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Abstract: Coffee silverskin (CSS) is a by-product released as waste after roasting coffee beans. This
by-product can be used as a functional food ingredient as it contains many valuable compounds
such as fibers, sugars, phenolic acids, carotenoids, and flavonoids. In this research, the effects of
the partial substitution of animal fat with CSS on physicochemical, textural, and sensory properties
in chicken patty production were investigated. For this purpose, four different groups of chicken
patties were produced in which animal fat was replaced with CSS at different rates (control: 12%
fat, SS1: 10% fat + 2% silverskin, SS2: 8% fat + 4% silverskin, SS3: 6% fat + 6% silverskin). The
substitution of animal fat with CSS resulted in decreases in pH, moisture content, water activity, and
color values while increasing TBARS (Thiobarbituric acid-reactive substances) and moisture retention.
The cooking process also significantly affected the physicochemical properties (p < 0.01). Textural
parameters, apart from adhesiveness, were affected by the replacement of animal fat with CSS. While
hardness increased compared to the control, resilience, and springiness decreased. On the other hand,
cohesiveness was similar in control and SS1 but decreased in other ratios. The use of CSS affected all
sensory characteristics, and the sensory evaluation scores closest to the control were determined in
the group that used 2% CSS instead of animal fat.

Keywords: chicken patty; coffee silverskin; pH; color; texture

1. Introduction

Coffee is one of the most consumed beverages around the world have increasing
consumption. According to data from the International Coffee Organization (ICO), annual
coffee consumption reached 177 million 60 kg bags in 2023–2024, compared to 173.1 mil-
lion 60 kg bags in 2022–2023 [1]. While coffee is typically associated with the seed of the
coffee fruit, significant amounts of by-products also emerge [2]. The coffee fruit has several
layers, including the epicarp, mesocarp, endocarp, silverskin, and seed [3]. The epicarp’s
color can range from red to yellow, depending on the fruit’s ripeness. The mesocarp is
a sticky structure containing pectin, while the endocarp is a thin polysaccharide layer.
Silverskin (SS) surrounds the seed and is a transparent shell containing compounds such
as monosaccharides, proteins, polyphenols, polysaccharides, cellulose, and hemicellulose.
Within this shell is a green seed containing the endosperm and embryo [3–5]. Among
the layers surrounding the coffee fruit, silverskin is the only by-product released during
roasting [6]. In today’s world, there is global political and social pressure to reduce pollution
caused by industrial activities. Significant support is provided for scientific studies, projects,
and activities to reduce this pollution. Despite the progress worldwide in valorizing coffee
fruit waste, practical methods for utilizing silverskin, a by-product generated during
roasting, have not been sufficiently developed. Therefore, there is a growing de-mand for
new techniques and technologies to recover and use CSS [7].

As the interest in healthy food consumption has increased in recent years, food product
manufacturers and researchers are interested in low calories, sugar, fat, and sodium; It is
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focused on developing products with high fiber, protein, mineral, vitamin, and antioxidant
content. However, changing the amount of ingredients in any food to reduce its calories may
negatively affect the texture, mouthfeel, flavor, and appearance of the product. Despite this,
the demand for fiber-rich, healthier, and also delicious foods is in-creasing as consumers
become aware of the benefits of increasing the fiber content of their diets. It is noteworthy
that the food industry has replaced the fat used in foods with dietary fiber to produce
food products that are both healthy and without losing taste [8]. CSS contains a significant
amount of protein (11–19%) and is rich in carbohydrates (60–68%). Although it contains
approximately 7% minerals, and it has a low-fat content (<4%) [6,9–11]. Additionally, CSS
has a high dietary fiber (50–60%), containing 15% soluble dietary fiber and 85% insoluble
dietary fiber [12–14]. A wide range of health-promoting effects have been attributed to
this coffee by-product, including anti-inflammatory, anti-diabetic, and anticholesterolemic.
These benefits are related to the presence of bioactive compounds, highlighted by phenolics
with high antioxidant activity, such as caffeine and chlorogenic acid [15].

