564 frames
Average number of frames 11,454 frames

Standard deviation of the number of frames 556 frames

6. Calculation of Pulse Wave Features

Pulse wave features were extracted from images of faces taken from videos by setting
the region of interest (ROI), estimating pulse waves by hemoglobin and shade separation
and extracting pulse wave features in the time and frequency domains.

First, a hemoglobin video image was obtained by applying dye-component separation
to a facial video image captured using an RGB camera. Next, the participant’s cheeks and
nose were defined as the ROI, and the time series of the hemoglobin concentration compo-
nents in this ROI were calculated as a pulse wave. The nose and cheeks were chosen because
it is relatively easy to observe pulse wave changes in this facial region [33]. Hemoglobin
values were averaged across pixels within a relatively large ROI for noise reduction.

Given that raw pulse wave signals contain considerable noise, trend removal [34]
and bandpass filtering were applied as preprocessing for feature calculation. To improve
the accuracy of peak detection, a bandwidth was set, and the peaks were detected. The
bandwidth settings were obtained from Poh et al. [28]. Figure 1c shows an example of a
signal preprocessed by trend removal and bandpass filtering, based on the time variation
in the average pixel value in the ROI of a hemoglobin component image.

The peak-to-peak interval in the pulse wave can be considered an approximation
to the RR interval in an ECG. Heart rate variability, which is the variation in the time
intervals between successive R waves, is known to reflect the balance between sympathetic
and parasympathetic nervous system activation. Therefore, a nonlinear analysis of the
peak-to-peak intervals in the time and frequency domains could make it possible to assess
the functioning of the autonomic nervous system.

Seven time domain features were obtained from estimated pulse wave signals. These
included mean RR interval, standard deviation of RR intervals, mean heart rate, standard
deviation of heart rate, Root Mean Square of Successive Differences (RMSSD), the number
of successive RR intervals that differ by more than 50 ms (NN50) and the percentage of
successive RR intervals that differ by more than 50 ms (pNN50) [35]. While the stan-
dard deviation of the RR interval reflects the degree of overall heart rate variability, the
RMSSD reflects the degree of short-term heart rate variability, particularly variability due
to parasympathetic activity. NN50 and pNNG50 are parasympathetic indicators [35].
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Time series of peak-to-peak intervals were Fourier-transformed, and ten frequency
domain features, summarized in Table 2, were calculated to quantify parasympathetic
and sympathetic activations. The converted low-frequency component (LF: 0.04-0.15 Hz)
represents Mayer waves acting on both sympathetic and parasympathetic nerves, while the
high-frequency component (HF: 0.15-0.4 Hz) shows a strong correlation with respiratory
sinus arrhythmia, which is affected by respiration and parasympathetic action [34]. There-
fore, LF/HF, LF/(LF + HF) and HF/(LF + HF) ratios can be used for sympathetic activity
evaluation. Respiratory rate was estimated based on the frequency with the highest power
spectrum density within HF range.

Table 2. Frequency domain features.

Respiratory Rate Respiratory Rate per Minute
LF peak Peak frequency below the upper limit of low-frequency band
HF peak Peak frequency in the high-frequency band
ULF Absolute power in the ultra-low-frequency band
VLF Absolute power in the very-low-frequency band
LF Absolute power in the low-frequency band
HF Absolute power in the high-frequency band
LF(LF + HF) Relative power in the low-frequency band
HF(LF + HF) Relative power in the high-frequency band
LF/HF LF and HF power ratio

In total, 17 different features were extracted from videos recorded of each participant.
Some of these features had a high correlation (correlation coefficient > 0.4). In the logistic
regression analysis, collinearity among the features makes the analysis unstable. Similarly,
in random forest, the presence of multiple highly correlated features makes the estimation
of feature importance unstable and reduces the reliability of the analysis. Therefore, in
this study, the pairwise correlations between features were reduced by manually removing
some of the features according to the following criteria:

1. The ultra-low-frequency band (ULF) was removed because reliable data could only
be obtained after 24 h of continuous measurement [35].

2. In the time domain, correlation coefficients between features exceeded 0.4 in almost
all cases. So, first, we removed the features that were highly correlated with the
mean value of the RR interval. This is because all other time domain features were
computed based on this value. The standard deviation of heart rate was retained
because of its low correlation with the RR interval mean.

3. Among the frequency domain features, those with correlation coefficients exceeding
0.4 with the RR interval were removed.

4. The correlation coefficient between HF peak and respiratory rate exceeded 0.4, so
respiratory rate was removed. This is because respiratory rate is calculated from the
HF peak.

