iriried applied
L sciences

Article

Parallel GPU-Acceleration of Metaphorless Optimization
Algorithms: Application for Solving Large-Scale Nonlinear
Equation Systems

Bruno Silva 12

check for
updates

Citation: Silva, B.; Lopes, L.G.;
Mendonga, F. Parallel
GPU-Acceleration of Metaphorless
Optimization Algorithms:
Application for Solving Large-Scale
Nonlinear Equation Systems. Appl.
Sci. 2024, 14, 5349. https:/ /doi.org/
10.3390/app14125349

Academic Editors: Giuliano Laccetti
and Valeria Mele

Received: 23 May 2024
Revised: 14 June 2024
Accepted: 18 June 2024
Published: 20 June 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Luiz Guerreiro Lopes 3**

and Fabio Mendonca 3°

Doctoral Program in Informatics Engineering, University of Madeira, 9020-105 Funchal, Portugal;
bruno.silva@madeira.gov.pt

Regional Secretariat for Education, Science and Technology, Regional Government of Madeira,
9004-527 Funchal, Portugal

Faculty of Exact Sciences and Engineering, University of Madeira, 9020-105 Funchal, Portugal;
fabioruben@staff.uma.pt

4 NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), 2829-516 Caparica, Portugal
5 Interactive Technologies Institute (ITI/LARSyS) and ARDITI, 9020-105 Funchal, Portugal

* Correspondence: lopes@uma.pt; Tel.: +351-291-705-200

Abstract: Traditional population-based metaheuristic algorithms are effective in solving complex
real-world problems but require careful strategy selection and parameter tuning. Metaphorless
population-based optimization algorithms have gained importance due to their simplicity and
efficiency. However, research on their applicability for solving large systems of nonlinear equations
is still incipient. This paper presents a review and detailed description of the main metaphorless
optimization algorithms, including the Jaya and enhanced Jaya (EJAYA) algorithms, the three Rao
algorithms, the best-worst-play (BWP) algorithm, and the new max—min greedy interaction (MaGI)
algorithm. This article presents improved GPU-based massively parallel versions of these algorithms
using a more efficient parallelization strategy. In particular, a novel GPU-accelerated implementation
of the MaGl algorithm is proposed. The GPU-accelerated versions of the metaphorless algorithms
developed were implemented using the Julia programming language. Both high-end professional-
grade GPUs and a powerful consumer-oriented GPU were used for testing, along with a set of hard,
large-scale nonlinear equation system problems to gauge the speedup gains from the parallelizations.
The computational experiments produced substantial speedup gains, ranging from 33.9x to 561.8x,
depending on the test parameters and the GPU used for testing. This highlights the efficiency of the
proposed GPU-accelerated versions of the metaphorless algorithms considered.

Keywords: metaheuristic optimization; Jaya algorithm; Jaya variants; Rao algorithms; BWP algorithm;
MaGlI algorithm; parallel GPU algorithms; nonlinear equation systems

MSC: 65H10; 68W10; 90C59

1. Introduction

Nonlinear equations and nonlinear equation systems (NESs) are ubiquitous in sim-
ulations of physical phenomena [1] and play a crucial role in pure and applied sciences
and engineering [2]. NESs are considered among the most challenging problems to solve
in numerical mathematics [3,4], and their difficulty increases substantially as the number
of equations in the system grows. A compendium of complex optimization challenges
involving important NESs in science, engineering, and economics was produced by Mehta
and Grosan [5].

The well-known Newton method and its variants [6] are among the most common
iterative numerical techniques used to solve NESs. The effectiveness of these solvers is
strongly dependent on the quality of the initial approximations used [7,8], and convergence

Appl. Sci. 2024, 14, 5349. https:/ /doi.org/10.3390/app14125349

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14125349
https://doi.org/10.3390/app14125349
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6032-2317
https://orcid.org/0000-0002-6145-8520
https://orcid.org/0000-0002-5107-3248
https://doi.org/10.3390/app14125349
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14125349?type=check_update&version=2

Appl. Sci. 2024, 14, 5349

2 of 42

may not be guaranteed. Furthermore, there is no sufficiently efficient and robust general
numerical method for solving NESs [9], and they can be computationally demanding, espe-
cially for large and complex systems. Hence, it is critical to explore alternative approaches
to tackle the challenge of efficiently obtaining accurate approximations of the solutions
of NESs.

In recent years, there has been growing interest in population-based metaheuristic
algorithms due to their ability to tackle complex and challenging numerical problems, such
as NESs. These algorithms belong to a broader category of computational intelligence tech-
niques, offering a versatile and robust approach to optimization [10]. However, although
they are capable of addressing large-scale and high-dimensional problems and providing
near-optimal solutions within a reasonable time frame, it is important to note that they do
not guarantee optimal (i.e., exact) solutions.

Population-based metaheuristic algorithms, typically drawing inspiration from natural
evolution and social behavior, encompass several different techniques, such as swarm-
based optimization (e.g., particle swarm optimization (PSO) [11]), genetic algorithms,
evolution strategies, evolutionary programming, genetic programming, artificial immune
systems, and differential evolution. These algorithms utilize principles observed in nature
to guide their search for optimal solutions. Numerous modifications have been proposed to
make such algorithms more efficient, and their inherent characteristics make them natural
candidates for parallelization. However, their effective application requires the careful
selection of an appropriate strategy and the tuning of specific parameters, which is neither
simple nor obvious.

In contrast, population-based metaphorless optimization algorithms operate inde-
pendently of metaphors or analogies. These methods do not rely on algorithm-specific
parameters but rather on standard control specifications such as population size and the
number of allowed iterations. Originating from the pioneering work of R. V. Rao [12], these
algorithms have gained increasing importance due to their relative simplicity and efficiency
in solving problems across various domains with varying levels of complexity. They are
frequently more abstract and rely on mathematical principles or specific optimization
strategies rather than mimicking real-world phenomena. The development of population-
based metaphorless optimization algorithms is a growing research field. For instance, a
novel metaphorless algorithm known as the fully informed search algorithm (FISA) [13]
and the max—-min greedy interaction algorithm [14] were recently introduced. Conse-
quently, the need for innovative parallel computation approaches to enhance performance
is particularly pertinent.

Given the complexities associated with solving large-scale NESs, high-performance
computing (HPC) techniques, such as the use of heterogeneous architectures, become
crucial to ensuring access to adequate computational resources and achieving accurate
and timely solutions. The use of graphics processing units (GPUs) as general-purpose
computing devices has represented a noteworthy advancement in HPC and is fundamental
to increasing the computational efficiency of algorithms that are inherently parallel. These
hardware units are equipped with a multitude of cores, allowing for the execution of
numerous parallel operations simultaneously, thus surpassing the capabilities of traditional
central processing units (CPUs). This approach offers a cost-effective means of achieving
scalability and efficiency, making it possible to accelerate computations across various
domains, including scientific simulations, artificial intelligence, financial modeling, and
data analytics. The GPU acceleration of population-based metaheuristics allows for the effi-
cient resolution of large and complex optimization problems and facilitates the exploration
of vast solution spaces that would otherwise be impractical with traditional sequential
computing due to high computational costs.

This paper provides a review and detailed description of metaphorless algorithms,
including the Jaya optimization algorithm [12], the enhanced Jaya (EJAYA) algorithm [15],
which is a variant of Jaya that has recently been shown to be effective in solving nonlinear
equation systems [16], the three Rao algorithms [17], the best-worst-play (BWP) algo-

Appl. Sci. 2024, 14, 5349

3o0f42

rithm [18], and the recent max-min greedy interaction (MaGlI) algorithm [14]. In addition to
examining prior parallelizations of the Jaya optimization algorithm, this paper introduces
enhanced GPU-based massively parallel implementations of these algorithms, employing
a more efficient parallelization strategy. In particular, a novel GPU-accelerated version of
the MaGl algorithm is proposed. The performance of the GPU-accelerated versions of the
metaphorless algorithms is evaluated using a series of challenging and large-scale NESs
across a range of GPU devices.

NESs must be reformulated into optimization problems to solve them using meta-
heuristics. Considering a NES represented generically in vector form as f(x) = 0, with
components f;(x1,...,x,) =0, i =1,...,n, this system of n nonlinear equations with n
unknowns can be transformed into an n-dimensional nonlinear minimization problem.
Transforming NESs into optimization problems involves defining an objective function to
minimize. In this paper, the objective function is defined as the sum of the absolute values
of the residuals, Y} ;| fi(x1,...,x4)|

In population-based optimization algorithms, the initial population generation typ-
ically involves the random or strategic generation of a group of potential candidates to
serve as the starting point for the optimization process. As a standard practice, the default
initialization approach for the majority of metaheuristic algorithms involves the use of
random number generation, or the Monte Carlo method [19], in which individuals within
the initial population are generated randomly within predefined bounds or limitations.
This approach does not guarantee an even distribution of candidate solutions across the
search space [20] and can influence the performance of the algorithms. However, tests
have shown that this behavior is contingent on both the test problems and the algorithm
under consideration [19], indicating that certain combinations of problem domains and
algorithms are almost impervious to this scenario. Considering the prevalent use of ran-
domly generated starting populations and the limited number of experiments employing
alternative initialization procedures, a stochastic population initialization approach was
adopted in this study.

In addition to proposing novel parallelization for the MaGlI algorithm and more
efficient parallelizations for the other metaphorless algorithms, the primary goal of this
work is to investigate the efficacy, scalability, and performance characteristics of GPU-
based implementations of metaphorless optimization algorithms within the framework
of a standardized parallelization strategy. This study also aims to analyze the impact of
parallel computation on algorithmic efficiency across a diverse set of large-scale NESs with
varying dimensions and under different GPU hardware configurations. Furthermore, this
research aims to evaluate the adaptability of the proposed enhanced parallelization strategy
for handling varying computational demands across distinct computational resources,
thus assessing its effectiveness in meeting the computational requirements of various
applications and environments.

The organization of this article is as follows: the theoretical aspects and implementation
details of the aforementioned metaphorless algorithms are provided in Section 2. Principles
of GPU programming and details of the GPU-based implementation of each algorithm,
including aspects of the different parallelization strategies employed, are presented in
Section 3. All aspects of the experimental setup and methodology used to evaluate the
performance of GPU-based algorithms are detailed in Section 4, including details of the
hardware and benchmark functions used. The computational experiment findings and
discussion are presented in Section 5. Finally, the conclusions drawn from the key findings
are presented in Section 6.

2. Metaphorless Optimization Algorithms

The theoretical underpinnings and practical considerations of Jaya [12], EJAYA [15],
Rao [17], BWP [18], and MaGl [14] algorithms are presented here. This section provides a
comprehensive exploration of these methods, as well as detailed instructions and guidelines
for implementing the algorithms.

Appl. Sci. 2024, 14, 5349

4 of 42

2.1. Jaya Algorithm

The Jaya optimization algorithm [12] was introduced with the purpose of optimizing
both unconstrained and constrained problems. Jaya (a Sanskrit term meaning ‘victory’)
stands out as a metaphorless algorithm, representing an unprecedented and unique feature
in the field of population-based metaheuristic algorithms.

Due to its simplicity and efficiency, the Jaya algorithm has garnered growing interest
and has emerged as a viable alternative to other widely recognized metaheuristic algorithms
such as PSO [21] in various scientific and engineering disciplines (see [22,23]).

The process of updating the population in Jaya in order to optimize a given objective
function entails adjusting current solutions by directing the search toward more favorable
regions within the solution space while simultaneously moving away from potential
solutions with worse fitness.

Considering the parameters associated with the given problem, encompassing the
number of decision variables numVar, a variable index v ranging from 1 to numVar, the
population size popSize, a population index p varying from 1 to popSize, and the iteration
index i ranging from 1 to maxIter, the value of the v-th variable for the p-th population

candidate at the i-th iteration is represented as X, and the updated value XZ‘Z"I is
determined based on the following equation:
Z,EZ?,}I = Xlﬂrv,i + ",v,i (Xbest,v,i - |Xp,v,i|) - rZ,v,i(Xworst,v,i - |Xp,v,i)r (1)

where X, ,, ; and Xyrst 5,; denote the population candidates with the best and worst fitness
values, while 1y , ; and r; ,, ; represent uniformly distributed random numbers within [0, 1].

The pseudocode for the Jaya algorithm is delineated in Algorithm 1. The general
framework of the computational procedure of this algorithm can be succinctly expressed
with the following steps: initialization, where the initial set of potential solutions is gener-
ated; the main loop, where the refinement of the candidate solutions is performed using
the Jaya Equation (1), accompanied by the selection of the best candidate solution between
the current and updated candidates until the termination criterion is satisfied; reporting of
the best solution identified at the end of the algorithm.

Algorithm 1 Jaya pseudocode

1: /* Initialization */

2: Initialize numVar, popSize and maxIter;

3: X < GENERATE_INITIAL_POPULATION();
4: Evaluate fitness value f(X);

5: 14 1;

6: /* Main loop */

7: while i < maxIter do

8: Determine Xp,gt ;i and Xyorst o,i5
9: for p <— 1, popSize do
10: forv <+ 1, numVar do
11: Update population X%"l by Equation (1);
12: CHECK_BOUNDARY_INTEGRITY (X7%");
13: end for
14: Evaluate fitness value f(geg’l) ;
15: GREEDY_SELECTION (X}, X;‘ezj”l) ;
16: end for

17: i—i+1;
18: end while
19: Output the best solution found and terminate.

The initial population of candidate solutions is arbitrarily positioned within the specific
constraints of the optimization problem, employing random numbers uniformly distributed

Appl. Sci. 2024, 14, 5349

5of 42

in [0,1]. A detailed description of the procedure used is presented in Algorithm 2. The
lower bound (LB) and upper bound (UB) parameters determine the size of the search
space and the boundaries for each decision variable. These parameters are specific to the
characteristics of the optimization problem under consideration.

Algorithm 2 Initial population generation

1: function GENERATE_INITIAL_POPULATION()
2 for p <— 1, popSize do

3: forv + 1,numVar do

4: Xp < LBy +rand() x (UBy, — LBy).
5 end for

6 end for

7: end function

To maintain the feasibility of solutions and prevent candidates from going outside the
search space, the range of decision variable values of every newly generated candidate solution
(Xjew) must be checked and corrected to conform to the problem-specific constraints.

This is accomplished by checking if there are decision variables that fall outside
the lower or upper bounds and bringing them back to the search space boundaries in
accordance with Algorithm 3.

Algorithm 3 Boundary integrity control

1: function CHECK_BOUNDARY_INTEGRITY(X;’fg")
2 if Xﬁ‘;ﬁ" > UP, then
3 Xy < UPy;

4 end if

5: if X5’ < LB, then
6: Xpw < LBy.
7 end if
8: end function

A common characteristic of this class of metaheuristics is the use of a greedy selection
algorithm to expedite the convergence speed of the optimization process. The procedure
outlined in Algorithm 4 is employed locally to choose the best candidate (i.e., the candidate
solution with the best fitness value) between the newly generated candidate and the
current candidate solution under consideration. The evaluation of the best fitness value
is tied to the optimization goal, which may involve either minimizing or maximizing an
objective function.

Algorithm 4 Greedy selection

1: function GREEDY_SELECTION(X 5, ngg"
2 if f (Xgegv) is better than f (Xp,v) then
3 Xpo Xgeg” ;

4 f(Xpo) f(Xp37);

5: else

6 Keep X, and f(Xp,») values.

7 end if

8: end function

2.2. Enhanced Jaya Algorithm

The EJAYA algorithm [15] is a metaheuristic built upon the Jaya algorithm to address
some of its limitations, namely the limited focus on the current best and worst solutions to
guide the search process that might lead to premature convergence. This issue is tackled
in EJAYA through the introduction of a more comprehensive exploration strategy capable

Appl. Sci. 2024, 14, 5349

6 of 42

of leveraging different search methods and incorporating additional information about
the population to effectively exploit and explore possible solutions. This strategy aims to
safeguard population diversity, navigate away from local optima, and facilitate further
enhancement and refinement of candidate solutions.

Similarly to the original Jaya algorithm, EJAYA incorporates information regarding
the best and worst solutions to explore the search space. However, it distinguishes itself by
utilizing supplementary parameters, including the mean solution and historical solutions,
to harmonize its local exploitation strategy (LES) and global exploration strategy (GES).

