Evaluating the Efficacy of Transcranial Magnetic Stimulation in Symptom Relief and Cognitive Function in Obsessive–Compulsive Disorder, Substance Use Disorder, and Depression: An Insight from a Naturalistic Observational Study
Abstract
:1. Introduction
2. Method
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Ethical Consideration
2.5. Variables
2.5.1. Cognition
2.5.2. Delay Discounting
2.5.3. Psychological Symptoms
2.6. Measurement
2.6.1. Cognition
2.6.2. Delay Discounting
2.6.3. Psychological Symptoms
2.7. Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brunoni, A.R.; Sampaio-Junior, B.; Moffa, A.H.; Aparício, L.V.; Gordon, P.; Klein, I.; Rios, R.M.; Razza, L.B.; Loo, C.; Padberg, F.; et al. Noninvasive Brain Stimulation in Psychiatric Disorders: A Primer. Rev. Bras. Psiquiatr. 2019, 41, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Prudic, J. Strategies to Minimize Cognitive Side Effects with ECT: Aspects of ECT Technique. J. ECT 2008, 24, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Guse, B.; Falkai, P.; Wobrock, T. Cognitive Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation: A Systematic Review. J. Neural Transm. 2010, 117, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Levkovitz, Y.; Rabany, L.; Harel, E.V.; Zangen, A. Deep Transcranial Magnetic Stimulation Add-on for Treatment of Negative Symptoms and Cognitive Deficits of Schizophrenia: A Feasibility Study. Int. J. Neuropsychopharmacol. 2011, 14, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Wall, C.A.; Croarkin, P.; McClintock, S.; Murphy, L.L.; Bandel, L.A.; Sim, L.A.; Sampson, S.M. Neurocognitive Effects of Repetitive Transcranial Magnetic Stimulation in Adolescents with Major Depressive Disorder. Front. Psychiatry 2013, 4, 165. [Google Scholar] [CrossRef] [PubMed]
- Verdejo-Garcia, A.; Garcia-Fernandez, G.; Dom, G. Cognition and Addiction. Dialogues Clin. Neurosci. 2019, 21, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Benzina, N.; Mallet, L.; Burguière, E.; N’Diaye, K.; Pelissolo, A. Cognitive Dysfunction in Obsessive-Compulsive Disorder. Curr. Psychiatry Rep. 2016, 18, 80. [Google Scholar] [CrossRef] [PubMed]
- Ferro, M.; Lamanna, J.; Spadini, S.; Nespoli, A.; Sulpizio, S.; Malgaroli, A. Synaptic Plasticity Mechanisms behind TMS Efficacy: Insights from Its Application to Animal Models. J. Neural Transm. 2022, 129, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, J.; Malgaroli, A.; Cerutti, S.; Signorini, M.G. Detection of Fractal Behavior in Temporal Series of Synaptic Quantal Release Events: A Feasibility Study. Comput. Intell. Neurosci. 2012, 2012, 704673. [Google Scholar] [CrossRef]
- Lamanna, J.; Signorini, M.G.; Cerutti, S.; Malgaroli, A. A Pre-Docking Source for the Power-Law Behavior of Spontaneous Quantal Release: Application to the Analysis of LTP. Front. Cell. Neurosci. 2015, 9, 44. [Google Scholar] [CrossRef]
- Schulte, C.; Lamanna, J.; Moro, A.S.; Piazzoni, C.; Borghi, F.; Chighizola, M.; Ortoleva, S.; Racchetti, G.; Lenardi, C.; Podestà, A.; et al. Neuronal Cells Confinement by Micropatterned Cluster-Assembled Dots with Mechanotransductive Nanotopography. ACS Biomater. Sci. Eng. 2018, 4, 4062–4075. [Google Scholar] [CrossRef] [PubMed]
- Drigas, A.S.; Karyotaki, M.; Skianis, C. An Integrated Approach to Neuro-Development, Neuroplasticity and Cognitive Improvement. Int. J. Recent Contrib. Eng. Sci. IT iJES 2018, 6, 4–18. [Google Scholar] [CrossRef]
- Roiser, J.P.; Sahakian, B.J. Hot and Cold Cognition in Depression. CNS Spectr. 2013, 18, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Moro, A.S.; Saccenti, D.; Ferro, M.; Scaini, S.; Malgaroli, A.; Lamanna, J. Neural Correlates of Delay Discounting in the Light of Brain Imaging and Non-Invasive Brain Stimulation: What We Know and What Is Missed. Brain Sci. 2023, 13, 403. [Google Scholar] [CrossRef] [PubMed]