Dietary fiber plays important roles, such as delaying the residence time in the stomach,
reducing hunger, facilitating digestion, and reducing obesity [16]. Consumers’ tendencies
to increase the amount of fiber in their diets also increase the demand for fiber rich healthy
foods [17]. Fiber has been employed recently for developing reduced-fat meat products,
given the textural and organoleptic characteristics that it contributes, as well as the reduced
caloric value and nutritional effects [18,19]. In this context, a promising way to produce
healthy food while preserving product properties in the food industry is to replace fat
with dietary fiber [20]. Besides dietary fiber, CSS is also rich in chlorogenic acids (CGAs).
Among the 30 different types of CGAs identified in coffee beans, the three main classes are
caffeoylquinic acids (CQAs), di-caffeoylquinic acids (diCQAs), and feruloylquinic acids
(FQAs). In particular, CSS is distinguished by its high content of 3-CQA, 4-CQA, 5-CQA,
3,4-diCQA, 3,5-diCQA, 4,5-diCQA, FQA, 4-FQA, and 5FQA among these 3 important acids.
Chlorogenic acids participate in antioxidant, antibacterial, antiviral, and anti-inflammatory
activities. Therefore, having high levels of bioactive compounds, especially polyphenols,
CSS is a functional component that can exhibit potential beneficial effects on human
health by protecting against oxidative damage, carbonyl stress, and advanced glycation
termination accumulation (AGEs). It is also widely claimed to have pro-biotic activity [21].

Fat replacers can be classified into fat substitutes and fat imitators based on their
chemical structure and function. Fat substitutes normally have a structure similar to that
of TAGs and are used to replace fats one-for-one. Fat mimetics, on the other hand, have
similar functions to fats, but they cannot replace fats one-to-one. While limited options exist
for lipid- and protein-based fat substitutes, carbohydrate-based substitutes include a very
broad family of materials, including starches, fibers, and their derivatives. In reduced-fat or
fat-free foods, carbohydrate-based fat substitutes can be found in particle form that mimics
fat particles or used to have the capacity to provide fat-like properties by contributing to
the textural and sensory properties often found in fatty foods. Carbohydrates can also
form microparticles with sizes and shapes similar to those of the fat globules and emulsion
droplets. This creates opportunities to mimic fats. Fibers are not structurally similar to fats.
However, because microcrystalline cellulose is physically and structurally similar to oil
emulsions, it can provide oil-like properties in low-fat foods. Carbohydrate fat substitutes
with a shape and size similar to those of fat particles are dispersed separately and can
interact with other colloidal particles [22]. Based on this definition, replacing fat in meat
products is achieved by adding other ingredients with low or no calorie content. The
process of developing processed meat presents a technological challenge in terms of fat
reduction. This is because fat significantly affects sensory properties as it serves important
functions in determining three basic sensory proper-ties such as appearance (color and
surface integrity), texture (viscosity, elasticity, and hardness), and flavor intensity. Options
for changing the formulations of meat products include adding dietary fiber and reducing
fat [23].
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Due to its high fiber content and composition, CSS has become a significant and
functional ingredient that can be incorporated into several food formulations [6,24,25].
However, there are few studies on the use of CSS in food formulations [26]. CSS has been
studied for its potential use as a dietary fiber source in bread making [14], a nutraceutical
component in yogurt [27], and a source of dietary fiber and prebiotics in biscuit produc-
tion [28]. Additionally, the effect of CSS on oxidation in cooked chicken burgers [29] and
its use as a phosphate replacer in sausages [30] have also been investigated. Besides all
these, there are limited studies on the use of CSS as a carbohydrate-based fat replacer [31].
However, there is no study on the use of CSS, which has high dietary fiber content, in
chicken patties as a fat substitute. The objective of this study is to produce functional
chicken patties using CSS as an animal fat substitute with its dietary fiber source. In the
present study, the effects of using CSS as an animal fat replacer in chicken patty production
on physicochemical, textural, and sensory properties were examined.

2. Materials and Methods
2.1. Production of Chicken Patties

Chicken breast meat, animal fat, garlic, onion, egg, breadcrumbs, and spices used
as materials in the study were bought from the local market. Dry CSS derived from a
mixture of Arabica varieties was obtained from Miko Gıda (Antalya, Türkiye) and Gönen
Kuru Kahve (Izmir, Türkiye) companies. The biomass was ground in a miller (Vorwerk
Thermomix TM6-1, Wuppertal, Germany) and sieved to a size of 125–250 µm. Ground and
unground coffee silverskin are shown in Figure 1.
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Figure 1. Ground and unground coffee silverskin.