The LES phase involves the calculation of two elements, the upper and lower local
attraction points. These attraction points are employed to direct the population towards
potentially superior solutions and simultaneously mitigate the risk of premature convergence.

The upper local attraction point (PU) serves to characterize the solution positioned
between the current best solution (Xj,,;) and the current mean solution, determined in the
following way:

PU = r3 X Xpest + (1 —13) X M, 2)

where r3 represents a random number that follows a uniform distribution over the interval
from 0 to 1, and M signifies the current population mean defined as follows:

1 popSize

Y. X, 3)

M =
popSize =1

The lower local attraction point (PL) is determined similarly to the upper local attrac-
tion point, but instead, it represents the solution in between the present solution with the
worst fitness (Xyorst) and the mean solution through the following formulation:

PL = r4 X Xyorst + (1 — 1’4) X M, (4)

where ry4 signifies a random number following a uniform distribution over the interval
[0,1].
By leveraging both the PU and PL attraction points, the LES phase of EJAYA can be
described as follows:
pe = Xpui + 150 (PU; — Xp i) — 16,0 (PLi — Xp o), ®)

POk

where 15, ; and r4 ,,; indicate randomly generated numbers uniformly distributed over the
interval [0, 1].

In an effort to more comprehensively explore the global search space, EJAYA utilizes
a GES phase that is based on the principles of the backtracking search optimization algo-
rithm [24]. This is accomplished by alternatively leveraging information from either the
current population (X, ;) or a historical population (X;{g).

In the first iteration (i.e., at the start of the algorithm), the historical population X;{g
coincides with X}, »; however, in the following iterations, it is determined by a switching
probability defined in the following way:

Xold _ XP,U lf Pswitch S 05 (6)
po X;’,lg otherwise,
with Py, denoting a random number uniformly distributed between 0 and 1.
Subsequently, the historical population Xglg undergoes the following procedure:
X;lg = permuting (lef,l), 7)

where permuting represents a shuffling function that reorders each individual (i.e., candi-
date solution) within Xg{g randomly.

Appl. Sci. 2024, 14, 5349

7 of 42

Finally, the main operational procedure for the GES phase is expressed as follows:

= X+ X (X005 X0, 8)
with k representing a randomly sampled value with a standard normal distribution span-
ning from 0 to 1.

Given the pivotal and complementary roles played by both the LES and GES phases
in the optimization process, EJAYA ensures a balanced utilization of these search strategies.
This equilibrium is maintained through an equivalent switching probability, as expressed
by the following formulation:

LES if Pyjpy > 0.5

))
GES otherwise,

Search strategy = {

where P, represents a randomly generated number following a uniform distribution in
the range of 0 to 1.

Algorithm 5 presents pseudocode, providing a comprehensive overview of the distinct
procedural steps constituting EJAYA.

Algorithm 5 EJAYA pseudocode

1: /* Initialization */
2: Initialize numVar, popSize and maxIter;
3: X <~ GENERATE_INITIAL_POPULATION();
4: Evaluate fitness value f(X);
5 XOM X;
6: 1+ 1;
7. /* Main loop */
8: while i < maxIter do
9: Determine Xpq; ,; and Xyprst0,is
10: Determine PU; by Equation (2);
11: Determine PL; by Equation (4);
12: if Psyiten < 0.5 then
13: X0l X;;
14: end if
15: Permute X by Equation (7);
16: for p < 1, popSize do
17: if Psojeet > 0.5 then > Local exploitation strategy
18: forv < 1, numVar do
19: Update population Xzeg"l by Equation (5);
20: CHECK_BOUNDARY_INTEGRITY(Xz;ffi) ;
21: end for
22: else > Global exploration strategy
23: forv <+ 1,numVar do
24: Update population XZE;”l by Equation (8);
25: CHECK_BOUNDARY_INTEGRITY(Xg,egf’i) ;
26 end for
27: end if
28: Evaluate fitness value f (X;eg"l),
29: GREEDY_SELECTION(XP,U,,», X;f;f’i) ;
30: end for

31: i+—i+1;
32: end while
33: Output the best solution found and terminate.

Appl. Sci. 2024, 14, 5349

8 of 42

2.3. Rao Optimization Algorithms

The Rao optimization algorithms [17] were proposed in 2020 by R. V. Rao, the same
author of the Jaya algorithm, and are composed of three different optimization methods,
denoted as Rao-1, Rao-2, and Rao-3.

These algorithms represent a concerted endeavor to advance the field of optimization
by devising simple and efficient metaphorless methodologies. A distinctive feature of
these algorithms is their deliberate avoidance of algorithm-specific control parameters.
This underscores an emphasis on common parameters such as population size and the
number of iterations, guided by a simplicity-driven perspective. The motivation behind
these developments is based on a broader strategy to foster optimization techniques that
eschew reliance on metaphors while simultaneously maintaining algorithm robustness.

The three Rao algorithms share the common approach of incorporating information
about the current best and worst solutions and random factors to update and direct the
population towards an optimal solution, but each algorithm uses different strategies.

In the context of the Rao-1 algorithm, the updated value (Xzezf"l) is determined by the
following equation:
z/egl = Xp,v,i + 7’7,7;,1‘(Xbest,v,i - Xworst,v,i)/ (10)

where 17, ; is a randomly generated number uniformly distributed over the interval [0, 1].

The Rao-2 and Rao-3 algorithms are extended versions of Rao-1 with an additional
set of terms in their update equations that introduce a second random factor and random
interactions between candidates based on fitness values. This additional set of terms
of the Rao-2 and Rao-3 equations is contingent upon whether the fitness value of the
current candidate solution, denoted as f (prvli), is better than the fitness value of the
randomly chosen solution, f(X; , ;). The main functions of Rao-2 (Equation (11)) and Rao-3
(Equation (12)) are described below:

Z’E;U/l = Xp,v,i + rS,U,i(Xbest,v,i - Xworst,v,i)
70,01 (| Xpyo,] = [Xewil) if f(Xp,0,0) better than (1) (1)
19,0,i <|Xt,v,i - ‘Xp,v,i|) otherwise,

new __
poi Xp,v,i + rlO,v,i(Xbest,v,i - Xworst,v,i)

+ 711,v,i(|Xp,v,i - Xt,v,i) iff<Xp,U,i) better than f(Xt,v,i) (12)
11,01 (| Xt0,i] — Xp,v,i) otherwise.

In this context, 78, i, 79 4,i, 10,0, and 711 ,,,; are random variables uniformly distributed
in a range from 0 to 1, and X; ; ; denotes a randomly selected candidate solution from the
population (i.e., t € [1, popSize]) that is distinct from X, ,,; (i.e., t # p).

A unified description of the pseudocode for the Rao-1, Rao-2, and Rao-3 algorithms is
presented in Algorithm 6.

Appl. Sci. 2024, 14, 5349 9 of 42

Algorithm 6 Rao-1, Rao-2, and Rao-3 pseudocode

1: /* Initialization */

2: Initialize numVar, popSize and maxIter;

3: X < GENERATE_INITIAL_POPULATION();
4: Evaluate fitness value f(X);

51+ 1;

6: /* Main loop */

7: while i < maxIter do

8: Determine Xpes; ,; and Xyorstv,i;
9: for p < 1, popSize do
10: if algorithm = ‘Rao-2" or ‘Rao-3" then
11: t +— Random candidate solution different than p;
12: end if
13: forv < 1,numVar do
14: if algorithm = ‘Rao-1" then
15: Update population X%Uz by Equation (10);
16: else if algorithm = ‘Rao-2’ then
17: Update population X%Uz by Equation (11);
18: else if algorithm = ‘Rao-3" then
19: Update population X%Uz by Equation (12);
20: end if
21: CHECK_BOUNDARY_INTEGRITY(Xgezj”l.) ;
22: end for
23 Evaluate fitness value f (Xze;“l),
24: GREEDY_SELECTION(XP,M, X;‘f;"l);

25: end for

26: i+—i+1;

27: end while

28: Output the best solution found and terminate.

2.4. Best-Worst-Play Algorithm

The BWP algorithm [18] is an optimization approach for unconstrained and constrained
optimization problems that aim to strike a balance between exploration and exploitation by
consecutively employing two operators inspired by Jaya and Rao-1 algorithms.

Through a process of hybridization, the BWP algorithm maintains a straightforward
approach analogous to that of the original methods. This is evidenced by its capability
to progressively improve the quality of the population over time, ultimately converging
toward a near-optimal solution by leveraging information regarding both the best and
worst candidate solutions.

The update equation for the BWP algorithm incorporates both Jaya and Rao-1 heuris-
tics. In the case of Jaya, it employs the same unaltered method (see Equation (1)), while the
Rao-1 method undergoes modification in the Xy, ,; parameter, as shown below:

), (13)

new __
poi = Xp,v,i + 7’12,0,1'(Xbest,v,i - |Xworst,v,i

where 15 ;,; is a random variable with a uniform distribution from 0 to 1.
These two methods are applied one after the other to all candidate solutions across all
iterations, as illustrated in Algorithm 7.

Appl. Sci. 2024, 14, 5349 10 of 42

Algorithm 7 BWP pseudocode
1: /* Initialization */
2: Initialize numVars, popSize and maxIters;
3: X < GENERATE_INITIAL_POPULATION();
4: Evaluate fitness value f(X);
51+ 1;
6: /* Main loop */
7: while i < maxIters do
8: /* Leverage the Jaya heuristic */

9: Determine Xpegt i and Xoorst o,i5
10: for p < 1, popSize do
11: for v < 1, numVars do
12: Update population X;Z"l by Equation (1);
13: CHECK_BOUNDARY_INTEGRITY(Xze;”i) ;
14: end for
15: Evaluate fitness value f (X;eg"l),
16: GREEDY_SELECTION(XP,W', X;‘ezj”l);
17: end for
18: /* Leverage the Rao-1 based heuristic */
19: Determine Xpq; ,; and Xyorst0,is
20: for p < 1, popSize do
21: forv < 1,numVars do
22: Update population Xzezf"l by Equation (13);
23 CHECK_BOUNDARY_INTEGRITY(Xgij"i) ;
24: end for
25: Evaluate fitness value f (Xzezf"z) ;
26: GREEDY_SELECTION(XP,W, ngg"l);
27: end for
28: i+—i+1;

29: end while
30: Output the best solution found and terminate.

2.5. Max—Min Greedy Interaction Algorithm

The MaGlI algorithm is a metaphorless optimization approach recently published by
R. Singh et al. [14] that demonstrated effectiveness in mechanism synthesis and exhibited
promise for diverse optimization tasks.

The algorithm utilizes maximum and minimum values within the group of candidates,
essentially representing the best and worst candidates, to update the population. This
approach incorporates operators inspired by the Jaya and Rao-2 algorithms and appears
to be influenced by the BWP methodology, as both heuristics are executed sequentially
throughout the iteration process. The Jaya main function (see Equation (1)) remains un-
modified, whereas the Rao-2 method undergoes adjustments in several parameters, as
indicated by the following equation:

XZ%‘,’[= Xp,v,i + rlB,v,i(Xbest,v,i - |Xworst,v,iD

L 140 (Xpai = i) i F(Xp0) better than f(X0,) (14)
T14,0,i (Xt,v,i — Xp,z,,i) otherwise.

For this condition, r13,; and 14 ,,; are chosen randomly from a uniform distribution
spanning from 0 to 1.

The implementation outline, detailed in Algorithm 8, provides an in-depth explanation
of the step-by-step procedures inherent in the MaGI methodology.

Appl. Sci. 2024, 14, 5349 11 of 42

Algorithm 8 MaGI pseudocode
1: /* Initialization */
2: Initialize numVars, popSize and maxIters;
3: X < GENERATE_INITIAL_POPULATION();
4: Evaluate fitness value f(X);
51+ 1;
6: /* Main loop */
7: while i < maxIters do
8: /* Leverage the Jaya heuristic */

9: Determine Xpegt i and Xoorst o,i5
10: for p < 1, popSize do
11: for v < 1, numVars do
12: Update population X;Z"l by Equation (1);
13: CHECK_BOUNDARY_INTEGRITY(X7%");
14: end for
15: Evaluate fitness value f (X;e;"l) ;
16: GREEDY_SELECTION(X}, X;‘ezj”l);
17: end for
18: /* Leverage the Rao-2 based heuristic */
19: Determine Xpq; ,; and Xyorst0,is
20: for p < 1, popSize do
21: forv < 1,numVars do
22: Update population Xzezf"l by Equation (14);
23 CHECK_BOUNDARY_INTEGRITY(Xgij"i) ;
24: end for
25: Evaluate fitness value f(X}7");
26: GREEDY_SELECTION(X,,, ;, ngg"l);
27: end for

28: i+—i+1;
29: end while
30: Output the best solution found and terminate.

3. GPU Parallelization of Metaphorless Optimization Algorithms

In this section, the concepts underpinning GPU programming, including architecture
aspects, the nature of parallel computation, and the specific CUDA programming con-
cepts, are discussed. Additionally, detailed information regarding the methodology used
for GPU parallelization and the specific implementation of the examined algorithms is
also presented.

3.1. Principles of CUDA Programming

GPUs have become an essential component of modern computers. Initially designed
for rendering graphics, this hardware has evolved to manage a multitude of graphical
elements simultaneously, such as pixels or vertices, for which a large parallel processing
capacity is required.

The compute unified device architecture (CUDA) [25] is a computing platform devel-
oped by NVIDIA that harnesses the power of GPUs for general-purpose parallel computing,
making it possible to take advantage of the massive parallelism offered by the GPU for
distinct computing tasks. The CUDA Toolkit 12.1 stack acts as a framework that abstracts
the inherent complexities of GPU programming. This streamlines communication and
coordination between the CPU and GPU, providing an interface to efficiently utilize GPU
resources in order to accelerate specific functions within programs. The functions designed
to execute highly parallelized tasks on the GPU are referred to as kernels.

CUDA functions as a heterogeneous computing framework, consequently dictating
a specific execution pattern within kernels. The CPU functions as the host, which is

Appl. Sci. 2024, 14, 5349

12 of 42

responsible for initiating kernel launches and overseeing the control flow of the program.
On the other hand, the kernels are executed in parallel by numerous threads on the GPU,
designated as the device. In essence, the host performs tasks that are better suited for
sequential execution while the GPU handles the computationally intensive parts of the
program in parallel. This relationship is illustrated in Figure 1.

Host Device
Program Kernel A
¢ Grid 0
Kernel Block 0 Block 1 Block 2
A
invocation ~ %%%% %%%% %%%% .

— threadldx.x » — threadldx.x 9» — threadldx.x 3»

— blockDim.x — — blockDim.x — +— blockDim.x —
blockIdx.x »
gridDim.x {

Y Host
Serial code > %
Device
Kernel B
Grid 1
Block (0,0) Block (1,0)
T I
¥VYV |[FVVS
£2
sess fsss
Z 9
S5
e - -
Y | LY h :dd h:dld
£ X —— threadldx.x —» —— threadldx.x —>»
. Kerne'I »| |5 %
invocation 220 Block (0,1) Block (1,1)
o a |
2EESSY | FESY
£2
SIRSSY | FISY T
S5
Ty : :
—— threadldx.x —» —— threadldx.x —»
— blockDim.x — —— blockDim.x —
blockldx.x —— 8 ¥ ——————————
b gridbimx ——
A 4
Serial code >
”| Host %

Figure 1. Heterogeneous computing architecture with 1D and 2D thread hierarchy in CUDA kernels.

The computational resources of the GPU are organized into a grid to execute multiple
kernels in parallel. This grid acts as an abstraction layer, structuring the available computa-
tional elements into blocks, each containing a set number of threads. This thread hierarchy
is configurable into grids with one, two, or three dimensions, tailored to accommodate the
parallelization needs of a specific kernel. The configuration parameters within the thread
hierarchy play a pivotal role in determining GPU hardware occupancy, making them a
critical aspect of optimizing resource utilization.

Appl. Sci. 2024, 14, 5349

13 of 42

In Figure 1, Kernel A showcases a one-dimensional thread-block arrangement, while
Kernel B displays a two-dimensional configuration. The illustration also includes the CUDA
built-in variables for accessing the grid and block dimensions (gridDim and blockDim),
block and thread indices (blockldx and threadldx), and their respective coordinates (x and
y). These variables also facilitate the unique identification of individual threads within a
kernel through a process known as thread indexing.