- Nejati, V.; Salehinejad, M.A.; Nitsche, M.A. Interaction of the Left Dorsolateral Prefrontal Cortex (l-DLPFC) and Right Orbitofrontal Cortex (OFC) in Hot and Cold Executive Functions: Evidence from Transcranial Direct Current Stimulation (tDCS). Neuroscience 2018, 369, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta Burst Stimulation of the Human Motor Cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Herwig, U.; Padberg, F.; Unger, J.; Spitzer, M.; Schönfeldt-Lecuona, C. Transcranial Magnetic Stimulation in Therapy Studies: Examination of the Reliability of “Standard” Coil Positioning by Neuronavigation. Biol. Psychiatry 2001, 50, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Thielscher, A.; Antunes, A.; Saturnino, G.B. Field Modeling for Transcranial Magnetic Stimulation: A Useful Tool to Understand the Physiological Effects of TMS? In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 222–225. [Google Scholar]
- Drakaki, M.; Mathiesen, C.; Siebner, H.R.; Madsen, K.; Thielscher, A. Database of 25 Validated Coil Models for Electric Field Simulations for TMS. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2022, 15, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and Recommendations for TMS Use in Healthy Subjects and Patient Populations, with Updates on Training, Ethical and Regulatory Issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef]
- Kuschner, E.S. Nonverbal Intelligence. In Encyclopedia of Autism Spectrum Disorders; Volkmar, F.R., Ed.; Springer: New York, NY, USA, 2013; pp. 2037–2041. ISBN 978-1-4419-1698-3. [Google Scholar]
- Levelt, W.J.M.; Roelofs, A.; Meyer, A.S. A Theory of Lexical Access in Speech Production. Behav. Brain Sci. 1999, 22, 1–38. [Google Scholar] [CrossRef]
- Atkinson, R.C.; Shiffrin, R.M. Human Memory: A Proposed System and Its Control Processes. In The Psychology of Learning and Motivation; Spence, K.W., Spence, J.T., Eds.; Academic Press: Stanford, CA, USA, 1968; Volume 2, pp. 89–195. [Google Scholar]
- Baddeley, A. Working Memory: Looking Back and Looking Forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Odum, A.L. Delay Discounting: I’m a k, You’re a k. J. Exp. Anal. Behav. 2011, 96, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Derogatis, L.R.; Unger, R. Symptom Checklist-90-Revised. In The Corsini Encyclopedia of Psychology; Weiner, I.B., Craighead, W.E., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 255–318. ISBN 978-0-470-47921-6. [Google Scholar]
- Raven, J.C. Standardization of Progressive Matrices, 1938. Br. J. Med. Psychol. 1941, 19, 137–150. [Google Scholar] [CrossRef]
- Novelli, C.; Papagno, C.; Capitani, E.; Laiacona, M.; Vallar, G.; Cappa, S. Tre Test Clinici Di Ricerca e Produzione Lessicale: Taratura Su Soggetti Normali. Arch. Psicol. Neurol. Psichiatr. 1986, 47, 477–506. [Google Scholar]
- Orsini, A.; Grossi, D.; Capitani, E.; Laiacona, M.; Papagno, C.; Vallar, G. Verbal and Spatial Immediate Memory Span: Normative Data from 1355 Adults and 1112 Children. Ital. J. Neurol. Sci. 1987, 8, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.T.E. Measures of Short-Term Memory: A Historical Review. Cortex 2007, 43, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Prunas, A.; Sarno, I.; Preti, E.; Madeddu, F.; Perugini, M. Psychometric Properties of the Italian Version of the SCL-90-R: A Study on a Large Community Sample. Eur. Psychiatry 2012, 27, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Mazur, J.E. An Adjusting Procedure for Studying Delayed Reinforcement. In The Effect of Delay and of Intervening Events on Reinforcement Value; Psychology Press: New York, NY, USA, 1987; pp. 55–73. [Google Scholar]
- Moro, A.S.; Saccenti, D.; Vergallito, A.; Scaini, S.; Malgaroli, A.; Ferro, M.; Lamanna, J. Transcranial Direct Current Stimulation (tDCS) over the Orbitofrontal Cortex Reduces Delay Discounting. Front. Behav. Neurosci. 2023, 17, 1239463. [Google Scholar] [CrossRef] [PubMed]
- Turriziani, P.; Smirni, D.; Zappalà, G.; Mangano, G.R.; Oliveri, M.; Cipolotti, L. Enhancing Memory Performance with rTMS in Healthy Subjects and Individuals with Mild Cognitive Impairment: The Role of the Right Dorsolateral Prefrontal Cortex. Front. Hum. Neurosci. 2012, 6, 62. [Google Scholar] [CrossRef]
- Webler, R.D.; Fox, J.; McTeague, L.M.; Burton, P.C.; Dowdle, L.; Short, E.B.; Borckardt, J.J.; Li, X.; George, M.S.; Nahas, Z. DLPFC Stimulation Alters Working Memory Related Activations and Performance: An Interleaved TMS-fMRI Study. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2022, 15, 823–832. [Google Scholar] [CrossRef]