Four different groups containing 9 patty samples were produced in 2 blocks. The
control group’s patty mixture consisted of 70% chicken breast meat, 12% fat, 6% onion,
0.3% garlic, 1.4% salt, 0.85% paprika, 0.15% thyme, 0.3% black pepper, 0.5% cumin, 2.5%
eggs, and 6% bread crumbs. In the other groups, the fat content was reduced, and CSS was
used in varying proportions (Control: 12% fat; SS1: 10% fat + 2% silverskin; SS2: 8% fat +
4% silverskin; SS3: 6% fat + 6% silverskin). All ingredients were simultaneously placed in a
kneading machine (Schafer Prochef XL, Istanbul, Türkiye) and mixed until a homogeneous
mixture (about 4 min). After that, the patty samples (50 g) were shaped with a ready-made
mold (7 cm diameter, 1 cm height) from this mixture and refrigerated at 4 ◦C overnight
before cooking. The patties were cooked without using oil or fat on a hot plate (Electro-mag,
M4060, Istanbul, Türkiye) at 200 ◦C for 8 min, with each surface cooked for 4 min. The
physical appearance of cooked patty samples is shown in Figure 2.
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Figure 2. Cooked patty pamples physical appearance of cooked patties produced in different
formulations (C: 12% animal fat, CSS1: 2% CSS+ 10% animal fat, CSS2: 4% CSS+ 8% animal fat, CSS3:
6% CSS+ 6% animal fat).

The physicochemical analyses were performed in raw and cooked patty samples,
while Texture Profile Analysis (TPA) and sensory analysis were conducted only in the
cooked samples.

2.2. Physicochemical Analysis

The pH and moisture content analyses were performed according to the AOAC Inter-
national [32]. The pH meter (GLP 22, Crison Instruments, S.A., Allella Barcelona, Spain)
was calibrated with pH:4 and pH:7 buffer solutions before use. A water activity device
(Novasina, TH-500 aw Sprint, Pfäffikon, Switzerland) was utilized to determine the samples’
water activity (aw) values. Before use, the device was calibrated at 25 ◦C using six different
salt solutions. The samples were placed in special plastic containers and inserted into the
measurement chamber of the device, where the aw values were detected at 25 ◦C. Thiobar-
bituric acid-reactive substances (TBARS) were determined following the method described
by Lemon [33], and the TBARS values were detected as µmol MDA (malondialdehyde) per
kg of the sample. The color intensities of the samples were determined according to the
criteria provided by the Commission Internationale de l’E-clairage (CIE), which is based on
three-dimensional color measurement, and the color values (L*, a*, and b*) were measured
using a Minolta colorimeter device (CR-200, Minolta Co., Osaka, Japan). In this context, L*
represents the lightness values, where L* = 0 indicates black and L* = 100 indicates white; a*
represents the redness/greenness values, where +a* indicates red and −a* indicates green;
and b* represents the yellow-ness/blueness values, where +b* indicates yellow and −b*
indicates blue color intensities. To calculate the moisture retention of the samples, moisture
contents and weights of three patty samples were determined before and after cooking,
and the values were calculated by the following equation:

% Moisture Retention =
cooked weight × % moisture in cooked meatball

raw weight × %moisture in raw meatball
× 100

2.3. Texture Profile Analysis (TPA)

TPA was performed using a texture analyzer (CT3 Texture Analyzer, Brookfield En-
gineering, Middleborough, MA, USA). Cylindrical samples (2 cm diameter and 1 cm
thickness) extracted from chicken patties were analyzed at room temperature with two
consecutive compression cycles using a 50.8 mm cylindrical probe (TA 25/1000, Brookfield
Engineering Laboratories, Middleborough, MA, USA). The analysis used a pre-test speed
of 1 mm/s, a test and post-test speed of 2 mm/s, a recovery time of 5 s, and a target strain
of 50%. Texture profiles of the samples (hardness, adhesiveness, cohesiveness, springiness,
and resilience) were calculated from the force-time curves.

2.4. Sensory Analysis

Ten panelists including five females and five males from the Department of Food
Science conducted the sensory evaluation in two separate sessions using a 5-point hedonic
scale (1 = very bad, 2 = bad, 3 = medium, 4 = good, 5 = very good) for odor, color, taste,
texture, and general acceptability. The panelists were informed about the scale before the
test, and the practice was carried out under fluorescent lighting. Water and bread were
served to the panelists to cleanse their mouths between samples.
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2.5. Statistical Analysis

The research was conducted and implemented according to a completely randomized
block design. Patty production was carried out in two blocks using two different raw
materials. For each sample, six measurements were taken for TPA, and three were taken
for other analyses. The obtained results were subjected to analysis of variance using the
IBM SPSS Statistics 20 software package. Mean values of significant sources of variation
were compared using the Duncan multiple comparison test at the 95% confidence level
(p < 0.05).