The discrete nature of the host and device hardware involves separate memory spaces,
preventing direct data access between them. This necessitates explicit data transfers, result-
ing in substantial computational overheads and performance degradation. Consequently,
meticulous optimization of memory access patterns and a reduction in the frequency of
data transfer are crucial to mitigating performance bottlenecks [26].

CUDA also provides access to diverse memory types within the GPU memory hierar-
chy, which is an important consideration for performance optimization. The memory types
encompass global, shared, and local memories, each serving distinct purposes. Global
memory is the largest memory segment on the device but also the slowest. It remains
persistent throughout kernel execution, serves as the interface for data transfers between
the host and device, and is accessible by all threads in the GPU, thus enabling global data
sharing. The shared memory, though much smaller, offers greater speed but is exclusive to
threads within a block, enabling efficient data exchange among them. Finally, local memory
is the smallest in size and is private to individual threads, enabling them to store their
specific local variables and facilitate the execution of code tailored to each thread.

Implementing CUDA algorithms presents several significant challenges. Efficient
memory management, including the optimization of various memory types, is critical.
Thread divergence and synchronization overheads must be carefully managed to maintain
parallelism and avoid performance degradation. Ensuring scalability through balanced
workload distribution and optimal utilization of CUDA cores is essential, along with
addressing resource constraints to maximize occupancy. More details about addressing
these challenges are discussed in the following subsections.

3.2. Methodology Used for GPU-Based Parallelization

The primary step in parallelizing any algorithm requires an extensive assessment of
its architecture, dependencies, data structure, etc., to devise a viable parallelization strategy.
While some aspects may not be conducive to parallel execution, others, albeit parallelizable,
may pose implementation challenges.

Several studies focusing on parallel and distributed metaheuristic algorithms have
employed implementation strategies based on decomposing the optimization problem into
smaller, independent subproblems (see [27,28]). These subproblems can then be distributed
across multiple parallel computation units, sometimes running several sequential instances
of metaheuristic algorithms concurrently. An alternative method involves running specific
phases of the algorithm in parallel while others are executed sequentially (see [29,30]).
However, these approaches often prove less efficient due to the loss of computational
resources attributed to overheads related to data transfers, synchronization, and other
communication mechanisms.

While these parallel strategies can notably enhance computational performance com-
pared to their original sequential counterparts, they are suboptimal for GPU computing
due to their tendency to underutilize the available computational resources [31]. Further-
more, specific parallelization strategies can result in modifications in the behavior of the
parallel algorithm in contrast to its original version, leading to variations in convergence
characteristics and the quality of the obtained approximations.

As CUDA inherently adopts a heterogeneous approach, establishing an effective bal-
ance between the host and device is crucial. In the proposed GPU-based parallelization, the
primary responsibilities of the host include initializing algorithm variables, invoking kernel
functions, managing the primary loop, and reporting the best solution found. Consequently,
all intensive computations are exclusively handled by the device.

Appl. Sci. 2024, 14, 5349

14 of 42

Given this perspective, the proposed methodology for GPU-based parallelization of
metaphorless optimization algorithms must ensure optimal utilization of the available GPU
resources while still aligning with the fundamental operating principles of the original
algorithm. This is essential to ensure a similar convergence behavior and quality of the
obtained solutions in the parallelized version. Additionally, maintaining the same flexibility
as the original algorithm is paramount, ensuring that the parallel algorithm can operate
under virtually any optimization parameters.

To accomplish these objectives and handle large-scale optimization problems effi-
ciently, the GPU-based parallelization design emphasizes the data structures of the opti-
mization algorithms. In this approach, the GPU computational units are assigned based
on the size and structure of the data segment being processed. Consequently, scalability
is achieved when the number of threads allocated closely matches the size of the data
computed. This leads to the alignment of both one-dimensional (1D) and two-dimensional
(2D) arrays with the corresponding CUDA thread hierarchy, facilitating their processing by
the respective kernels and addressing data locality issues.

Figure 2 illustrates the data-to-thread indexing of the largest data structure, a 2D array
containing population data, to a 2D grid arrangement on the device. This configuration
enables parallel computation across multiple blocks of threads. In this example, data
corresponding to variable 6 from candidate 8 (using O as the starting index) are processed
by thread (3,2) within block (1,1). For the parallel processing of 1D array data, such as
fitness values from each candidate solution, a 1D thread-block arrangement is utilized.

Optimizing the number of blocks and threads per block is critical for leveraging
hardware resources efficiently. However, determining the optimal configuration is not
straightforward; it varies based on algorithm characteristics, GPU architecture, memory
needs, and workload specifics. Traditional methods for determining this configuration in-
volve iterative experimentation, optimization, and profiling, which can be time-consuming.

In the proposed GPU-based parallelization approach, a dynamic and generalized
method to automatically determine optimal GPU hardware occupancy was developed, and
its overview is presented in Algorithm 9. This process involves a function that predicts the
launch configurations for each kernel using CUDA runtime methods available in devices
supporting CUDA 6.5 or higher, utilizing parameters such as data size, supported block
size, and kernel memory requirements. To suit the algorithmic data being processed by
optimization algorithms, two kernel launch configuration functions were created, one
for 1D and another for 2D thread-block kernels. This approach ensures that kernels
are adaptable to diverse GPU hardware configurations and are inherently structured for
horizontal scalability through the utilization of additional available threads, all achieved
without the need for modifications to the parallel implementation. Although automatic
methods present the potential for achieving maximum GPU occupancy, they may not
consistently produce the most efficient parameters tailored to a specific hardware setup.

In this study, the method for automatically determining optimal GPU hardware occu-
pancy has undergone revision. The modification entails the incorporation of a parameter
designed to constrain the suggested block size (i.e., the number of threads allocated for
computation in each block used) to a multiple of the supported warp size by the GPU (see
line 3 of Algorithm 9). The warp size, which denotes the minimum number of threads that
can be concurrently executed in CUDA, is inherently dependent on the GPU architecture
and can be automatically derived from the hardware parameters. Empirical tests have re-
vealed that constraining the suggested block size to twice the warp size yields an additional
average performance improvement of 19.8% compared to the preceding version of the
automated launch configuration method when using the RTX 3090 GPU. This enhancement
is primarily attributed to the facilitated coalesced memory access and optimized instruction
dispatch achieved through the harmonization of block size.

Appl. Sci. 2024, 14, 5349

15 of 42

Device

Kernel

@
:l
o

Block (0,0)

Block (1,0)

- blockDim.y —
<« threadldx.y -

<« threadldx.y —

—— threadldx.x —»

—— threadldx.x —»

gridDim.y
blockIdx.y

[N N S R —

———— Problem dimension ————
«—— Variables (y)

Block (0,1) Block (1,1)
T ! |
> >
£ 3 3
8 B B "
BEY
1V v \
—— threadldx.x — —— threadIdx.x
— blockDim.x — — blockDim.x
1YV
blockIdx.x \ >
} gridDim.x \ |
L]
Memory Thread
(3,2)
Population data Data
(8,6)

Candidates (x)

Population size

A 4

Figure 2. Population thread mapping showing a 2D grid kernel and its relation to data memory.

Appl. Sci. 2024, 14, 5349

16 of 42

Algorithm 9 Function to determine kernel occupancy

1: function KERNEL_LAUNCH_CONFIGURATION(kernel_fn, kernel_args, data_dim)
2 /* Constrain the number of threads per block */
3 max_block_size <— 2 x device_warp_size;
4: /* Get the optimal launch configuration */
5: launch_conf «+ cudaOccupancyMaxPotentialBlockSize(kernel _fn, max_block_size);
6 /* Determine threads per block */
7 threads <— Determine_threads(data_dim, launch_conf);
8 /* Calculate required blocks */
9: blocks < Determine_blocks(data_dim, threads);
10: /* Launch the kernel */
11: Launch_kernel(kernel_fn, kernel_args, threads, blocks).
12: end function

While both shared memory and local memory exhibit faster access compared to global
memory due to their proximity to processing units, their limited size and accessibility pose
challenges when handling extensive data volumes. Therefore, the proposed GPU-based
implementation prioritizes the use of larger global memory. This memory type offers
substantial storage capacity, accommodating extensive datasets, variables, diverse data
types, and complex data structures. Moreover, it aids in thread synchronization, ensuring
that when a kernel concludes execution and the subsequent one initiates, all processed data
synchronizes in the GPU global memory. In scenarios where quicker memory access is
more efficient, this approach presents a drawback by potentially limiting computational
task performance. Nevertheless, it fosters a versatile implementation in terms of problem
size, population size of the optimization algorithm, and GPU hardware compatible with
this parallelization method.

The GPU parallelization strategy presented aims to be versatile and adaptable. It
is not only capable of utilizing resources across different GPU hardware but can also be
seamlessly tailored to suit other metaheuristic optimization methods.

3.3. GPU-Based Acceleration of the Jaya Optimization Algorithm

GPU-Jaya was the first known parallelization of the Jaya algorithm on a GPU, intro-
duced by Wang et al. in 2018 [32] to estimate the parameters of a Li-ion battery model.
The parallelization strategy employed in this algorithm focuses on minimizing data trans-
mission between the host and the GPU. It utilizes both global and shared memories to
efficiently manage data location, and the algorithm incorporates a parallel reduction proce-
dure to optimize specific steps of the parallelization further. Data are stored in a collection
of one-dimensional arrays, leading to the establishment of a set of conversion and mapping
mechanisms. This implies a potential computing overhead resulting from the use of data
adaptations. The number of threads is fixed at 32, while the number of blocks is determined
by the size of the population array (popSize x numVar) divided by 32. This suggests that
the population array may need to be a multiple of 32, imposing constraints on selectable
test parameters.

The testing encompassed modest population sizes, ranging from 64 to 512. The
problem involved six decision variables, with a maximum allowable number of iterations
set at 20,000. With the fastest GPU used for testing, a Tesla K20c GPU with 2496 CUDA
cores and 5 GB of VRAM, the GPU-Jaya achieved speedup factors ranging from 2.96 to
34.48, with an average of 13.17.

Jimeno-Morenilla et al. proposed [33] another parallelization of the Jaya algorithm
on the GPU in 2019. The parallel execution scheme in this implementation determines the
number of blocks based on the number of algorithm runs, while the number of threads per
block is established by the population size and the number of design variables. However,
this approach has the disadvantage of leading to an inefficient use of GPU resources, as
the hardware allocation is influenced by the number of algorithm runs rather than the

Appl. Sci. 2024, 14, 5349

17 of 42

dimensions of the test case. Moreover, it imposes notable constraints on the allowable range
of test parameters, particularly the population size and the number of decision variables.
These restrictions stem from the close correlation of these parameters with the hardware
characteristics of the GPU used for testing, particularly the maximum number of threads
per block.

The algorithm underwent evaluation on a GTX 970 GPU featuring 1664 CUDA cores
and 2 GB of video random access memory (VRAM). It utilized a set of 30 unconstrained
functions with population sizes ranging from 8 to 256, encompassing 2 to 32 decision
variables and constrained by a maximum iteration count of 30,000. The implementation
achieved maximum speedup factors ranging from 18.4 to 189.6, with an average of 53.

A recent GPU parallelization of the Jaya algorithm proposed by Silva and Lopes [34]
makes use of the parallel execution strategy on GPUs detailed in the preceding section. The
fundamental structure of this GPU-based version of Jaya is elucidated in Algorithm 10.

Algorithm 10 GPU-based parallel Jaya

1: /* Initialization */

2: Initialize numVar, popSize and maxIter; > Host
3: X < GENERATE_INITIAL_POPULATION_KERNEL();

4: EVALUATE_FITNESS_VALUES_KERNEL(X);

5 i+ 1; > Host
6: /* Main loop */

7: while i < maxIter do > Host
8: Determine Xp,; ; and Xyporst,is

9: XU JAYA-DRIVEN_POPULATION_UPDATE_KERNEL(X;);
10: EVALUATE_FITNESS_VALUES_KERNEL (X/V);
11: GREEDY_SELECTION_KERNEL(X;, XI'*V);
12: i+—i+1; > Host
13: end while
14: Output the best solution found and terminate. > Host and device

Upon initial observation, juxtaposing the GPU-based Jaya algorithm with its sequential
counterpart (Algorithm 1) elucidates a notably analogous structure. They primarily adhere
to identical execution procedures, diverging primarily due to the absence of nested loops
iterating through the population elements (i.e., candidate solutions) and decision variables.
This aspect is a fundamental component of the established parallelization methodology,
aiming to maintain the philosophical underpinnings of the original algorithm throughout
its adaptation to GPU processing. As a result, the GPU-based version of Jaya retains the
ability to generate an optimization behavior identical to the original algorithm.

The provided procedure relies on a heterogeneous computational approach, where the
computational involvement of the host is notably limited. As delineated in Algorithm 10,
the primary tasks of the host entail initializing algorithmic parameters, invoking various
kernel functions, overseeing the algorithm’s iterative steps (encapsulated in the main
loop), and documenting the optimal solution identified. Consequently, the host manages
the sequential aspects of the algorithm, whereas all optimization-related data reside and
undergo processing exclusively within the device. This operational paradigm ensures that
no data are transferred between the host and device throughout the main computational
process. In the final step of the algorithm, the device identifies the best solution discovered,
which is then transferred to the host for output.

Given the aforementioned details, the generation of the initial population takes place
directly within the device, following the procedure outlined in Algorithm 11.

In the context of the GPU-based algorithm, the conventional nested loops utilized
for iterating through population data during processing have become obsolete due to
concurrent/parallel execution. Employing a two-dimensional thread block arrangement
grid, the kernel specified in Algorithm 11 facilitates the parallel creation of the initial

Appl. Sci. 2024, 14, 5349

18 of 42

population. This methodology assigns an individual thread to generate each individual data
element within the population (X), supported by a matrix data structure with dimensions
popSize x numVar. The kernel leverages the x and y coordinates (indices) from the block
dimension (blockDim), block index (blockldx), and thread index (threadldx) to determine the
specific row and column in the data matrix allocated for computation for assigning each
data element individually to a separated thread for processing. This allocation strategy
maximizes the efficiency of parallel processing, allowing each thread to perform designated
computations based on its unique position within the block and grid structure.

Algorithm 11 Kernel for generating the initial population

1: function GENERATE_INITIAL_POPULATION_KERNEL()

2 /* Device code */

3 Determine row using x dimension of blockDim, blockldx, and threadldx;
4: Determine col using y dimension of blockDim, blockldx, and threadldx;
5: if row < popSize and col < numVar then

6 X[row, col] < LBJcol] 4 rand() x (UB]col] — LB[col]).

7 end if
8: end function

The same parallelization technique is applied across various algorithm phases encom-
passed within the main loop. Consequently, each stage of the computational process now
runs concurrently on all elements within a given iteration. This paradigm shift means that
X" now signifies all updated candidate solutions within a given algorithmic iteration
rather than representing a singular updated candidate. Subsequently, all algorithmic steps
have been adjusted accordingly, commencing with the population update kernel outlined
in Algorithm 12.

Algorithm 12 Kernel for population update (Jaya)

1: function JAYA-DRIVEN_POPULATION_UPDATE_KERNEL(X)

2 /* Device code */

3 Determine row using x dimension of blockDim, blockldx, and threadldx;
4: Determine col using y dimension of blockDim, blockldx, and threadldx;
5 if row < popSize and col < numVar then

6 X" [row, col] = X[row, col] + rand() X (Xpest[col] — |X[row, col]|)—

rand() x (Xyorst[col] — | X[row, col]|); > Equation (1)
7: CHECK_BOUNDARY_INTEGRITY_FUNCTION(X"¢").
8: end if

9: end function

Similar to the original algorithm, the maintenance of newly generated candidate
solutions within the search space boundary remains a necessity. Within the GPU-based
algorithm, this task is managed by the function delineated in Algorithm 13.