Consequently, two time domain and two frequency domain features were retained: the
mean peak-to-peak interval and standard deviation of heart rate as the time domain feature,
and the LF peak and HF peak as frequency domain features. The correlation coefficient
matrix between these features is shown in Figure 3.

The Variance Inflation Factor (VIF) was calculated; the VIF for the mean of the RR
interval and the standard deviation of heart rate exceeded 20. Therefore, the standard
deviation of heart rate was further removed according to rule 2 above. The VIFs of the
retained features are summarized in Table 3.
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Figure 3. The correlational coefficient matrix of the features.

Table 3. VIFs of selected features.

Features VIF
RR interval mean 11.5
LF peak 4.39
HF peak 9.58

7. Facial Expression Feature Calculations

Facial expressions were measured from videos featuring faces. In the “sign judgement”
method of facial expression, facial muscle movements and actions are labelled as per
definitions in, for example, the Facial Action Coding System (FACS) [36]. The FACS manual,
revised in 2002, defines 27 action units (AUs), 14 head positions and movements, 9 eye
positions and movements, 5 miscellaneous AUs, 9 action descriptors, 9 gross behaviors,
and 5 visibility codes [37]. Each AU has five intensity ratings, ranging from A (minimum)
to E (maximum). This coding scheme is assumed to provide the most objective assessment
of facial movements.

In this study, OpenFace [38], an open-source automatic facial motion detection system,
was used for facial expression estimation. The output of this toolkit includes the xy-axis
motion of the head, facial tilt and degree of movement of the facial AU, as well as eye-gaze
estimations, all of which are based on 68 feature points of the face. This software accepts
videos, images, and live webcam feeds as input. Facial information was extracted frame
by frame.

There are six facial expressions that are universal to all human beings: happiness, sad-
ness, surprise, anger, fear and disgust [39]. In addition to these six basic facial expressions,
the intensity of contempt, another universally observed facial expression, was evaluated.
The intensities of these seven facial expressions were quantified as the sum of the AU
intensity outputs using OpenFace. The correlation coefficients for sadness, fear and anger
intensities exceeded 0.8, and only sadness, whose correlation coefficient was the lowest,
was retained. Consequently, only the intensities of the facial expressions of happiness,
sadness, surprise, disgust and contempt were used for further analysis. The AUs used to
evaluate each facial expression are summarized in Table 4.
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Table 4. Action unit definition for emotions [40].

Emotion AU
Happiness AU6 + AU12
Sadness AU1 + AU4 + AU15
Disgust AU9 + AU15 + AU16
Surprise AU1 + AU2 + AU5 + AU26
Contempt AU12 + AU14

8. Feature Selection

To avoid overfitting, feature selection was performed using two methods, Sequential
Feature Selector (SFS) and Recursive Feature Elimination (RFE), implemented in scikit-learn
(version 1.3.0) [41,42]. SFS is a method of increasing the number of features from a single-
feature model to improve accuracy, while RFE is a method of removing less important
features from a model of all features to improve accuracy.

As there were variations in the features selected between each run, feature selection
runs were performed 100 times, and the frequency with which each feature was retained
was counted. The most frequently retained features were used in the final model. We set
the number of features to three, which yielded the highest F1 score.

9. Machine Learning

Selected pulse wave and facial expression features from the 25 participants were
entered into machine learning algorithms as predictive features to classify high- and low-
motivation states.

The motivational states were first classified into high- and low-motivation states based
on subjective rating data based on the average scores for the 30 trials for each WS and
SW task performed by each participant. Tasks with a subjective rating of motivation
above 7 were defined as high-motivation states, whereas those with subjective ratings
of motivation equal to or below 7 were defined as low-motivation states. In this study,
the median rating was 5.3, representing the “neither motivated nor unmotivated” state.
Therefore, the first quartile in the descending order of subjective ratings <7 was set as
the threshold.

Next, three classification algorithms implemented in scikit-learn library, logistic regres-
sion [43], random forest classification [44] and support vector classification (SVC) [45] were
tested for the classification of high- and low-motivation states. The parameters used in each
model were tuned using a grid search algorithm. The initial parameters for grid search and
the optimal parameters for each type of classifier and selection method are listed in Table 5.
Learning and evaluation were performed 50 times by changing the random seed, and the
best performance was adopted to avoid the local optimum.

Table 5. Initial parameters for grid search and the optimal parameters.