3. Results and Discussion
3.1. Physicochemical Properties

The values of the determined physicochemical properties in chicken patties with
different levels of CSS addition are presented in Table 1. The use of CSS in chicken patties
significantly affected the pH value (p < 0.01), and lower average pH values were observed
in all groups with CSS compared to the control. Among them, the lowest average pH
values were determined in the SS2 and SS3 groups, where animal fat was replaced with 4%
and 6% CSS, respectively.

Table 1. Physicochemical properties of chicken patties produced with coffee silverskin. 1

Control SS1 SS2 SS3 Significance

pH 6.10 ± 0.01 a 6.02 ± 0.03 b 6.01 ± 0.03 c 6.01 ± 0.02 c **
Moisture content (%) 62.43 ± 0.78 a 61.17 ± 0.69 bc 61.44 ± 0.52 b 61.09 ± 0.72 c **

aw 0.979 ± 0.001 a 0.976 ± 0.001 b 0.976 ± 0.001 b 0.974 ± 0.001 c **
TBARS (µmol MDA/kg) 11.75 ± 0.67 d 18.48 ± 0.70 c 25.91 ± 0.47 b 32.92 ± 1.00 a **
Moisture retention (%) 81.41 ± 1.30 b 85.59 ± 1.27 a 87.34 ± 0.58 a 86.16 ± 0.91 a **

Color
L* 72.48 ± 3.16 a 60.27 ± 2.10 b 53.80 ± 2.29 c 50.32 ± 1.80 d **
a* 12.50 ± 0.52 a 8.97 ± 0.27 b 7.56 ± 0.17 c 6.46 ± 0.20 d **
b* 37.14 ± 0.65 a 26.58 ± 0.91 b 21.64 ± 1.31 c 18.20 ± 1.52 d **

1 Presented values are means ± standard error; Control: 12% fat, SS1: 10% fat + 2% silverskin, SS2: 8% fat + 4%
silverskin, SS3: 6% fat + 6% silverskin; a–d: Means marked with different letters in the same line are statistically
different from each other (p < 0.05); **: p < 0.01.

These results may be due to the addition of CSS, which has a relatively low pH value
of 5.34 reported by Martuscelli et al. [2]. Similarly, Choi et al. [34] found that substituting
pig-back fat with different levels of germinated wheat fiber in reduced-fat chicken meatballs,
and Guedes-Oliveira et al. [35] reported that substituting animal fat with cashew apple fiber
in chicken meatballs decreased the pH value compared to the control. On the other hand,
Martuscelli et al. [29] reported that the addition of up to 3% of CSS did not significantly
affect chicken patties’ pH value. The cooking process also significantly affected the pH
value of chicken patties (p < 0.01). While there was a statistical difference between the
average pH values of all groups (control, SS1, SS2, SS3) before and after cooking, the
average pH value after cooking was higher (Table 2).

Table 2. Physicochemical properties of chicken patties at the production stages.

Before Cooking After Cooking Significance

pH 5.98 ± 0.02 a 6.09 ± 0.01 b **
Moisture content (%) 63.73 ± 0.17 b 59.34 ± 0.16 a **

aw 0.978 ± 0.001 b 0.974 ± 0.001 a **
TBARS (µmol MDA/kg) 20.69 ± 1.70 a 23.84 ± 1.70 b **