Algorithm 13 Function to ensure boundary integrity

1: function CHECK_BOUNDARY_INTEGRITY_FUNCTION(X"¢?)
2 if X" [row, col] > UP][col] then

3 X" [row, col] <— UP|col];

4 end if

5. if X"%[row, col] < LBJ[col] then

6 X" [row, col] +— LBlcol].

7 end if
8: end function

Appl. Sci. 2024, 14, 5349

19 of 42

The selection of the best candidate solution by a greedy selection algorithm is paral-
lelized in Algorithm 14.

Algorithm 14 Kernel for greedy selection

1: function GREEDY_SELECTION_KERNEL(X, X"**?)

2 /* Device code */

3 Determine index using x dimension of blockDim, blockldx, and threadldx;
4 if index < popSize then

5: if f(X"“[index]) is better than f(X[index|) then

6: X[index] < X" [index];

7 f(X[index]) < f(X""[index]).

8 end if

9: end if

10: end function

Considering that the data structures supporting fitness values for both the newly gen-
erated candidate solutions and the current candidate solutions consist of single-dimensional
arrays, each with a length of popSize, the kernel implementation solely requires a one-
dimensional grid arrangement to conduct parallel comparisons.

Essentially, for concurrent determination of the optimal candidate solution, the greedy
selection kernel operates using a total number of threads equivalent to popSize. The
indexing of data and threads is managed by the variable index, which is determined using
inherent variables with details about the hierarchical arrangement of blocks and threads.

The present GPU-based parallelization of Jaya distinguishes itself from the previ-
ous approaches by its efficient utilization of both the host and device during computation.
Specifically, the host exclusively oversees the main loop, and data transfers between the host
and device are minimized, never occurring during the most computationally demanding
phases of the algorithm. Furthermore, the device directly accesses data without necessitat-
ing additional mapping or conversion. Notably, the approach to GPU grid arrangement
and kernel invocations deviates from prior implementations. The dimensional structure of
the grid and the determination of the necessary threads and blocks for computation are
primarily driven by the size and structure of the data undergoing processing.

3.4. GPU-Based Acceleration of the Enhanced Jaya Algorithm

No mention has been found in the existing literature of any GPU-based parallel EJAYA
algorithm other than the one detailed in this section and proposed by the authors [35,36].

While analyzing the differences between EJAYA and the original Jaya optimization
algorithm, it becomes evident that EJAYA encompasses several additional steps and a more
intricate formulation, primarily due to a more complex search method. Consequently, the
GPU parallelization of EJAYA explained here demands a more elaborate approach than
the original algorithm, requiring the redesign and adaptation of its methods to meet the
requisites and constraints of parallel processing. The overview of the GPU-based parallel
EJAYA can be observed in Algorithm 15.

According to the GPU-based parallelization strategy employed, all updated candidate
solutions are generated simultaneously during each algorithm iteration. This means that
some parts of the implementation need to be adjusted to ensure that all essential data for
the LES and GES phases (Equations (5) and (8)) are readily available for computation in the
population update kernel.

Consequently, to perform the LES phase, the GPU-based EJAYA requires the prior
determination of the upper and lower local attraction points (PU and PL), as indicated in
Equations (2) and (4). This procedure is described in Algorithm 16.

Appl. Sci. 2024, 14, 5349 20 of 42

Algorithm 15 GPU-based parallel EJAYA
1: /* Initialization */
2: Initialize numVar, popSize and maxIter; > Host

3: X < GENERATE_INITIAL_POPULATION_KERNEL();
4: EVALUATE_FITNESS_VALUES_KERNEL(X);

5 X0l X

6: 1< 1; > Host
7. /* Main loop */

8: while i < maxIter do > Host
9: Determine Xp,; ; and Xyporst,is

10: DETERMINE_ATTRACT_POINTS_KERNEL();

11: if Pswitch < 0.5 then > Host
12: X0l X;

13: end if

14: PERMUTE_POPULATION_KERNEL(X?¢/?);

15: Pyeect <— DETERMINE_EXPLORATION_STRATEGY_KERNEL();
16: X7"“ < EJAYA-DRIVEN_POPULATION_UPDATE_KERNEL(X;);
17: EVALUATE_FITNESS_VALUES_KERNEL(X!“?);

18: GREEDY_SELECTION_KERNEL(X;, X;m") ;

19: i+—i+1; > Host
20: end while
21: Output the best solution found and terminate. > Host and device

Algorithm 16 Kernel for determining upper and lower attraction points

1: function DETERMINE_ATTRACT_POINTS_KERNEL()
2 /* Device code */
3: Determine index using x dimension of blockDim, blockldx, and threadldx;
4 if index < numVar then
5: PU([index] < randpy X Xpest|index] + (1 — randpyy) x popMean|index|; >
Equation (2)
PL[index] < randpp X Xyorst[index| + (1 — randpr) x popMean[index]. >
Equation (4)
7: end if
8: end function

‘.3.\

Both PU and PL are single-dimensional arrays with a length the same as the prob-
lem dimension (numVar). This workload is parallelized simultaneously using a one-
dimensional grid arrangement with a number of threads equal to numVar, where each
thread, denoted by the variable index, handles the computation of a specific element
within the arrays. The formulation of PU and PL necessitates the determination of two
random numbers (randpy and randp;) and the population mean (popMean) prior to the
kernel execution.

For the GES phase of the GPU-based EJAYA, the historical population (X°/%) is deter-
mined using Equation (6) and subsequently processed by Equation (7). The determination
of the switching probability Py, is conducted by the host (specifically, in line 11 of
Algorithm 15). This approach is preferable as it is more computationally efficient to handle
a simple instruction such as an if statement in the host rather than by the device, consider-
ing the overhead related to kernel invocation. For the permutation of the historical popula-
tion, the first step involves predetermining the random permutation of the position index
of the candidate solutions within the population (rand_perm < randomize([1, popSize])).
This permutation is then used as a template to shuffle the order of the candidates, as
described in Algorithm 17.

Appl. Sci. 2024, 14, 5349

21 of 42

Algorithm 17 Kernel for permuting the population

1: function PERMUTE_POPULATION_KERNEL(X?/?)

2 /* Device code */

3 Determine index using x dimension of blockDim, blockldx, and threadldx;
4 if index < popSize then

5 X" (index] < X°[rand_perm|index]].

6 end if
7: end function

Before updating the population, the exploration strategy, denoted as Psye in
Equation (9), needs to be determined. In the GPU-based EJAYA, where the newly gen-
erated candidate solutions X"" represent the candidates for the entire population in a
single iteration, the Py,j,.; factor must correspond to the exploration strategy for the whole
population. This ensures that the exploration strategy aligns with the parallel processing of
the entire population. The procedure is illustrated in Algorithm 18.

Algorithm 18 Kernel for determining the exploration strategy

1: function DETERMINE_EXPLORATION_STRATEGY_KERNEL()
2 /* Device code */

3 Determine index using x dimension of blockDim, blockldx, and threadldx;
4 if index < popSize then

5: if rand() > 0.5 then

6: Pyeect[index) <LES’;

7 else

8 Pyojoct[index] <'GES’.

9 end if

10: end if

11: end function

The functionality required for performing both the LES and GES search strategies
during the population update phase is facilitated through a unified kernel, as illustrated
in Algorithm 19. In this kernel, the method for updating the population in the GES phase
requires predefining an array of random numbers following a normal distribution called
randn, with a length equal to popSize in each iteration. This approach ensures a correct
parallelization of Equation (8), as the same random number is applied to update every
dimension of a population candidate.

Algorithm 19 Kernel for population update (EJAYA)

1: function EJAYA-DRIVEN_POPULATION_UPDATE_KERNEL(X)

2 /¥ Device code */

3: Determine row using x dimension of blockDim, blockldx, and threadldx;
4: Determine col using y dimension of blockDim, blockldx, and threadldx;
5
6
7

if row < popSize and col < numVar then

if Pypject[row] = ‘LES’ then > LES

X" [row, col| < X[row, col] + rand() x (PU[col] — X[row, col])—

rand() x (PL[col] — X[row, col]); > Equation (5)
8: else > GES
9: X" [row, col] +— X[row, col] + randn[row] x (X°"[row, col]—

X[row, col]); > Equation (8)
10: end if
11: CHECK_BOUNDARY_INTEGRITY_FUNCTION(X"¢").
12: end if

13: end function

Appl. Sci. 2024, 14, 5349

22 of 42

3.5. GPU-Based Acceleration of the Rao Optimization Algorithms

Algorithm 20 presents a comprehensive characterization of a collective GPU-based
parallelization of the three Rao algorithms recently proposed by the authors [37]. This
implementation integrates the elementary methods constituting Rao-1, Rao-2, and Rao-3
heuristics into a singular and unified parallelization.

Algorithm 20 GPU-based parallel Rao-1, Rao-2, and Rao-3
. /* Initialization */
: Initialize numVar, popSize and maxIter; > Host
: X < GENERATE_INITIAL_POPULATION_KERNEL();
: EVALUATE_FITNESS_VALUES_KERNEL(X);
i<+ 1; > Host
: /* Main loop */
while i < maxIter do > Host
Determine Xp,; ; and Xyporst,is
if algorithm = ‘Rao-2" or ‘Rao-3" then
t; — SELECT_RANDOM_SOLUTIONS_KERNEL();
end if
X!"“ <~ RAO-DRIVEN_POPULATION_UPDATE_KERNEL(X;);
EVALUATE_FITNESS_VALUES_KERNEL(X/");
GREEDY_SELECTION_KERNEL(X;, X/V);
i+ i+1; > Host
: end while
: Output the best solution found and terminate. > Host and device

e T T T e = S =Y
N TN 2

The three Rao algorithms employ a shared optimization approach, differing primarily
in their population update strategies. Their fundamental algorithmic phases bear a resem-
blance to those in Jaya. Notably, the main distinction arises in Rao-2 and Rao-3, where
these algorithms necessitate selecting a random candidate solution from the population
to compute the newly generated candidate solutions. Given the current parallelization
strategy, this random candidate solution must be established in advance for all population
candidates in each iteration before conducting the population update. This procedure is
outlined in Algorithm 21.

Algorithm 21 Kernel for selecting random solutions from the population

1: function SELECT_RANDOM_SOLUTIONS_KERNEL()

2 /* Device code */

3 Determine index using x dimension of blockDim, blockldx, and threadldx;
4 if index < popSize then

5: tlindex] < rand(1, popSize)

6 while t[index| # index do

7 tlindex| < rand(1, popSize).

8 end while

9: end if

10: end function

The kernel is organized to operate using a one-dimensional grid, as its purpose is to
generate a 1D array with a length equal to popSize containing the indices of the random
candidate solutions.

Algorithm 22 provides a consolidated method that generates updated candidate
solutions for all the Rao algorithms in a unified manner.

Appl. Sci. 2024, 14, 5349 23 of 42

Algorithm 22 Kernel for population update (Rao algorithms)

1: function RAO-DRIVEN_POPULATION_UPDATE_KERNEL(X)
2 /* Device code */

3 Determine row using x dimension of blockDim, blockldx, and threadldx;
4: Determine col using y dimension of blockDim, blockldx, and threadldx;
5: if row < popSize and col < numVar then
6

7

8

9

if algorithm = ‘Rao-1" then > Equation (10)
X" [row, col| < X[row, col] + rand() X (Xpest[c0l] — Xworst[col]);
else if algorithm = ‘Rao-2" then > Equation (11)
: if f(X)[row] is better than f(X)[t[row]] then

10: X" row, col] <— X[row, col] + rand() x (Xpest[col]—

Xuorst[col]) 4+ rand() x (abs(X[row, col]) — abs(X[t[row], col]));
11 else
12: X" [row, col| <— X[row, col] 4+ rand() X (Xpest[col]—

Xuworst|col]) 4+ rand() x (abs(X[t[row], col]) — abs(X[row, col]));
13: end if
14: else if algorithm = ‘Rao-3’ then > Equation (12)
15: if f(X)[row] is better than f(X)][t[row]] then
16: X" [row, col] <— X[row, col] 4+ rand() X (Xpest[col]—

abs(Xuyorst[col])) + rand() x (abs(X[row, col]) — X[t[row], col]);
17: else
18: X" row, col] <— X[row, col] + rand() x (Xpest[col]—

abs(Xuworst[col])) + rand() x (abs(X[t[row], col]) — X[row, col]);
19: end if
20: end if
21: CHECK_BOUNDARY_INTEGRITY_FUNCTION (X"¢%).
22: end if

23: end function

3.6. GPU-Based Acceleration of the BWP Algorithm

The main skeleton of the GPU-based parallel BWP algorithm presented by the authors
in [38] is shown in Algorithm 23.

Algorithm 23 GPU-based parallel BWP algorithm.
1: /* Initialization */
2: Initialize numVar, popSize and maxIter; > Host

3: X <— GENERATE_INITIAL_POP_KERNEL();
4: EVALUATE_FITNESS_KERNEL(X);

514 1; > Host
6: /* Main loop */

7: while i < maxIter do > Host
8. /* Leverage the Jaya heuristic ¥/

9: Determine Xp,;; and Xyporst,i;

10: X" < JAYA-DRIVEN_POPULATION_UPDATE_KERNEL(X;);

11: EVALUATE_FITNESS_KERNEL (X/V);

12: GREEDY_SELECTION_KERNEL(X;, X/V);

13: /* Leverage the Rao-1 based heuristic */

14: Determine Xp,; ; and Xyyorst,i;

15: X" « BWP-RAO1-BASED_POPULATION_UPDATE_KERNEL(X;);

16: EVALUATE_FITNESS_KERNEL (X/V);

17: GREEDY_SELECTION_KERNEL(X;, X/V);

18: i+—i+1; > Host
19: end while

20: Output the best solution found and terminate. > Host and device

Appl. Sci. 2024, 14, 5349

24 of 42

Although the BWP optimization strategy involves the consecutive use of two distinct
algorithms (namely Jaya and a Rao-1-based heuristic), it is not possible to reduce the
number of steps in the main loop. This limitation stems from the absence of overlapping
methods, as each algorithmic phase is inherently sequential in nature.

The contents of Algorithm 24 detail the population update process within the Rao-1-
based method.

Algorithm 24 Kernel for population update (BWP)

1: function BWP-RAO1-BASED_POPULATION_UPDATE_KERNEL(X)

2 /¥ Device code */

3 Determine row using x dimension of blockDim, blockldx, and threadldx;
4: Determine col using y dimension of blockDim, blockldx, and threadldx;
5
6

if row < popSize and col < numVar then
: X" [row, col] = X[row, col] + rand() X (Xpest[col] — | Xworst[col]|); >
Equation (13)
7: CHECK_BOUNDARY_INTEGRITY_FUNCTION(X"¢").
8: end if
9: end function

3.7. A Novel GPU-Based Parallelization of the MaGI Algorithm

This section introduces a novel GPU-based parallelization of the MaGlI algorithm
following the methodology outlined in this study, as illustrated by Algorithm 25.

Since the MaGlI algorithm employs two sequential metaphorless heuristics in sequence,
its approach to parallel implementation closely resembles that of BWP.

Algorithm 25 GPU-based parallel MaGl algorithm

1: /* Initialization */
2: Initialize numVar, popSize and maxIter; > Host
3: X < GENERATE_INITIAL_POP_KERNEL();
4: EVALUATE_FITNESS_KERNEL(X);
5 1<+ 1; > Host
6: /* Main loop */
7: while i < maxIter do > Host
8: /* Leverage the Jaya heuristic */
9: Determine Xp,.; ; and Xorst i;
10: X!"“ <~ JAYA-DRIVEN_POPULATION_UPDATE_KERNEL(X;);
11: EVALUATE_FITNESS_KERNEL(X/V);
12: GREEDY_SELECTION_KERNEL(X;, X/V);
13: Determine Xpes; ; and Xyopst i
14: /* Leverage the Rao-2 based heuristic */
15: t; < SELECT_RANDOM_SOLUTIONS_KERNEL();
16: X" < MAGI-RAO2-BASED_POPULATION_UPDATE_KERNEL(X;);
17: EVALUATE_FITNESS_KERNEL (X/V);
18: GREEDY_SELECTION_KERNEL(X;, X/V);
19: i+—i+1; > Host
20: end while
21: Output the best solution found and terminate. > Host and device

In accordance with the original algorithm (Algorithm 8), the first phase of the main
loop of the GPU-based parallel MaGlI algorithm involves employing the Jaya heuristic
to generate an updated population, followed by further refinement using a Rao-2-based
heuristic. This last heuristic requires the identification of random solutions from the
population that have to be precomputed for all candidate solutions before population
updates take place (line 15 of Algorithm 25), in accordance with the parallelization strategy
presented for the original Rao-2 algorithm.