Optimal Parameters

Optimal Parameters

Model Initial Parameters for SFS for RFE
- . penalty =12 penalty =12 penalty =12
Logistic regression C=10 C=10 C=10

Random forest

SvC

n_estimators = 100
max_depth = None
max_features = sqrt
kernel = rbf
C=10
gamma = scale

n_estimators = 10
max_depth =40
max_features = log2
kernel = rbf
CcC=10
gamma = 1.0

n_estimators = 30
max_depth =50
max_features = log2
kernel = rbf
Cc=1
gamma = 0.1
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10. Results

The SFS- and RFE-selected features are listed in Table 6. As shown in this table,
two features, RR interval mean and happiness, were consistently selected by both SFS
and RFE.

Table 6. Features selected by SFS and RFE.

SFS RFE
RR interval mean RR intervals mean
Happiness Happiness
LF peak Contempt

Table 7 shows the results of the Brunner-Munzel test, which examines whether there
is a statistically significant difference in the characteristics of each selected feature between
the high- and low-motivation states. The results showed that the intensity of contempt was
significantly smaller under low-motivation conditions (significance threshold of 0.05), while
the differences in RR interval mean, LF peak, and happiness were not statistically different.

Table 7. Comparison of results between high- and low-motivation states.

Feature Statistics p-Value Median (High) Median (Low)
RR interval mean —1.51 0.13 0.84 0.77
LF peak 1.32 0.19 0.037 0.044
Happiness -1.39 0.17 1.66 0.99
Contempt —2.38 0.024 1.31 0.56

To evaluate the classification performance, stratified K-split cross-validation (CV) was
performed in triplicate to maintain the distribution of high- and low-motivation states in
the training and test datasets.

Classification performance was evaluated using accuracy, specificity, area under the
curve (AUC) in receiver operator characteristic (ROC) analysis and F1 score as performance
indicators. Among these, the F1 score and AUC, which are robust against imbalanced data,
are particularly important metrics.

The results of the stratified CV for SVC, logistic regression, and random forest clas-
sification using the features selected by SFS are summarized in Table 8. Additionally, the
classification results obtained using the features selected by the RFE are summarized in
Table 9.

Table 8. Classification performance metrics for classifiers using SFS.

Threshold Accuracy Rate Specificity AUC F1

(a) Logistic Regression

train 0.636 0.740 0.838 0.745 0.735

test 0.677 0.720 0.882 0.682 0.699
(b) Random Forest

train 0.404 0.990 1.000 1.000 0.990

test 0.404 0.780 0.882 0.738 0.773
(c)SVC

train 0.343 0.980 0.971 0.783 0.980

test 0.343 0.720 0.765 0.612 0.724
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Table 9. Classification performance metrics for classifiers using RFE.
Threshold Accuracy Rate Specificity AUC F1

(a) Logistic Regression

train 0.586 0.690 0.750 0.733 0.693

test 0.667 0.720 0.853 0.686 0.708
(b) Random Forest

train 0.404 1.000 1.000 1.000 1.000

test 0.434 0.740 0.853 0.760 0.732
(c)SVC

train 0.394 0.760 0.853 0.517 0.755

test 0.343 0.640 0.618 0.671 0.652

As for the overall model classification performance, the random forest with features
selected by RFE showed the best classification performance (AUC = 0.760). For the classifi-
cation performance of the best discriminator, the random forest with features selected by
SFS showed the best classification performance (F1 = 0.773).

As stated above, the mean RR interval and happiness were retained as features selected
by both the SFS and RFE. Therefore, we repeated the machine learning algorithm using only
these two features. The results are summarized in Table 10. The classification performance
of classifiers using these two features outperformed the classification performance of
random forest using the features selected by RFE and SFS (AUC = 0.788, F1 = 0.778).

Table 10. Classification performance metrics for classifiers using two features selected both by SFS
and RFE.

Threshold Accuracy Rate Specificity AUC F1

(a) Logistic Regression

train 0.677 0.730 0.897 0.728 0.707

test 0.687 0.740 0.882 0.680 0.725
(b) Random Forest

train 0.404 0.990 0.985 0.998 0.990

test 0.404 0.780 0.853 0.788 0.778
(c)SVC

train 0.394 0.940 0.956 0.973 0.940

test 0.364 0.720 0.765 0.699 0.724

11. Discussion

This study investigated the feasibility of evaluating the state of intrinsic motivation by
combining non-contact measurements of physiological responses and facial expressions.
The proposed system achieved modest performance in the classification of high- and low-
motivation states. Feature selection resulted in the consistent retention of the mean RR
interval and the intensity of expressions of happiness. The heart rate variability indices
reflect the activity of the autonomic nervous system [46—48], which in turn is deeply
involved in the dopaminergic neural system [49], underlying the regulation of intrinsic
motivational states [50,51]. In particular, all measures of autonomic activation are calculated
from the mean RR interval, and the mean RR interval contains much information related to
the autonomic nervous system. Therefore, it is not surprising that the mean RR interval
was retained as predictive features by both SFS and RFE.