Color
L* 51.69 ± 1.55 a 66.74 ± 2.08 b **
a* 9.31 ± 0.65 b 8.43 ± 0.33 a **
b* 22.74 ± 1.84 a 29.04 ± 1.20 b **

a–b: Means marked with different letters in the same line are statistically different from each other (p < 0.05);
**: p < 0.01.
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This increase in pH is likely due to protein denaturation during cooking which caused
imidazolium revelation, the basic R group of the amino acid histidine [36,37]. pH is an
important factor for the production of safe, quality and value-added food. The pH of foods
plays an important role in determining the extent of heat treatment required to ensure a
safe final product. pH also has an impact on color pigments [38]. Kirkyol and Akköse [37]
found that the pH values of beef patty samples that replaced animal fat with almond
flour increased with the cooking process. Similarly, Martuscelli et al. [29] reported higher
pH values in chicken burgers with silverskin after cooking. The effect of treatment ×
production stage interaction on the pH value of chicken patties is shown in Figure 3.
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Figure 3. Changes in pH values of chicken patties during the production stages (Control: 12% fat,
SS1: 10% fat + 2% silverskin, SS2: 8% fat + 4% silverskin, SS3: 6% fat + 6% silverskin). a–c: Means
marked with different letters in different formulations at the same production stage are statistically
different from each other (p < 0.05).

The highest pH value was determined in the control sample before cooking, while the
highest average values after cooking were observed in the control and SS1 samples. The
highest increase in pH after cooking was observed in the sample with 2% CSS, followed by
samples with 4% and 6% CSS, respectively.

Using CSS instead of animal fat in chicken patty production significantly affected
the moisture content and aw values (p < 0.01). The replacement of animal fat with CSS
decreased the moisture content and aw values of chicken patties. These results may be
due to the addition of CSS, which has a relatively low moisture content of 2.78% reported
by Martuscelli et al. [2], and 7.1% reported by Pourfarzad et al. [14]. In addition, it has
a relatively low aw value of 0.32 reported by Martuscelli et al. [2] and 0.20 reported by
Pourfarzad et al. [14]. While the highest average values were determined in the control
group, the lowest average values were observed in the SS3 group with 6% CSS (p < 0.05).
Lower moisture content and aw in chicken patties with CSS was probably due to the
increase in solid content by dry CSS, which was used in this study having lower moisture
content than animal fat. Similar results were reported by Ateş and Elmacı [8] in cakes with
different levels of CSS addition as a fat replacer and by Bertolino et al. [27] in yogurt with
CSS addition. However, Martuscelli et al. [29] found that adding 1.5% or 3% CSS to chicken
burgers did not significantly affect the moisture content and aw values. The cooking process
was found to have a significant effect on the moisture content and aw values of chicken
patties (p < 0.01). There was a statistical difference between the average moisture content
and aw values before and after cooking, with lower average values obtained after cooking
(Table 2). This may be attributed to the moisture loss that occurs during cooking. Similar
results were reported by Botella-Martinez et al. [39] in beef burgers with the addition of
cocoa bean shells. The effect of treatment × production stage interaction on the moisture
content of chicken patties is shown in Figure 4.
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Figure 4. Changes in moisture contents of chicken patties during the production stages (Control: 12%
fat, SS1: 10% fat + 2% silverskin, SS2: 8% fat + 4% silverskin, SS3: 6% fat + 6% silverskin). a–c: Means
marked with different letters in different formulations at the same production stage are statistically
different from each other (p < 0.05).

The highest moisture content was observed in the control group before cooking, while
after cooking, the highest average values were found in the control and SS2 groups. After
cooking, the moisture content decreased in all groups, with the lowest value determined in
the SS3 group with 6% CSS.

Moisture retention is crucial for the taste of food and the preparation, processing, and
storage of food. In chicken patties, the replacement of animal fat with CSS significantly
influenced the moisture retention capacity (p < 0.01), and higher average moisture retention
capacity values were observed in the groups with CSS compared to the control group
(p < 0.05). However, no significant difference was observed among the groups with CSS.
The high moisture retention capacity may be attributed to the high dietary fiber content
(approximately 62.4%) of CSS [40]. Fruit fibers addition to meat products can increase
the water-holding capacity of the food matrix causing higher moisture content [35]. Also,
cellulose, one of the fiber contents of the coffee silverskin derivatives can be used to entrap
moisture in a variety of foods [22]. Kılınççeker and Kurt [41] found that the addition of
cellulose to chicken meatballs increased the water-holding/moisture retention capacity,
but there was no statistical difference among the groups with different cellulose levels.
In another study, adding amaranth and pumpkin seeds to chicken burgers increased the
water-holding capacity/moisture retention [18].