Appl. Sci. 2024, 14, 5349

25 of 42

The GPU-based parallel implementation of the modified version of the Rao-2 heuristic
is presented in Algorithm 26.

Algorithm 26 Kernel for population update (MaGlI)

1: function MAGI-RAO2-BASED_POPULATION_UPDATE_KERNEL(X)

2 /* Device code */

3: Determine row using x dimension of blockDim, blockldx, and threadldx;

4: Determine col using y dimension of blockDim, blockldx, and threadldx;

5 if row < popSize and col < numVar then

6 if f(X)[row] is better than f(X)[t[row]] then > Equation (14)

7 X" row, col] < X[row, col] 4+ rand() x (Xpest[col]—
abs(Xuorst[col])) + rand() x (X[row, col] — X[t[row], col]);

else

9: X" [row, col] <— X[row, col] 4+ rand() X (Xpest[col]—

abs(Xyorst[col])) + rand() x (X[t[row], col] — X[row, col]);

10: end if

11: CHECK_BOUNDARY_INTEGRITY_FUNCTION (X"¢").

12: end if

13: end function

*®

4. Computational Experiments

This section offers a thorough description of the experimental setup and the method-
ology utilized to evaluate the performance of the implemented algorithms. It also details
the specifications of the hardware employed in the experiments, in addition to the test
parameters and the problems selected for testing.

4.1. Experimental Setting and Implementation

Throughout this study, all computation times encompass the entire algorithmic process,
from its initialization phase to reaching the stopping criterion and reporting the best
solution found. This comprehensive approach ensures unbiased comparisons between
the execution times of sequential and parallel implementations of the same algorithm.
Specifically, in the case of parallel implementations running on the GPU, considerations
such as algorithm initialization, data movements, overheads associated with kernel calls,
and other sequential computation costs inherent in its heterogeneous approach are factored
into their computational times.

The sequential and parallel implementations were written in Julia programming
language [39] (version 1.9.4) using double-precision floating-point arithmetic. Julia is
an open-source and dynamic high-level language for scientific computation that shares
syntax similarities with MATLAB, a widely adopted language in academia and industry for
optimization problems. The parallel implementations leveraged the CUDA.;jl package [40]
(version 5.1.1) that serves as the primary gateway for programming NVIDIA GPUs in Julia.

To ensure a more rigorous and unbiased comparison of results, meticulous care was
taken to implement the sequential and parallel algorithms in a highly standardized manner.
This deliberate approach helps ensure a fair and accurate assessment of their performance.

The algorithmic parameters selected for this study encompassed a range of problem
dimensions extending from 500 to 2000, with increments of 500. Additionally, the popu-
lation size was determined to be 10 times the problem dimension, resulting in a range of
population sizes from 5000 to 20,000, with increments of 5000. To improve the accuracy
and reliability of experimental results, a total of 31 independent runs were carried out for
every combination of algorithm, problem instance, and dimension before averaging the
results, and the stopping criterion for each run was set to 1000 iterations.

The Julia programming language utilizes a just-in-time (JIT) compilation process,
translating high-level code into machine code [41]. This particular feature often results in
longer execution times during the initial runtime of a Julia program. To ensure the integrity

Appl. Sci. 2024, 14, 5349

26 of 42

of the computational analysis, a warm-up phase was implemented that runs prior to testing.
During this phase, a single run of each test combination is executed, and the results are
discarded. Ultimately, this approach effectively prevents the inclusion of the delay caused
by the JIT compiler during the first-time loading and compiling of Julia code.

Both the sequential and parallel implementations used the same parameters, ensuring
a consistent evaluation across all experiments.

Sequential computation times of the tested algorithms serve as a reference point for
performing a comparative analysis aimed at quantifying the degree of acceleration achieved
by their corresponding GPU-based implementation.

4.2. Hardware Used in the Computational Experiments

The hardware setup for the sequential algorithm comprised the AMD Ryzen 9 5950X
desktop CPU, featuring 16 cores, 32 threads, and 16 GB of DDR4 RAM. Despite the avail-
ability of the AMD Epyc 7643 server CPU, the AMD Ryzen 9 5950X was selected for
sequential tests due to its superior performance in our analysis. Although both CPUs are
implementations of the same Zen 3 microarchitecture, the Ryzen 9 5950X, with its higher
clock speeds (3.4 GHz base and 4.9 GHz boost compared to the 2.3 GHz base and 3.6 GHz
boost of the Epyc 7643 CPU), was able to achieve around 13.2% faster mean computational
times. Higher clock speeds can have a marked impact on CPU performance [42], resulting
in faster execution of instructions and improved throughput.

Performance analysis of GPU-based parallel algorithms was conducted on different
GPUs with distinct hardware configurations. This approach was adopted to gain insights
into the real-world applicability of the employed parallelization strategy, evaluating its per-
formance and scalability across different architectures and available computing resources.
The following GPU hardware was selected for the GPU-based computational experiments:

* NVIDIA GeForce RTX 3090 GPU (Ampere architecture) with 10496 CUDA cores and
24 GB of GDDR6X VRAM,;

e NVIDIA Tesla T4 GPU (Turing architecture) with 2560 CUDA cores and 16 GB of
GDDR6 VRAM;

e NVIDIA Tesla V100S PCle GPU (Volta architecture) with 5120 CUDA cores and 32 GB
of HBM2 VRAM,;

e NVIDIA A100 PCle GPU (Ampere architecture) with 6912 CUDA cores and 80 GB of
HBM2e VRAM.

Performance across the GPU devices will serve as benchmarks for evaluating algorithm
efficiency and identifying potential bottlenecks. Initially, detailed performance analysis
will primarily focus on the RTX 3090 and the A100 GPUs, both from the same Ampere
architecture. While the former is a consumer-grade GPU, the latter is a professional-grade
device. One of the main differences between these GPU classes is that the RTX 3090
was designed to have a high number of CUDA cores, whereas the A100 was designed
for high memory bandwidth. This analysis aims to thoroughly evaluate the behavior of
parallel algorithms in terms of performance and scalability across a spectrum of hardware
configurations, assessing their adaptability to different available hardware resources.

4.3. Test Problems

The collection of NESs chosen to serve as benchmark problems represents the mod-
eling of several real-world scenarios from a variety of scientific disciplines, including
engineering, physics, and mathematics. These equations were specifically selected from
existing literature due to their complex nature, encompassing a wide range of difficulty lev-
els. Consequently, they present great challenges for their resolution, in particular through
traditional iterative numerical methods, also due to the computational demands involved.

Upon consideration of the analyzed algorithms, benchmark functions, and problem di-
mensions, a total of 280 distinct test setups were identified for 31 separate executions in both
sequential and parallel implementations (with repetition for each tested GPU hardware).

Appl. Sci. 2024, 14, 5349

27 of 42

The mathematical expressions for the selected benchmark functions are provided be-
low. All test problems demonstrate scalability in terms of problem dimension, emphasizing
the growing demand for computer resources as the problem size increases.

Problem 1. (Broyden tridiagonal function [43], n = 500,1000, 1500, 2000)
filx) = (3 —2x1)x; —2x2 + 1,
fu(x) = (3—=2x4)xp —xp-1+1,
ﬁ(x):(3—2xi)xi—x,-_1—2xi+1+1, i=2,...,n—1,
D= ([-1,1],...,[-1,1)T.

Problem 2. (Discrete boundary value function [43], n = 500,1000, 1500,2000)
fi(x) =2x; —xa + K3 (x; +h+1)3/2,
fu(x) = 2xy — xy 1 + W2 (xy +nh+1)3/2,
filx) =2x; — xj_1 — xi11 +h2(xl~ +t + 1)3/2, i=2,...,.n—1,
where h = n%rl and t; = ih,
D=([0,5],...,]0,5))T.

Problem 3. (Extended Powell singular function [43], n = 500,1000, 1500,2000)
fai-3(x) = x4i_3 +10x4; 2,

faie 2(x) = \@(Mifl — X4),
(x) = (x4i2 — 2x4i-1)%,

f4z(x) \/7(7(41 3—X41)2, i=1,...,5
= ([~100,100],...,[—100,100])T.

Problem 4. (Modified Rosenbrock function [44], n = 500,1000, 1500,2000)
1
i—1\X) = —0.73,
foia) 1+exp(—x2i1)
fri(x) =10(xg — x5, 1), i=1,...5,
D = ([-10,10],...,[~10,10])T.

Problem 5. (Powell badly scaled function [44], n = 500, 1000, 1500, 2000)
faic1(x) = 10%ap; 29 — 1,
le-(x) = exp(—xzi_l) + exp(—le-) —1.0001, i=1,..., %,
D = ([0,100],...,[0,100])T.

Problem 6. (Schubert—Broyden function [45], n = 500, 1000, 1500,2000)
filx) = (B —x1)x1 +1-2xp,
fu(x) = (B —xp)xn +1—x,_1,
ﬁ()=0@B—x)xi+1—x;1—2x;11, i=2,...,n—1,
= ([~100,100],...,[—100,100])T.

Problem 7. (Martinez function [46], n = 500, 1000, 1500,2000)
fi(x) = (3—0.1x1)x; +1—2x2 4+ x7,
fu(x) = (3—0.1x,)x, +1—2x,1 + xp,
filx) =(3—=01x;)x; +1—x; 1 —2x;41+x1, i=2,...,.n—1,
D = ([-100,100], .. .,[—100,100])".

Problem 8. (Extended Rosenbrock function [43], n = 500,1000, 1500,2000)
faic1(x) = 10(x2; — x3;_4),
fzi(.’X'):]._le‘,l, 1_1 . /2/
D = ([-100,100],...,[—100,100])T.

Appl. Sci. 2024, 14, 5349

28 of 42

Problem 9. (Bratu’s problem [47], n = 500, 1000, 1500,2000)

fi(x) = —2x1 + xp + ah® exp(x7),

fu(x) = xp_1 — 22y + ah® exp(xy),

fi(x) = xi_q —2x; + xip1 FakPexp(x;), i=2,...,n—1,
where h = n%rl and a > 0 is a parameter; here o = 3.5,
D = ([-100,100], ..., [—100,100])".

Problem 10. (The beam problem [47], n = 500,1000, 1500,2000)

f1 (x) = —2x1+ xo + ah? sin(xl),

fu(x) = x,_1 — 2x, + ah?sin(xy),

fi(x) = xj1 — 2% + xi1 +akPexp(x;), i=2,...,n—1,
where h = n%rl and o > 0 is a parameter; here x = 11,
D = ([-100,100], ..., [~100,100])T.

5. Results and Discussion

The subsequent discussion examines the results from the parallelization of the
metaphorless optimization algorithms discussed in this article in the GPU architecture.
The primary emphasis lies in evaluating the attained speedup gains, understanding their
behavior concerning increases in the problem dimension, and exploring different GPU
hardware configurations. This aims to unravel the implications of leveraging parallel
computational resources for optimizing algorithmic performance.

The speedup factor quantifies the performance improvements resulting from the
parallel implementation and is defined as the ratio of the sequential to the parallel compu-
tation time. It is important to note that the speedup values presented in this analysis were
calculated using the full computational times without rounding up.

Test data are systematically organized into tables, wherein test problems are catego-
rized by dimension (i.e., population size and number of variables). The mean sequential
computational times are presented in the column labeled CPU, while the results for parallel
computation are organized into distinct columns based on the GPU hardware used for
testing. All reported computational times pertain to the comprehensive execution of the
algorithm, encompassing the entire duration from initiation to completion.

The primary emphasis in parallel computation is on data obtained with the RTX
3090 and A100 GPUs, which are presented in columns bearing the same names. The
selection of the RTX 3090 GPU aligns with its consistent use in previous parallelization of
the majority of algorithms discussed in this article, while the A100 GPU represents a highly
relevant hardware option in the professional sector, and it is employed here to illustrate the
scalability of the parallel implementations and its adeptness in harnessing additional GPU
resources without necessitating adjustments to the underlying parallelization strategy.

Data obtained from the analysis of mean computational times for both sequential and
parallel implementations, along with the corresponding speedup gains for each studied
algorithm, were organized into tables and grouped based on similarities in algorithmic
structure. Consequently, Table 1 presents computational results for the Jaya and EJAYA
algorithms; the three Rao algorithms are showcased in Table 2, while the outcomes of the
tests conducted with the BWP and MaGl algorithms are displayed in Table 3. Although
Jaya and EJAYA are presented side by side, it is important to highlight that the EJAYA
algorithm possesses a distinct structure compared to the other algorithms.

Findings reveal the superior efficiency of GPU-based algorithms compared to their
corresponding sequential implementations. In all algorithms, the speedup gains increased
proportionally with the growth of the problem dimension. Consequently, the lower speedup
gains were observed in the smallest dimensions, while the most pronounced speedups
were achieved in the largest dimensions. This expectation is rooted in the parallelization
strategy employed for GPU-based algorithms, wherein the allocation of GPU processing
capabilities (expressed in terms of the number of CUDA cores, the block size, and the

Appl. Sci. 2024, 14, 5349

29 of 42

number of blocks) is adjusted automatically according to the problem dimensionality and
inherent characteristics of the GPU.

Table 1. Mean computational results for the Jaya and Enhanced Jaya algorithms. The time is in

seconds, and the speedup gain for each GPU is shown in parentheses.

Jaya EJAYA
Pop. Prob. CPU RTX 3090 A100 CPU RTX 3090 A100
(Vars) No. Time Time(Gain) Time (Gain) Time Time (Gain) Time (Gain)
1 39.90 0.59 (67.6) 0.33 (121.9) 54.98 1.56 (35.3) 1.54 (35.8)
2 49.72 0.66 (74.8) 0.33 (151.0) 56.23 1.65 (34.1) 1.54 (36.5)
3 44.69 0.53 (83.6) 0.28 (160.7) 56.78 1.54 (36.9) 1.50 (37.7)
4 50.11 0.63 (79.2) 0.28 (176.4) 58.86 1.64 (35.9) 1.51 (39.0)
5000 5 49.33 0.70 (70.2) 0.31 (158.9) 63.58 1.72 (36.9) 1.51 (42.2)
(500) 6 4270 0.54(79.6) 0.31 (135.7) 57.49 1.56 (36.8) 1.54 (37.4)
7 40.87 0.55 (74.7) 0.31 (129.9) 52.99 1.56 (33.9) 1.54 (34.4)
8 42.18 0.54 (78.2) 0.29 (146.7) 53.54 1.54 (34.7) 1.51 (35.4)
9 55.34 0.73 (75.3) 0.32 (175.4) 63.19 1.78 (35.5) 1.53 (41.2)
10 57.69 0.74 (77.8) 0.32 (182.8) 62.75 1.76 (35.6) 1.54 (40.7)
1 152.28 1.07 (141.8) 0.75 (202.5) 195.02 3.31 (58.9) 3.38 (57.6)
2 163.46 1.45 (112.5) 0.75 (216.9) 198.86 3.70 (53.8) 3.39 (58.7)
3 150.11 0.98 (153.7) 0.67 (225.1) 212.96 3.25 (65.5) 3.30 (64.6)
4 15495 1.38 (112.4) 0.69 (224.7) 217.28 3.65 (59.6) 3.32 (65.5)
10,000 5 169.35 1.65 (102.5) 0.79 (213.4) 230.65 3.93 (58.7) 3.33 (69.3)
(1000) 6 146.03 1.03 (142.1) 0.75 (194.0) 214.38 3.31 (64.8) 3.39 (63.3)
7 12948 1.07 (121.4) 0.75 (172.1) 200.85 3.34 (60.2) 3.39 (59.3)
8 129.78 1.00 (129.7) 0.69 (188.3) 194.61 3.26 (59.6) 3.31 (58.7)
9 196.08 1.83(107.2) 0.75 (260.4) 241.98 4.15 (58.3) 3.38 (71.6)
10 203.50 1.82(111.8) 0.75 (270.8) 240.76 4.11 (58.5) 3.38 (71.2)
1 370.98 1.92(193.0) 1.28 (289.7) 459.26 5.65 (81.2) 5.38 (85.4)
2 34646 2.66(130.4) 128 (270.6) 470.60 6.48 (72.6) 5.40 (87.1)
3 32486 1.65(197.1) 1.12 (290.9) 497.39 5.51 (90.3) 5.24 (94.9)
4 339.46 2.57(132.1) 1.15 (294.4) 525.25 6.49 (81.0) 5.28 (99.5)
15,000 5 381.45 3.17 (120.3) 1.33 (285.9) 549.86 7.00 (78.5) 5.29 (103.9)
(1500) 6 319.96 1.77 (180.4) 1.28 (249.6) 497.15 5.62 (88.5) 5.40 (92.0)
7 287.13 1.85(155.4) 1.28 (223.8) 474.74 5.71 (83.1) 5.41 (87.7)
8 292.39 1.70 (171.7) 1.15 (255.3) 462.30 5.57 (83.1) 5.27 (87.7)
9 439.23 3.56 (123.4) 1.28 (342.4) 565.03 7.50 (75.4) 5.41 (104.5)
10 457.05 3.54 (129.0) 1.28 (356.7) 567.82 7.41 (76.7) 5.41 (105.0)
1 737.74 2.82(261.5) 1.93 (383.0) 949.89 8.74 (108.7) 7.59 (125.1)
2 689.07 4.21 (163.6) 1.93 (357.5) 950.15 10.19 (93.2) 7.63 (124.5)
3 729.06 2.46 (295.8) 1.65 (443.0) 977.18 8.48 (115.3) 7.36 (132.7)
4 744.16 4.08 (182.5) 1.71(434.7) 1030.45 10.21(100.9) 7.42 (138.9)
20,000 5 878.30 5.13(171.1) 1.97 (444.8) 1119.75 11.01 (101.7) 7.46 (150.1)
(2000) 6 71479 2.68 (267.2) 1.93 (371.0) 975.85 8.76 (111.5) 7.63 (127.8)
7 674.34 2.82(239.4) 1.93 (350.0) 919.19 8.83 (104.1) 7.64 (120.4)
8 678.22 2.57(264.3) 1.69 (400.4) 932.70 8.55 (109.1) 7.40 (126.0)
9 974.28 5.83 (167.0) 1.93 (505.3) 1106.00 11.78 (93.9) 7.64 (144.8)
10 904.68 5.81 (155.8) 1.93 (468.5) 1105.26 11.98 (92.2) 7.64 (144.7)

Note: Bold numbers in parentheses represent the speedup gain for each GPU.