- Demirtas-Tatlidede, A.; Vahabzadeh-Hagh, A.M.; Pascual-Leone, A. Can Noninvasive Brain Stimulation Enhance Cognition in Neuropsychiatric Disorders? Cogn. Enhanc. Mol. Mech. Minds 2013, 64, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, M.; Sadowsky, C.; Tousi, B.; Agronin, M.E.; Alva, G.; Armon, C.; Bernick, C.; Keegan, A.P.; Karantzoulis, S.; Baror, E.; et al. Effects of a Combined Transcranial Magnetic Stimulation (TMS) and Cognitive Training Intervention in Patients with Alzheimer’s Disease. Alzheimer’s Dement. 2020, 16, 641–650. [Google Scholar] [CrossRef]
- Nahas, Z.; Kozel, F.A.; Li, X.; Anderson, B.; George, M.S. Left Prefrontal Transcranial Magnetic Stimulation (TMS) Treatment of Depression in Bipolar Affective Disorder: A Pilot Study of Acute Safety and Efficacy. Bipolar Disord. 2003, 5, 40–47. [Google Scholar] [CrossRef]
- Boes, A.D.; Uitermarkt, B.D.; Albazron, F.M.; Lan, M.J.; Liston, C.; Pascual-Leone, A.; Dubin, M.J.; Fox, M.D. Rostral Anterior Cingulate Cortex Is a Structural Correlate of Repetitive TMS Treatment Response in Depression. Brain Stimulat. 2018, 11, 575–581. [Google Scholar] [CrossRef]
- Pridmore, S.; Erger, S.; Rybak, M.; Kelly, E.; May, T. Early Relapse (ER) Transcranial Magnetic Stimulation (TMS) in Treatment Resistant Major Depression. Brain Stimulat. 2018, 11, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Steele, V.R.; Maxwell, A.M.; Ross, T.J.; Stein, E.A.; Salmeron, B.J. Accelerated Intermittent Theta-Burst Stimulation as a Treatment for Cocaine Use Disorder: A Proof-of-Concept Study. Front. Neurosci. 2019, 13, 1147. [Google Scholar] [CrossRef]
- Myczkowski, M.L.; Fernandes, A.; Moreno, M.; Valiengo, L.; Lafer, B.; Moreno, R.A.; Padberg, F.; Gattaz, W.; Brunoni, A.R. Cognitive Outcomes of TMS Treatment in Bipolar Depression: Safety Data from a Randomized Controlled Trial. J. Affect. Disord. 2018, 235, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhu, C.; So, S. Dysfunctional Metacognition across Psychopathologies: A Meta-Analytic Review. Eur. Psychiatry 2017, 45, 139–153. [Google Scholar] [CrossRef]
- Chan, M.M.Y.; Yau, S.S.Y.; Han, Y.M.Y. The Neurobiology of Prefrontal Transcranial Direct Current Stimulation (tDCS) in Promoting Brain Plasticity: A Systematic Review and Meta-Analyses of Human and Rodent Studies. Neurosci. Biobehav. Rev. 2021, 125, 392–416. [Google Scholar] [CrossRef]
- Montesano, G.; Belfiore, M.; Ripamonti, M.; Arena, A.; Lamanna, J.; Ferro, M.; Zimarino, V.; Ambrosi, A.; Malgaroli, A. Effects of the Concomitant Activation of ON and OFF Retinal Ganglion Cells on the Visual Thalamus: Evidence for an Enhanced Recruitment of GABAergic Cells. Front. Neural Circuits 2015, 9, 77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moro, A.S.; Saccenti, D.; Vergallito, A.; Gregori Grgič, R.; Grazioli, S.; Pretti, N.; Crespi, S.; Malgaroli, A.; Scaini, S.; Ruggiero, G.M.; et al. Evaluating the Efficacy of Transcranial Magnetic Stimulation in Symptom Relief and Cognitive Function in Obsessive–Compulsive Disorder, Substance Use Disorder, and Depression: An Insight from a Naturalistic Observational Study. Appl. Sci. 2024, 14, 6178. https://doi.org/10.3390/app14146178
Moro AS, Saccenti D, Vergallito A, Gregori Grgič R, Grazioli S, Pretti N, Crespi S, Malgaroli A, Scaini S, Ruggiero GM, et al. Evaluating the Efficacy of Transcranial Magnetic Stimulation in Symptom Relief and Cognitive Function in Obsessive–Compulsive Disorder, Substance Use Disorder, and Depression: An Insight from a Naturalistic Observational Study. Applied Sciences. 2024; 14(14):6178. https://doi.org/10.3390/app14146178
Chicago/Turabian StyleMoro, Andrea Stefano, Daniele Saccenti, Alessandra Vergallito, Regina Gregori Grgič, Silvia Grazioli, Novella Pretti, Sofia Crespi, Antonio Malgaroli, Simona Scaini, Giovanni Maria Ruggiero, and et al. 2024. "Evaluating the Efficacy of Transcranial Magnetic Stimulation in Symptom Relief and Cognitive Function in Obsessive–Compulsive Disorder, Substance Use Disorder, and Depression: An Insight from a Naturalistic Observational Study" Applied Sciences 14, no. 14: 6178. https://doi.org/10.3390/app14146178