TBARS is an important indicator that reflects the level of lipid oxidation in meat products.
In chicken patties, replacing animal fat with CSS significantly affected the TBARS value
(p < 0.01). The use of CSS increased TBARS values, and the highest average value was observed
in the SS3 group, which used 6% animal fat + 6% CSS (p < 0.05). This could be attributed to the
presence of polyunsaturated fatty acids (64%) in the CSS. It has been reported that the fat content
of CSS is approximately 2–4%, with about 30% of this fat consisting of saturated fatty acids
(esterified sterols, di and triacylglycerol), 64% of polyunsaturated fatty acids (free fatty acids,
free sterols), and 6% monounsaturated fatty acids (palmitic and linoleic acids) [19,42]. However,
Martuscelli et al. [29] found lower TBARS values in cooked chicken burgers with CSS compared
to the control group. The cooking process also significantly affected the TBARS value in chicken
patties produced using different levels of CSS instead of animal fat (p < 0.01). TBARS values
increased after cooking. The TBARS value can vary depending on the processing conditions for
different meat products. It has been reported that the threshold value for perceiving bitterness
due to lipid oxidation is 2 mg MDA/kg (approximately 27.75 µmol MDA/kg) for some meat
products [43–45]. In this study, TBARS values lower than this limit were observed in all groups
and after cooking, except for the SS3 group.

Color is crucial in influencing consumer preferences for meat and meat products.
Changes in the color of the chicken patties during the production stage are shown in
Figure 5. The addition of CSS significantly impacted the color values of chicken patties
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(p < 0.01). Replacing animal fat with CSS resulted in a decrease in all color properties (L*, a*,
and b*) of chicken patties, and this decrease continued as the proportion of CSS increased.
These results may be due to the addition of CSS, which has a value of L* 20.8, a* 4.27, and
b* 13.4 reported by Martuscelli et al. [2]. Therefore, the substitution of animal fat with CSS
increased the darkness (L*) while reducing the redness (a*) and yellowness (b*) of chicken
patties. This is probably due to the characteristic color of CSS. It has been reported that the
color of CSS depends mainly on the interaction of structural polyphenols and anthocyanins
that participate in oxidation and polymerization reactions during the coffee roasting stage,
and also melanoidin’s formed as a result of Maillard reactions occurring during the roasting
process [2]. Similar findings were reported by Martuscelli et al. [29] in CSS-added chicken
burgers. Thangavelu et al. [30] also observed decreased L*, a*, and b* values with increasing
levels of CSS in Irish sausages. The cooking process also affected the color properties of
chicken patties (p < 0.01), with an increase in L* and b* values and a decrease in a* value
after cooking. The interaction between the treatment and production stages showed that
the control sample had the highest L* value before and after cooking. After cooking, all
samples exhibited an increase in L* values, with the control sample showing the highest
increase. The a* value decreased in the control, SS1, and SS2 groups whereas increased in
the SS3 group after cooking. The b* values increased in all samples after cooking, with the
highest increase observed in the SS3 group, followed by the SS2, SS1, and control groups.
The main conclusion about the color change is that the addition of CSS at increasing rates
darkens the color of the meatballs and reduces redness and yellowness. This change may
be undesirable in chicken meatballs, but when the results of the color values in the sensory
analysis were examined, it was observed that the difference between the 2% CSS added
sample and the control sample was not statistically significant (p > 0.05). This result shows
that meatballs with 2% CSS added are acceptable to the consumer in terms of color.
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3.2. Textural Properties

TPA results of cooked chicken patties are presented in Table 3.

Table 3. Texture profile parameters of chicken patties produced with coffee silverskin. 1

Control SS1 SS2 SS3 Significance

Hardness (N) 55.08 ± 1.39 a 69.85 ± 1.22 b 71.10 ± 1.32 b 78.21 ± 2.19 c **
Adhesiveness (mJ) 0.24 ± 0.05 a 0.16 ± 0.03 a 0.22 ± 0.05 a 0.12 ± 0.03 a ns

Resilience 0.13 ± 0.00 d 0.12 ± 0.00 c 0.10 ± 0.00 b 0.09 ± 0.00 a **
Cohesiveness 0.42 ± 0.01 c 0.42 ± 0.00 c 0.37 ± 0.01 b 0.35 ± 0.01 a **

Springiness (mm) 5.64 ± 0.07 b 5.04 ± 0.05 a 4.72 ± 0.24 a 5.06 ± 0.06 a *
Chewiness (mJ) 132.09 ± 4.50 a 147.46 ± 3.15 b 130.03 ± 3.35 a 137.13 ± 4.60 a *

1 Presented values are means ± standard error; Control: 12% fat, SS1: 10% fat + 2% silverskin, SS2: 8% fat + 4%
silverskin, SS3: 6% fat + 6% silverskin; a–d: Means marked with different letters in the same line are statistically
different from each other (p < 0.05); **: p < 0.01; *: p < 0.05; ns: not significant.