Appl. Sci. 2024, 14, 5349 30 of 42

Table 2. Mean computational results for the Rao algorithms. The time is in seconds, and the speedup
gain for each GPU is shown in parentheses.

Rao-1 Rao-2 Rao-3

Pop. Prob. CPU RTX 3090 A100 CPU RTX 3090 A100 CPU RTX 3090 A100
(Vars) No. Time Time(Gain) Time (Gain) Time Time (Gain) Time (Gain) Time Time (Gain) Time (Gain)

1 24.03 0.55(43.3) 0.32(74.2) 55.51 0.67 (82.6) 0.43 (129.6) 62.39 0.67 (93.4) 0.42(147.6)
2 27.01 0.66 (41.1) 0.33 (82.0) 50.78 0.76 (67.0) 0.42 (120.5) 76.75 0.75(101.8) 0.42(183.2)
3 26.37 0.54(49.2) 0.28 (94.8) 61.59 0.66 (93.9) 0.40 (154.5) 64.46 0.64 (100.0) 0.40 (163.1)
4 30.90 0.63(48.8) 0.28(109.1) 56.52 0.75(75.7) 0.40 (143.0) 79.82 0.75(107.0) 0.39 (206.2)
5000 5 3411 0.70(48.8) 0.31(108.6) 60.58 0.80 (76.0) 0.42 (143.6) 70.70 0.80 (87.9) 0.42(167.7)
(500) 6 25.76 0.55(46.5) 0.32(81.7) 58.38 0.66 (88.2) 0.45(129.4) 59.20 0.66 (89.1) 0.45(132.7)
7 28.29 0.55(51.3) 0.32(89.5) 60.83 0.68 (90.0) 0.44 (138.4) 63.15 0.67 (93.9) 0.44 (144.3)
8 29.80 0.55(54.5) 0.29 (103.8) 61.48 0.65(94.3) 0.41 (151.4) 65.34 0.66 (99.6) 0.40 (162.8)
9 3518 0.73(47.9) 0.31(112.2) 68.65 0.84 (81.8) 0.38(182.2) 74.35 0.84 (88.1) 0.37(200.0)
10 3255 0.74(43.9) 0.32(103.1) 65.59 0.84 (78.4) 0.38(173.7) 73.43 0.83(88.2) 0.37(197.0)
1 8291 1.05(78.6) 0.75(110.4) 21910 1.39(157.5) 1.11(198.1) 21449 1.39(153.8) 1.10(195.0)
2 90.39 1.41(64.2) 0.75(119.9) 20432 1.75(116.8) 1.11(183.9) 283.81 1.76(161.1) 1.11(256.4)
3 88.50 0.97(90.8) 0.67(132.6) 23466 1.32(177.7) 1.03(227.3) 24838 1.32(188.7) 1.03(241.1)
4 10140 1.38(73.5) 0.69(146.9) 227.08 1.72(132.1) 1.04(218.1) 292.75 1.72(170.3) 1.04(281.8)
10,000 5 109.02 1.67(65.3) 0.79(137.4) 237.69 198(120.2) 1.07(221.3) 27637 1.97(140.1) 1.07(258.4)
(1000) 6 86.80 1.04(83.8) 0.75(115.9) 22792 1.36(167.7) 1.13(202.5) 231.80 1.37(169.1) 1.12(206.7)
7 9558 1.06(90.0) 0.75(127.9) 23346 141(165.1) 1.12(208.3) 23959 142(169.2) 1.12(214.0)
8 101.57 1.00(102.0) 0.69 (147.4) 236.84 1.34(176.8) 1.05(225.9) 24891 1.34(185.8) 1.05(237.9)
9 130.21 1.83(71.2) 0.75(172.8) 263.01 2.07(126.8) 097(272.4) 29220 2.08(140.6) 0.97 (300.2)
10 11272 1.84(61.3) 0.76(149.2) 24210 2.11(115.0) 0.97(249.8) 290.69 2.11(137.6) 0.96 (301.3)
1 190.52 1.82(104.7) 1.28(148.8) 51554 256(201.1) 1.94(265.5) 507.35 2.57(197.4) 1.94(262.0)
2 210.81 2.65(79.6) 1.28(164.6) 472.17 3.34(141.2) 1.94(243.6) 620.31 3.34(185.5) 1.94(320.4)
3 188.79 1.65(114.7) 1.12(169.1) 536.08 2.38(225.0) 1.78(300.3) 578.01 2.38(242.6) 1.78(324.5)
4 221.14 2.58(85.8) 1.15(191.7) 520.62 3.25(160.2) 1.79(290.6) 651.36 3.26(199.9) 1.79 (364.6)
15,000 5 230.39 3.19(72.3) 1.34(171.7) 54890 3.84(142.8) 1.87(294.2) 631.89 3.85(164.1) 1.86(339.6)
(1500) 6 189.74 1.77(107.2) 1.28(147.8) 52559 2.49(211.1) 195(269.4) 539.88 2.49(216.6) 1095 (277.2)
7 209.67 1.86(113.0) 128(163.5) 537.68 2.59(207.3) 1.96(274.2) 564.67 2.66(212.6) 1.96(288.2)
8 21859 1.69(129.2) 1.15(190.9) 543.32 242(224.6) 1.80(301.1) 558.39 2.42(231.1) 1.80(310.4)
9 29556 3.57(82.9) 128(230.5) 585.36 3.85(152.1) 148(396.4) 660.64 3.94(167.5) 1.52(435.6)
10 25291 3.56(71.0) 128(197.4) 57519 3.86(149.0) 1.47(392.4) 66325 3.85(172.4) 1.44(461.2)
1 362.13 2.81(128.8) 1.93(188.0) 961.60 4.08(235.5) 2.99(321.4) 948.69 4.07(232.8) 2.99 (317.6)
2 42673 4.26(100.2) 1.93(221.4) 882.08 542(162.7) 2.99(295.3) 1114.94 5.43(205.2) 2.98(374.1)
3 351.16 2.46(142.5) 1.65(213.4) 1001.60 3.75(267.3) 2.72(367.8) 1043.39 3.75(278.2) 2.72(383.4)
4 45826 4.08(112.2) 1.71(267.7) 95220 5.27(180.6) 2.76(345.4) 1113.26 527(211.1) 2.75(404.2)
20,000 5 48120 5.13(93.7) 197(243.7) 1067.28 6.32(168.9) 2.88(370.2) 1185.69 6.32(187.7) 2.88(411.8)
(2000) 6 363.18 2.67(136.1) 193(188.5) 1029.87 3.95(260.8) 2.99(344.2) 1008.06 3.95(255.0) 2.99 (337.1)
7 364.72 2.81(129.9) 1.93(189.3) 993.69 4.13(240.6) 3.01(330.3) 96557 4.18(230.9) 3.01(321.1)
8 370.64 2.56(145.0) 1.69(218.8) 978.14 3.83(255.2) 2.76(354.5) 989.94 3.83(258.6) 2.75(359.7)
9 564.40 5.83(96.9) 1.93(292.7) 1171.44 6.48(180.9) 223(524.3) 1206.58 6.43(187.5) 2.21(546.7)
10 52556 5.83(90.1) 193(272.2) 1078.68 6.45(167.2) 2.21(489.2) 1258.08 6.50(193.4) 2.24 (561.8)

Note: Bold numbers in parentheses represent the speedup gain for each GPU.

Regarding the GPU hardware, the A100 GPU demonstrated speedup gains ranging
from a minimum of 34.4x in the EJAYA algorithm to a maximum of 561.8x in Rao-3,
achieving a global mean speedup (across all algorithms, problems, and dimensions) of
231.2x. This performance surpassed that of the RTX 3090 GPU, which attained speedups
ranging from 33.9x in the EJAYA algorithm to 295.8x with the Jaya algorithm, resulting in a
global mean speedup of 127.9x, approximately 44.7% lower than that of the A100 GPU.

The GPU-based algorithm that most effectively leveraged the parallel processing
capabilities of the GPU hardware was the Rao-3 algorithm, with an average speedup across
all problems and dimensions of 169.9x for the RTX 3090 GPU and 290.0x for the A100.
In contrast, the GPU-based EJAYA algorithm demonstrated more modest, although still

Appl. Sci. 2024, 14, 5349

31 of 42

relevant, speedup values, with an average speedup of 69.9x for the first GPU and 82.6x
for the second. This observed result could be attributed to the parallelization strategy
employed for the EJAYA algorithm, which faced challenges in attaining a similar level of
efficiency as the remaining algorithms. Additionally, inherent characteristics of the EJAYA
algorithm, such as the utilization of a more complex exploration method involving different
strategies requiring switching and selecting probabilities, mean historical solutions, and
permutation of population elements, contribute to its distinct performance dynamics.

Table 3. Mean computational results for the Jaya and enhanced Jaya algorithms. The time is in
seconds, and the speedup gain for each GPU is shown in parentheses.

BWP MaGI

Pop. Prob. CPU RTX 3090 A100 CPU RTX 3090 A100
(Vars) No. Time Time (Gain) Time (Gain) Time Time (Gain) Time (Gain)
1 83.04 1.00 (83.3) 0.53 (156.0) 107.64 1.23 (87.4) 0.72 (148.7)
2 79.48 1.34 (59.4) 0.65 (121.5) 117.63 1.41 (83.2) 0.76 (155.2)
3 83.83 1.03 (81.6) 0.56 (150.4) 94.22 1.03 (91.7) 0.52 (180.4)
4 88.05 1.30 (68.0) 0.58 (151.0) 116.55 1.33 (87.7) 0.63 (185.6)
5000 5 84.39 1.37 (61.7) 0.58 (145.6) 123.60 1.43 (86.4) 0.65 (191.4)
(500) 6 74.44 1.01(73.9) 054 (137.4) 93.03 1.18(78.6) 0.69 (135.6)
7 83.18 1.02 (81.7) 0.53 (157.0) 90.15 1.20 (74.9) 0.69 (130.1)
8 64.09 1.04 (61.4) 0.54 (118.2) 91.30 1.17 (78.2) 0.65 (141.0)
9 92.16 1.28 (71.9) 0.43 (214.1) 120.75 1.46 (82.9) 0.56 (216.4)
10 98.07 1.28 (76.5) 0.44 (224.9) 128.80 1.46 (88.0) 0.58 (221.1)
1 266.94 1.91 (139.8) 1.19 (223.4) 318.06 2.51 (126.6) 1.83 (173.6)
2 265.09 2.98 (89.0) 1.59 (166.8) 452.80 3.23 (140.0) 1.87 (241.7)
3 280.87 1.99 (141.2) 1.38 (204.1) 317.79 2.03 (156.4) 1.14 (278.1)
4 30054 2.87(104.8) 1.44(208.6) 419.10 3.05(137.4) 1.51(276.6)
10,000 5 291.19 3.25(89.7) 1.40 (207.4) 447.20 3.65 (122.6) 1.77 (253.2)
(1000) 6 248.07 1.88 (132.3) 1.22 (204.2) 334.23 2.33 (143.3) 1.62 (206.8)
7 29198 1.96(149.0) 121 (241.2) 320.02 247(129.4) 1.70 (187.7)
8 225.04 1.85 (121.8) 1.10 (204.4) 329.33 2.34 (140.7) 1.58 (207.9)
9 293.84 3.22 (91.3) 0.92 (318.8) 409.07 3.74 (109.4) 1.26 (325.9)
10 340.01 3.22 (105.5) 0.89 (381.0) 454.26 3.47 (130.8) 1.27 (357.2)
1 550.07 3.39 (162.4) 2.06 (267.5) 789.59 4.50 (175.6) 3.18 (247.9)
2 581.02 5.48 (106.0) 2.65(218.9) 1008.38 6.14 (164.2) 3.24 (310.8)
3 614.33 3.40 (180.8) 2.30 (267.1) 665.81 3.53 (188.5) 2.10 (317.6)
4 658.30 5.32 (123.8) 2.41 (273.6) 878.04 5.77 (152.2) 2.61(336.7)
15,000 5 637.82 6.20 (102.8) 2.34 (272.8) 993.52 7.12 (139.5) 3.15 (315.6)
(1500) 6 563.17 3.28 (171.6) 2.06 (273.3) 750.12 4.09 (183.6) 2.77 (270.5)
7 598.77 3.47 (172.3) 2.06 (291.4) 740.67 4.41 (167.8) 3.00 (247.1)
8 484.28 3.18 (152.1) 1.83 (264.7) 746.81 4.12 (181.1) 2.72 (274.7)
9 596.64 6.53 (91.4) 1.69 (352.9) 869.23 6.94 (125.2) 2.17 (401.2)
10 755.36 6.59 (114.7) 1.72(439.1) 1002.26 7.27 (137.8) 2.23 (450.0)
1 1190.73 5.37 (221.9) 3.20 (372.5) 1704.56 7.07 (241.2) 4.86 (350.4)
2 1280.47 8.78 (145.9) 3.98(321.9) 1956.22 9.95 (196.6) 4.94 (395.9)
3 1299.94 5.21 (249.4) 3.40(382.4) 144229 5.75(250.8) 3.37 (427.5)
4 1338.01 8.50 (157.4) 3.58 (373.4) 1732.39 9.31(186.1) 4.00 (433.2)
20,000 5 1391.69 10.30 (135.1) 3.57(389.5) 1929.49 11.68 (165.2) 4.77 (404.7)
(2000) 6 1231.50 5.09 (241.9) 3.21(383.9) 1503.84 6.43(233.9) 4.33 (347.1)
7 114742 5.43(211.4) 3.21(357.6) 1515.59 6.95 (218.0) 4.65 (326.1)
8 1160.41 4.92(235.9) 2.78 (418.0) 1501.78 6.46 (232.4) 4.11 (365.0)
9 1293.98 11.03 (117.3) 3.01 (429.4) 1690.29 11.69 (144.6) 3.23 (523.4)

10 1436.48 11.04 (130.1) 2.93(490.7) 1798.28 11.75(153.1) 3.28 (548.7)
Note: Bold numbers in parentheses represent the speedup gain for each GPU.