Statistical analysis between high- and low-motivation states showed a longer RR
interval, although not statistically significant, in the high-motivation state than in the
low-motivation state, indicating that reduced sympathetic activation constitutes one as-
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pect of a highly motivational state. A traditional theory [52] has linked high levels of
physiological arousal to stress, while a moderate level of physiological arousal has been
linked to the optimal state of the so-called “flow state”, characterized by focused attention
and full absorption in an ongoing activity. Thus, a numerically longer RR interval (hence,
lower physiological arousal) during the high-motivation state raises the possibility that
participants were more likely to have experienced the flow state during a high- rather
than low-motivation state, while they tended to experience more stress during the low-
motivation state. This interpretation dovetails the claim that the flow state experienced
during an activity is associated with the intrinsic motivation to engage in and complete the
activity [52,53].

After feature selection, the intensity of happiness was retained in both SFS and RFE,
and contempt was retained in RFE. The classifier with the best performance (random
forest using features selected by both SFS and RFE) used the intensity of happiness as a
predictive feature. Though not statistically significant, a happy expression was numerically
stronger in the high- rather than low-motivation state. This finding is consistent with
previous studies linking positive emotions to intrinsic motivation [51]. In addition, it has
been shown that smiling is an important signal of intrinsic motivation in terms of facial
expressions [54]. A statistical comparison revealed higher levels of contempt in the high-
rather than low-motivation state, which was not readily interpretable. At the AU level, both
contempt and happy expressions include the constriction of the lip-corner pull (AU12) [39].
Thus, the effect of motivational state on contempt intensity might be a byproduct of AU
12 constriction. But this is just a speculative conjecture, and more information is required
regarding the functional and expressive meanings of individual AUs to fully understand
the present pattern of results.

In summary;, this study revealed that the classification of motivational states can be
achieved to a certain extent by combining a non-contact measurement of physiological re-
sponses and facial expression analysis. The classifiers mainly rely on the intensity of happy
expressions and indices of autonomic nervous system activation, linking a high-motivation
state to reduced sympathetic activation. However, reduced sympathetic activation and
positive emotion may be associated in a non-specific manner with a positive psychological
state. Consequently, an important task for future research is to establish one-to-one corre-
spondence between objectively quantifiable physiological and highly motivational states
by combining a wider range of multimodal psychophysiological information.

This study suffers from several limitations. First, we did not consider the effect of skin
tone in the estimation of pulse wave from facial skin coloration. In a study by Ewa et al.,
heart rate was estimated using six different skin tones, with the darkest skin tone having
the largest estimation error [55]. This study did not include participants with a particularly
dark tone. Moreover, concern cannot be ruled out entirely that the present method failed
to give an accurate estimate of the pulse wave in some of the participants. Second, with
some relevance to the first limitation, this study included a small number of participants
with a relatively homogenous background. Thus, the performance of the classifiers and
its generalizability should be tested in a larger number of participants with more diverse
attributes, e.g., ethnicity and age.

12. Conclusions

In this study, we used faces in images to classify the presence or absence of motivation
and demonstrated the usefulness of the machine learning model and the features used.
However, real-time estimation and continuous time series estimation are required for
practical use. It is also necessary to evaluate motivation levels on a more minute scale rather
than on a coarse binary classification. Therefore, in future studies, estimating data using
regression models with time series data is required. This study is a kind of feasibility study
showing the possibility of intrinsic motivation monitoring by non-contact measurement
of facial information under laboratory settings. To establish a monitoring system that is
useful in real-life settings, careful consideration should be given to at least two aspects.
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First, this system utilizes very sensitive information of psychophysiological states extracted
from data on faces. In addition, many recent studies have shown the vulnerability of
machine learning applications to adversarial attacks [56]. Thus, security measures should
be implemented in the system to keep the integrity of the system intact and protect against
privacy intrusion. As for privacy breaches, a recent study [57] applied the technique of
adversarial attack as a measure to protect an individual’s private information from prying
software. These techniques should be integrated into our system before testing it under
real-life settings.

Second, learning is a long-lasting process; it sometimes takes several years to master
a single subject. Thus, maintaining motivation throughout this long period is of critical
importance for learners. This study tested the system’s performance to estimate phasic
states of intrinsic motivation. However, considering the long-lasting nature of the learn-
ing process, it is essential in future studies to examine if the longitudinal fluctuation of
motivational states within an individual can be tracked by non-contact measurements of
facial information.
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