The hardness value was higher in the samples containing CSS compared to the control;
however, there was no statistically significant difference between the SS1 and SS2 groups,
while the SS3 group had the highest average value. This is probably due to the decreasing
fat and moisture content in samples where animal fat was replaced with CSS. In addition,
the high dietary fiber content of CSS may have also contributed to the increase in [37]. Using
CSS as a substitute for animal fat in chicken patties production increased the hardness value,
consistent with findings in cakes where CSS replaced fat [8] and other studies substituting
animal fat with fiber-containing substances in meat products [46–48]. On the other hand,
the adhesiveness value of chicken patties was not significantly affected by the addition of
CSS (p > 0.05). Regarding resilience, the control sample had the highest value, and as the
proportion of CSS increased, the resilience value decreased (p < 0.05). Similar observations
were made in studies where fiber-containing substances reduced resilience in chicken meat
products [37,49,50]. The cohesiveness value showed no statistically significant difference
between the control sample and SS1, but it decreased as the proportion of CSS increased
(p < 0.05). Studies have consistently reported decreased cohesiveness with adding fiber-
containing substances in various meat products [37,47,48,50]. Furthermore, the addition of
fiber from angelica keiskei koidz to chicken patties [36], CSS to cake formulations [8], and
oat fiber to chicken nuggets [49] reduced cohesiveness compared to control groups, without
statistical differences based on usage rates. There was a statistically significant difference
in springiness between samples with CSS and the control (p < 0.05), but no significant
difference among samples with different proportions of CSS (p > 0.05). Similar results were
also found in cakes with CSS addition [8].

3.3. Sensory Evaluation

Sensory evaluation results for chicken patties are presented in Table 4.

Table 4. Sensory properties of chicken patties produced with coffee silverskin. 1

Control SS1 SS2 SS3 Significance

Odor 4.08 ± 0.17 b 3.75 ± 0.14 b 3.04 ± 0.11 a 2.75 ± 0.15 a **
Color 3.71 ± 0.22 c 4.00 ± 0.15 c 3.17 ± 0.17 b 2.58 ± 0.20 a **
Taste 4.33 ± 0.16 d 3.38 ± 0.16 c 2.50 ± 0.16 b 2.04 ± 0.15 a **

Texture 3.92 ± 0.17 b 3.67 ± 0.10 b 3.13 ± 0.16 a 2.75 ± 0.20 a **
General

Acceptability 4.13 ± 0.14 c 3.54 ± 0.12 b 2.71 ± 0.14 a 2.42 ± 0.15 a **

1 Presented values are means ± standard error; Control: 12% fat, SS1: 10% fat + 2% silverskin, SS2: 8% fat + 4%
silverskin, SS3: 6% fat + 6% silverskin; a–d: Means marked with different letters in the same line are statistically
different from each other (p < 0.05); **: p < 0.01.
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Substituting animal fat with CSS significantly affected all sensory parameters (p < 0.01).
While there were no significant differences in odor, color, and texture between the control
and SS1 groups (p > 0.05), the SS2 and SS3 groups had lower mean sensory scores for
these parameters (p < 0.05). This indicates that CSS in amounts exceeding 2% negatively
affected odor, color, and texture. Taste also significantly decreased with higher proportions
of CSS (p < 0.05). Although the groups using CSS showed lower average values for overall
acceptability compared to the control, there was no significant difference between the SS2
and SS3 groups. Similar studies replacing animal fat with dietary fiber sources in chicken
meat products have reported lower average values for sensory parameters [34,41,48,50].

4. Conclusions

Substituting animal fat with CSS in chicken patty production significantly affects
physicochemical, textural, and sensory properties. These findings offer a potential approach
for replacing animal fat in the meat industry to meet the demand for healthier products. The
study suggests that substituting animal fat with CSS at a 2% level is feasible in chicken patty
production. However, new formulations should consider product quality and consumer
preference for higher levels of CSS usage. Further research is needed to investigate the
changes that occur during the storage of low-fat chicken patties produced with CSS.
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