Upon analyzing the results obtained for the Rao algorithms (refer to Table 2), a clear
pattern becomes apparent. The Rao-1 algorithm, characterized by the simplest mathemat-

Appl. Sci. 2024, 14, 5349

32 of 42

ical model among the three, exhibited the shortest computational time, resulting in an
average of 194.23 s for the sequential algorithm (executed on the CPU). Conversely, Rao-2
and Rao-3 required approximately 147.9% more time on average than Rao-1 to complete
identical tests, with a respective duration of 460.08 s and 502.96 s.

In a comparative evaluation, the GPU-based implementations demonstrated superior
scalability amidst the increasing complexity of the Rao algorithms when juxtaposed with
their sequential counterparts. With the RTX 3090 GPU, the Rao-1 algorithm yielded a global
average of 2.06 s, while Rao-2 and Rao-3 exhibited an increase of approximately 26.7%
(2.60 s for Rao-2 and 2.61 s for Rao-3). Employing the A100 GPU, the difference in the
global average between Rao-1 (1.04 s) and both Rao-2 and Rao-3 (1.51 s and 1.50 s) was
approximately 45.1% higher. Although this denotes a superior growth rate in computational
time when compared with the RTX 3090 GPU, it is noticeable that the A100 GPU achieved
an average speedup that was 73.7% higher.

This enhanced scalability of the GPU-based algorithm is further reflected in the
speedup values attained across the various Rao algorithms. The algorithm with lower
computational demands achieved comparatively lower speedup gains. Specifically, for
the GPU-based Rao-1 algorithm running on the RTX 3090, the average speedup was 84.8x,
escalating to 155.4x for Rao-2 and 169.9x for Rao-3. Compared to Rao-1, this represents an
increase in speedup of 83.3% and 100.3%, respectively. A similar trend is observed with the
A100 GPU, where average speedup gains for the Rao algorithms were 159.8x, 261.1x, and
290.0x. This denotes a comparative increase in speedup achieved with Rao-2 and Rao-3
over Rao-1 of 63.4% and 81.5%, respectively.

A similar scenario unfolds with the BWP and MaGl algorithms (Table 3), where the
speedup attained by the GPU-based implementation increases when transitioning to a
more computationally demanding algorithm. Despite both algorithms being Jaya-based,
the MaGl algorithm features a slightly more intricate mathematical model, being based on
Rao-2 as opposed to Rao-1 in the case of the BWP algorithm. Consequently, the sequential
implementation of the MaGlI algorithm resulted in a 34.1% increase in global average
computation time compared to BWP.

When comparing both algorithms using the GPU-based implementation, the observed
increases were smaller. Utilizing the RTX 3090, the increase was approximately 14.7%,
and it rose to approximately 26.5% with the A100 GPU. Consistent with previous findings,
while the A100 exhibits a greater growth in computational times compared to the RTX 3090
GPU when transitioning to a more demanding algorithm, the speedups achieved by the
A100 were superior, resulting in an average increase of 104.5% when considering both the
BWP and MaGl algorithms.

The behavior of both sequential and parallel implementations of the studied metaphor-
less algorithms across the different problem dimensions, along with the achieved speedups,
is depicted in Figures 3-9.

While profiling the different test problems and specifically examining the top three
most and least computationally demanding in terms of average execution time, certain
patterns become evident. Results from the sequential implementation of the algorithms
reveal that problems 5, 9, and 10 consistently rank among the most demanding, with
the exception of problem 9, which does not appear in the top three most demanding for
the BWP and MaGi algorithms. In parallel testing, the RTX 3090 GPU exhibits a similar
pattern, consistently ranking problems 5, 9, and 10 as the most computationally demanding
across all algorithms. However, when using the A100 GPU, no similar or consistent pattern
emerges. No single problem ranks as the most demanding of all algorithms, but problems 1,
2, and 5 typically rank among the slowest. After analyzing the test problems per individual
algorithm, problem 5 appears to be one of the slowest in both sequential and parallel
implementations for most tested algorithms. The exception is in EJAYA, Rao-2, and Rao-3,
where problem 5 does not rank among the top three slowest problems when computing
with the A100 GPU.

Appl. Sci. 2024, 14, 5349 33 of 42

Sequential Jaya GPU-based Jaya (RTX 3090) GPU-based Jaya (A100)
B 10001%5 53 . @eHes$3)
o -5 —:rG 8 [0} ©-5 —:—6 o
£l Esft] s -
c c4 c
o kel o
© 500 23 =
5 5 5
Q Q2 Q
£ 250 £ S
o o1 o
O o o
%00 1000 1500 2000 %0 1000 1500 2000 %00 1000 1500 2000
Dimension Dimension Dimension
Speedup (RTX 3090) Speedup (A100)

1 1 1 1 1 1 1 1
500 1000 1500 2000 500 1000 1500 2000
Dimension Dimension

Figure 3. Mean computational times (top) and speedup (bottom) for the Jaya algorithm, categorized
by problem and dimension.

Sequential EJAYA GPU-based EJAYA (RTX 3090) GPU-based EJAYA (A100)
7 12001 =2 B 125 w8
) ||® 5 46 [0} o
g 1000f1v7 ~8 € 10.0 Eq
< 800 = =
s 3 75 5
2 600 ® T4
5 5 5.0 5
o 400 Q =%
€ € €5
2.5
§ 200 S S
1 1 1 o 1 1 1 1 1 1 1 1
%00 1000 1500 2000 oo 1000 1500 2000 500 1000 1500 2000
Dimension Dimension Dimension
Speedup (RTX 3090) Speedup (A100)
125
150
Q100 0,120
3 3
g 75 9 90
o o
wn (%2}
50 60
25 1 1 1 1 30 1 1 1 1
500 1000 1500 2000 500 1000 1500 2000

Dimension Dimension

Figure 4. Mean computational times (top) and speedup (bottom) for the EJAYA algorithm, categorized
by problem and dimension.

Problems 1, 6, 7, and 8 usually emerge as the least computationally demanding
in the sequential tests. However, no single problem consistently ranks as the fastest
for all algorithms. In the context of the GPU-based implementations, tests utilizing the
RTX 3090 GPU consistently position problems 3, 6, and 8 as the fastest across all tested
algorithms. Nonetheless, no consistent pattern is observed when using the A100 GPU.
Generally, problems 3, 8, 9, and 10 rank among the top three in terms of the lowest average
execution time. When individually assessing the test problems for each algorithm, problem
8 generally appears among the least computationally intensive in both sequential and

Appl. Sci. 2024, 14, 5349 34 of 42

parallel implementations, with the exception of the Rao-2 and Rao-3 algorithms, where no
specific pattern has emerged.

Sequential Rao-1 GPU-based Rao-1 (RTX 3090) GPU-based Rao-1 (A100)
w600 24 . @eHes oi T20HI)
) °-5 46 °) -5 A6 o ©-5 46
g 500fv7 +8 £ 5Hv7 8 o = v-7 8
= = <9 -e-10 =15 <9 -0-10|
c 400 c4 c
2 ° o
E 300 E 3 E 1.0
3 200 32 a
: : £ 0s
§ 100 Sl o
1 1 1 0 1 1 1 1 0 1 1 1 1
%00 1000 1500 2000 500 1000 1500 2000 %oo 1000 1500 2000
Dimension Dimension Dimension
Speedup (RTX 3090) Speedup (A100)
300
250
S
© 20
()
a
15

1 1 1 1 1 1 1 1
500 1000 1500 2000 500 1000 1500 2000
Dimension Dimension

Figure 5. Mean computational times (top) and speedup (bottom) for the Rao-1 algorithm, categorized
by problem and dimension.

Sequential Rao-2 GPU-based Rao-2 (RTX 3090) GPU-based Rao-2 (A100)
3.5
— -e-1 -@-2 — —
UV 1200 H#3 <-4 <) @2
o o5 46 o6 [}
£ 1000 IS €25
=] = b=
c 800 c c
2 o4 o
@ 600 ® ©
+ +)
> > >
2 400 25 2 1.0
§ £ g
S 200 S S 0.5
1 1 1 0 1 1 1 1 0 1 1 1
q500 1000 1500 2000 500 1000 1500 2000 '0500 1000 1500
Dimension Dimension Dimension
Speedup (RTX 3090) Speedup (A100)
600
-e-1 -3-2
500H% 2 e .
v-7 8
%400 <9 --10| p
2
o 300 a
=4 «
n &)
200
100
1 1 1 1 1 1 1 1
500 1000 1500 2000 500 1000 1500 2000
Dimension Dimension

Figure 6. Mean computational times (top) and speedup (bottom) for the Rao-2 algorithm, categorized
by problem and dimension.

A consistent trend observed in all sequential implementations reveals an escalating
impact with the growing problem dimension, giving rise to a concave upward curve
characterized by an increasing slope. This trend indicates that computational time becomes
more pronounced as dimensionality increases. Such behavior aligns seamlessly with the
nature of the test problems, as scaling up NESs generally leads to a surge in computational

Appl. Sci. 2024, 14, 5349 35 of 42

complexity. This underscores the imperative need for efficient algorithmic strategies capable
of navigating the computational challenges posed by these intricate mathematical models.

Sequential Rao-3 GPU-based Rao-3 (RTX 3090) GPU-based Rao-3 (A100)
3.5
i -e-1 -&-2 a
2 H*3 -4 2
21250173 T8 ;3
£ v-7 ; 8 £
-5 10009 -*10 S
[= C
2 750 K]
- -
8 8
é_ 500 é_
o 250 o
O o
1 1 1 0 1 1 1 1 0 1 1 1 1
q500 1000 1500 2000 500 1000 1500 2000 0500 1000 1500 2000
Dimension Dimension Dimension

Speedup (RTX 3090) Speedup (A100)

-e-1 @2

#-3 -4

-5 46

97 8

<9 -e-10 >

& 8
8
5 1 1 1 1 1 1 1
0500 1000 1500 2000 500 1000 1500 2000
Dimension Dimension

Figure 7. Mean computational times (top) and speedup (bottom) for the Rao-3 algorithm, categorized
by problem and dimension.

Sequential BWP GPU-based BWP (RTX 3090) GPU-based BWP (A100)
150011 92 12 4
s 10
<9 -e-10|

w

1000

500

[

Computation time (s)
Computation time (s)
H ()] [ee]
Computation time (s)
N

1 1 1 1 1 1 1 1 1 1 1
q500 1000 1500 2000 o500 1000 1500 2000 O500 1000 1500 2000
Dimension Dimension Dimension
Speedup (RTX 3090) Speedup (A100)

o

=)

el

()

(9]

o

wn

1 1 1 1 1 1 1 1
500 1000 1500 2000 500 1000 1500 2000
Dimension Dimension

Figure 8. Mean computational times (top) and speedup (bottom) for the BWP algorithm, categorized
by problem and dimension.

Upon analyzing the computational times for GPU-based algorithms, two key ob-
servations provide insights into the performance characteristics of the proposed parallel
implementation and GPU hardware. The first observation pertains to the grouping of lines
representing computation times for each test problem. The general dispersion of lines
observed in the data obtained with the RTX 3090 GPU suggests that this hardware may be

Appl. Sci. 2024, 14, 5349

36 of 42

more influenced by problem complexity, resulting in higher variability in computational
performance. In contrast, the A100 GPU exhibits a more clustered grouping of computation
times, indicating more stable and predictable performance across different problem dimen-
sions. Notably, two exceptions to this trend are observed in the GPU-based implementation
of BWP (Figure 8) and MaGl (Figure 9) algorithms.

Sequential MaGl GPU-based MaGl (RTX 3090) GPU-based MaGl (A100)
@ 2000+ 3 +4 s 12 s
o s / 215 @
-g 1500H*° 1 / S £4
s §° 33
‘© 1000 / 2 6 =
5 5 52
o Q 4 Q
E 500 3 E1
O O 2 O

1 1 1 1 1 1 1 1 1 1 1
1000 1500 2000 500 1000 1500 2000 0500 1000 1500 2000
Dimension Dimension Dimension

(=}

Speedup (RTX 3090) Speedup (A100)

50 1 1 1 1 1 1 1 1
500 1000 1500 2000 500 1000 1500 2000
Dimension Dimension

Figure 9. Mean computational times (top) and speedup (bottom) for the MaGI algorithm, categorized
by problem and dimension.

The second and more pertinent observation concerns the gradient of computation
time. When testing GPU-based algorithms with the RTX 3090 GPU, increases in problem
dimension result in a less pronounced rise in computational time compared to the cor-
responding sequential version of the same algorithm. Conversely, most tests conducted
with the A100 GPU suggest an almost linear relationship between computational time and
problem dimension. However, it is noteworthy that some results obtained with the BWP
and MaGl algorithms deviate more substantially from a linear trend. This implies that
the rate at which computational time increases remains more constant with the growing
problem dimension when the A100 GPU is used.

This observation suggests that GPU-based algorithms can more efficiently handle the
scaling of computational demands. It also implies that the parallel implementation is adept
at effectively distributing and managing the workload across its parallel processing cores,
thereby better controlling the rise in computational time.

Insights into the scalability and efficiency gains of the proposed parallelization strategy
can be derived from an analysis of the speedup achieved during the transition from
sequential to parallel GPU algorithms. Across all test scenarios, the speedup lines (bottom
plots in Figures 3-9) exhibit a clear upward trend, indicating the proficient parallelization
of the algorithms in the GPU-based implementation tested in both the RTX 3090 and A100
GPU. Furthermore, with the increase in problem dimension, the speedup consistently
rises, emphasizing the effectiveness of the parallelization strategy in managing larger
computational workloads and highlighting its scalability.

With the RTX 3090 GPU, variations in problem dimensions, as observed in the Jaya,
BWP, and MaGI GPU-based algorithms, sometimes result in more jagged speedup lines,
while the A100 GPU tends to consistently produce smoother speedup results. This ob-
servation suggests that the former GPU is more sensitive to variations in computational

Appl. Sci. 2024, 14, 5349

37 of 42

demands. While the speedup lines obtained with both GPUs exhibit positive growth for
all algorithms across all problem dimensions, specific algorithms such as EJAYA, Rao-2,
and Rao-3 display a concave downward shape in the speedups achieved with the RTX
3090, indicating a slowdown in speedup growth at higher dimensions. In contrast, the
speedup lines resulting from the A100 GPU mostly show a nearly linear or concave upward
shape, signifying that the parallelization strategy effectively leverages this GPU hardware
to achieve superior processing capabilities.

A noteworthy observation unfolds when examining the speedup performance across
different problems. Problems 9 and 10 generally demonstrate remarkable speedup achieve-
ments with the A100 GPU. In contrast, these same problems tend to rank among the worst
speedup results when executed on the RTX 3090 GPU. This disparity in speedup outcomes
between the two GPUs underscores the nuanced influence of problem characteristics on
the effectiveness of parallelization strategies.

A more comprehensive analysis aiming to further investigate the adaptation capabili-
ties of the parallelization strategy across various GPU hardware configurations is presented
in Table 4. The provided data include the average times of all test problems per problem
dimension and are grouped by algorithm. The computations encompass results for the se-
quential implementation (in the column labeled ‘CPU’) and the GPU-based implementation
executed on four different GPUs, along with the achieved speedup gains.

Table 4. Mean computational results per algorithm and dimension. The time is in seconds, and the
speedup gain for each GPU is shown in parentheses.

Al Pop. (Vars) CPU Tesla T4 RTX 3090 Tesla V100S A100

& p- Time Time (Gain) Time (Gain) Time (Gain) Time (Gain)
5000 (500) 47.25 0.82 (57.6) 0.62 (75.9) 0.36 (132.2) 0.31 (153.6)

Jaya 10,000 (1000) 159.50 2.72 (58.7) 1.33 (120.1) 0.80 (199.0) 0.74 (216.9)
y 15,000 (1500) 355.90 5.84 (61.0) 2.44 (145.9) 1.44 (247.7) 1.24 (286.1)
20,000 (2000) 772.46 10.16 (76.0) 3.84 (201.1) 2.28 (338.3) 1.86 (415.5)

5000 (500) 58.04 2.27 (25.5) 1.63 (35.6) 1.40 (41.6) 1.53 (38.0)

EJAYA 10,000 (1000) 214.73 8.45 (25.4) 3.60 (59.6) 3.28 (65.4) 3.36 (64.0)

15,000 (1500) 506.94 23.61 (21.5) 6.29 (80.5) 5.76 (88.1) 5.35 (94.8)

20,000 (2000) 1006.64 40.25 (25.0) 9.85 (102.2) 8.85 (113.8) 7.54 (133.5)

5000 (500) 29.40 0.82 (35.8) 0.62 (47.4) 0.36 (82.3) 0.31 (95.6)

Rao-1 10,000 (1000) 99.91 2.71 (36.8) 1.32 (75.4) 0.80 (124.6) 0.74 (135.9)
15,000 (1500) 220.81 5.84 (37.8) 2.43 (90.8) 1.44 (153.7) 1.24 (177.4)

20,000 (2000) 426.80 10.16 (42.0) 3.84 (111.0) 2.28 (187.0) 1.86 (229.6)

5000 (500) 59.99 1.22 (49.2) 0.73 (82.2) 0.49 (123.3) 0.41 (145.7)

Rao-2 10,000 (1000) 232.62 4.46 (52.1) 1.65 (141.4) 1.25 (185.6) 1.06 (219.6)
15,000 (1500) 536.04 10.00 (53.6) 3.06 (175.2) 2.42 (221.7) 1.80 (298.1)

20,000 (2000) 1011.66 17.54 (57.7) 4.97 (203.6) 3.87 (261.2) 2.75 (367.3)

5000 (500) 68.96 1.22 (56.6) 0.73 (94.6) 0.49 (141.7) 0.41 (169.2)

Rao-3 10,000 (1000) 261.90 4.46 (58.7) 1.65 (158.9) 1.25 (209.5) 1.06 (247.7)
15,000 (1500) 597.58 10.00 (59.8) 3.08 (194.3) 2.42 (247.3) 1.80 (332.7)

20,000 (2000) 1083.42 17.52 (61.8) 4.98 (217.8) 3.87 (280.0) 2.75 (393.7)

5000 (500) 83.07 1.59 (52.3) 1.17 (71.3) 0.62 (133.3) 0.54 (154.2)

BWP 10,000 (1000) 280.36 5.48 (51.2) 2.51 (111.6) 1.42 (197.1) 1.23 (227.1)
15,000 (1500) 603.98 11.95 (50.5) 4.68 (128.9) 2.63 (229.4) 2.11 (286.1)

20,000 (2000) 1277.06 20.95 (61.0) 7.57 (168.8) 4.31 (296.2) 3.29 (388.6)

5000 (500) 108.37 1.96 (55.2) 1.29 (84.0) 0.75 (144.2) 0.64 (168.1)

MaGI 10,000 (1000) 380.19 7.00 (54.3) 2.88 (131.8) 1.81 (209.8) 1.56 (244.3)
15,000 (1500) 844.44 15.42 (54.7) 5.39 (156.7) 3.43 (246.1) 2.72 (310.8)

20,000 (2000) 1677.47 27.02 (62.1) 8.70 (192.7) 5.66 (296.5) 4.15 (403.8)

Note: Bold numbers in parentheses represent the speedup gain for each GPU.

Appl. Sci. 2024, 14, 5349

38 of 42

The performance hierarchy among the tested GPUs indicates that the Tesla T4 exhibits
the lowest overall performance, followed by the RTX 3090, Tesla V100S, and, finally, the
A100, thereby showcasing the highest performance. This alignment consistently corre-
sponds to the inherent hardware characteristics and capabilities of each GPU. The RTX
3090, distinguished by a markedly greater number of CUDA cores and higher memory
bandwidth compared to the Tesla T4, naturally positions itself higher in the performance
hierarchy. Despite both the Tesla V100S and A100 having fewer CUDA cores than the
RTX 3090, they are intricately engineered for parallel processing, featuring notably more
advanced memory subsystems capable of facilitating data movement at substantially
higher rates.

Comparatively, the Tesla V100S and A100 GPUs differ in their configurations. The
former has both a higher CUDA core count and a wider memory bus. It is important to
acknowledge that critical aspects of the GPU microarchitecture, including CUDA compute
capability, instruction pipeline depth, execution unit efficiency, and memory hierarchy
intricacies, also contribute greatly to the overall performance of a GPU.

All tested GPUs demonstrated positive speedup ratios across all algorithms and
dimensions. Nevertheless, concerning algorithms EJAYA, BWP, and MaGlI, the Tesla T4
GPU exhibited a marginal decrease in average speedup ratios within some of the middle
problem dimensions, followed by an increase in the highest problem dimension. Despite
this marginal reduction, it is crucial to emphasize that the Tesla T4 GPU consistently
maintained positive speedup ratios. This indicates a nuanced shift in the efficiency of
the GPU, which could be attributed to factors related to the parallelization strategy or to
GPU hardware, such as the arrangement of CUDA cores or the internal configuration of
processing units.

When examining the execution times of the sequential implementations, the Rao-1
algorithm stands out as the fastest, indicative of a lower computational demand. However,
this was not mirrored in the GPU results of the same algorithm. The computational times
obtained with the GPU-based Rao-1, across all tested GPUs, closely resemble those acquired
with the GPU-based Jaya, a mathematically more complex algorithm. This observation
suggests a potential bottleneck in the performance of the parallelization strategy, possibly
stemming from inherent characteristics of the parallelization design coupled with other
factors related to GPU programming. These factors may encompass thread setup and
coordination, overhead associated with kernel launch, thread synchronization mechanisms,
and other CUDA programming nuances.

6. Conclusions

The analysis of GPU-based implementations of metaphorless optimization algorithms,
conducted within the framework of a standardized parallelization strategy, has yielded
insightful conclusions regarding the efficacy, performance characteristics, and scalability
of parallel computation across a diverse set of large-scale NESs with varying dimensions,
tested on different GPU hardware configurations.

The utilization of parallel computational resources on GPUs proved highly effective in
enhancing algorithmic performance. The GPU-based versions of the tested metaphorless
optimization algorithms consistently demonstrated superior efficiency compared to their
sequential counterparts. In the detailed analysis conducted, the achieved speedup ranged
from a minimum of 33.9x to a maximum of 561.8x. The observed speedup gains showed
a proportional correlation with the augmentation of the problem dimension. Smaller
dimensions resulted in more modest speedup gains, while larger dimensions led to more
notable improvements. This behavior aligns with the adaptive nature of the parallelization
strategy, dynamically adjusting GPU processing capabilities based on problem complexity.

The efficiency of GPU-based implementations varied among different optimization
algorithms. The Rao-3 algorithm demonstrated exceptional efficiency in leveraging parallel
processing capabilities, achieving the highest average speedup across all tested dimensions.
Conversely, algorithms with more intricate mathematical models, such as EJAYA, exhibited

Appl. Sci. 2024, 14, 5349

39 of 42

more modest yet still substantial speedup values. This observation underscores the impact
of algorithmic complexity on the effectiveness of parallelization.

These observations were derived from results obtained with both the RTX 3090 and
A100 GPUs, with the latter consistently outperforming the former despite having fewer
CUDA cores. Moreover, the RTX 3090 GPU displayed higher sensitivity to variations in
problem complexity, resulting in greater variability in computational performance. On
the other hand, the A100 GPU showcased more stability and predictability, delivering
consistent performance across different problem dimensions. This underscores the nuanced
influence of GPU hardware characteristics on algorithmic efficiency.

The dynamic adaptability of the parallelization strategy to various GPU hardware
configurations was further analyzed. Results revealed that all tested GPUs exhibited
positive speedup ratios across all algorithms and dimensions, leading to the emergence
of a performance hierarchy. The Tesla T4 demonstrated the lowest overall performance,
followed by the RTX 3090, the Tesla V100S, and finally, the A100, which showcased the
highest performance. This performance hierarchy is closely aligned with the intrinsic
hardware capabilities of each GPU, indicating that the parallelization strategy effectively
capitalized on the specific architectural features of each hardware. Furthermore, the
results highlighted that while individual factors such as the number of cores and memory
bandwidth play a crucial role in determining the computational capacity of a GPU, they only
offer a partial view of the overall performance. Such nuances underscored the importance
of interpreting performance results within the context of real-world applications.

In GPU programming, the pursuit of optimal performance should be harmonized
with some degree of flexibility. While maximizing performance remains crucial, overly
rigid optimized strategies may restrict algorithmic parameters or compatibility with dif-
ferent GPU hardware. The parallel implementation proposed in this paper showcases
the capability of a generic approach to efficiently manage GPU resource allocation while
providing scalability across different hardware configurations. This adaptability is achieved
automatically, without requiring any source code modification, ensuring that applications
remain responsive to evolving computational needs and effectively harness the potential of
GPUs for general-purpose computing.

Refining and optimizing the parallelized metaphorless optimization algorithms on
GPU architecture, as presented in this study, unveils several promising avenues for fur-
ther research. An exhaustive examination of the algorithms under consideration, with
a concerted effort to refine and optimize their parallelized versions, holds the potential
for substantial enhancements to their performance. Exploring the specific impact of test
problems on parallel computation may yield valuable insights into the nuanced effects of
parallel processing across diverse computational scenarios. Exploring dynamic paralleliza-
tion strategies that adapt to varying problem complexities and GPU characteristics could
also lead to additional gains in efficiency, scalability, and performance across a broader
spectrum of hardware configurations. As an illustrative example, revising the method
responsible for determining the block size, as suggested in this study, resulted in a notewor-
thy improvement of approximately 19.8% in the average performance of the GPU-based
implementations.

Building upon these conclusions, several promising avenues for future research can
be explored. Further research into methods for determining the block size in parallel
execution is essential to enhancing algorithmic performance. As indicated in the study,
revising the method for automatically determining optimal GPU hardware occupancy
yielded marked performance improvements. Exploring alternative approaches or refining
existing methods could yield further enhancements. Other aspects of the parallelization
strategy could also be improved by meticulously fine-tuning existing implementations
or by incorporating additional algorithmic optimizations, such as asynchronous kernel
execution, dynamic parallelism, and kernel fusion, to further enhance performance and
computational efficiency. Furthermore, a comprehensive examination of the performance
of the GPU-based algorithms under different test problems could elucidate the nuances of

Appl. Sci. 2024, 14, 5349 40 of 42

this parallelization strategy in varied computational scenarios. It would also be relevant to
verify the time complexity of the proposed implementations and to expand the performance
analysis of the algorithms across problems of varying scales.

Author Contributions: Conceptualization, B.S. and L.G.L.; methodology, L.G.L.; investigation, soft-
ware, and writing—original draft preparation, B.S.; supervision, validation, and writing—review and
editing, L.G.L. and EM. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by ITI/LARSyS projects 10.54499 /LA /P /0083 /2020, 10.54499/
UIDP /50009 /2020, and 10.54499 /UIDB /50009 /2020, funded by FCT (Fundacéo para a Ciéncia e a
Tecnologia). This work was also supported by FCT through NOVA LINCS (UIDB/04516/2020). The
HPC resources used in this study were made available by the Portuguese National Distributed Com-
puting Infrastructure (INCD) through the FCT Advanced Computing Projects 2022.57951.CPCA.A0
and 2023.09611.CPCA.A1.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors are grateful to Emiliano Gongalves for providing access to the RTX
3090 GPU used in this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kelley, C.T. Solving Nonlinear Equations with Newton’s Method; SIAM: Philadelphia, PA, USA, 2003.

2. Pérez, R.; Lopes, V.IL.R. Recent applications and numerical implementation of quasi-Newton methods for solving nonlinear
systems of equations. Numer. Alg. 2004, 35, 261-285. [CrossRef]

3. Rice, J.R. Numerical Methods, Software, and Analysis, 2nd ed.; Academic Press: Boston, MA, USA, 1993.

4. Karr, C.; Weck, B.; Freeman, L. Solutions to systems of nonlinear equations via genetic algorithms. Eng. Appl. Artif. Intell. 1998,
11, 369-375. [CrossRef]

5. Mehta, D.; Grosan, C. A collection of challenging optimization problems in science, engineering and economics. In Proceedings
of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25-28 May 2015; pp. 2697-2704. [CrossRef]

6. Kotsireas, I.S.; Pardalos, P.M.; Semenov, A.; Trevena, W.T.; Vrahatis, M.N. Survey of methods for solving systems of nonlinear
equations, Part I: Root-finding approaches. arXiv 2022, arXiv:2208.08530. [CrossRef]

7. Li, Y.; Wei, Y.; Chu, Y. Research on solving systems of nonlinear equations based on improved PSO. Math. Probl. Eng. 2015,
2015, 1-13. [CrossRef]

8. Choi, H.; Kim, S.; Shin, B.C. Choice of an initial guess for Newton’s method to solve nonlinear differential equations. Comput.
Math. Appl. 2022, 117, 69-73. [CrossRef]

9. Press, WJ.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, P.B. Numerical Recipes in C++: The Art of Scientific Computing, 3rd ed.;
Cambridge University Press: New York, NY, USA, 2007.

10. Coley, D.A. An Introduction to Genetic Algorithms for Scientists and Engineers; World Scientific: Singapore, 1999. [CrossRef]

11. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November-1 December 1995; Volume 4, pp. 1942-1948. [CrossRef]

12. Rao, R.V. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int.
J. Ind. Eng. Comput. 2016, 7, 19-34. [CrossRef]

13. Ghasemi, M.; Rahimnejad, A.; Akbari, E.; Rao, R.V.; Trojovsky, P.; Trojovskd, E.; Gadsden, S.A. A new metaphor-less simple
algorithm based on Rao algorithms: A Fully Informed Search Algorithm (FISA). Peer] Comput. Sci. 2023, 9, e1431. [CrossRef]
[PubMed]

14. Singh, R.; Pathak, VK ; Srivastava, A.K.; Kumar, R.; Sharma, A. A new metaphor-less optimization algorithm for synthesis of
mechanisms. Int. J. Interact. Des. Manuf. 2023, 18, 2371-2391. [CrossRef]

15. Zhang, Y.; Chi, A.; Mirjalili, S. Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering
design problems. Knowl. Based Syst. 2021, 233, 107555. [CrossRef]

16. Ribeiro, S.; Silva, B.; Lopes, L.G. Solving systems of nonlinear equations using Jaya and Jaya-based algorithms: A computational

comparison. In Proceedings of the International Conference on Paradigms of Communication, Computing and Data Analytics,
PCCDA, New Delhi, India, 22-23 April 2023; Algorithms for Intelligent Systems; Yadav, A., Nanda, S.J., Lim, M.H., Eds.; Springer:
Singapore, 2023; pp. 119-136. [CrossRef]

http://doi.org/10.1023/B:NUMA.0000021762.83420.40
http://dx.doi.org/10.1016/S0952-1976(97)00067-5
http://dx.doi.org/10.1109/CEC.2015.7257223
http://dx.doi.org/10.48550/arXiv.2208.08530
http://dx.doi.org/10.1155/2015/727218
http://dx.doi.org/10.1016/j.camwa.2022.04.013
http://dx.doi.org/10.1142/3904
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.5267/j.ijiec.2015.8.004
http://dx.doi.org/10.7717/peerj-cs.1431
http://www.ncbi.nlm.nih.gov/pubmed/37705627
http://dx.doi.org/10.1007/s12008-023-01502-6
http://dx.doi.org/10.1016/j.knosys.2021.107555
http://dx.doi.org/10.1007/978-981-99-4626-6_10

Appl. Sci. 2024, 14, 5349 41 of 42

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Rao, R.V. Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems. Int. J. Ind. Eng. Comput.
2020, 11, 107-130. [CrossRef]

Singh, R.; Gaurav, K.; Pathak, VK ; Singh, P.; Chaudhary, H. Best-Worst-Play (BWP): A metaphor-less optimization algorithm. J.
Phys. Conf. Ser. 2020, 1455, 012007. [CrossRef]

Agushaka,].O.; Ezugwu, A.E. Initialisation approaches for population-based metaheuristic algorithms: A comprehensive review.
Appl. Sci. 2022, 12, 896. [CrossRef]

Agushaka,].O.; Ezugwu, A.E. Advanced arithmetic optimization algorithm for solving mechanical engineering design problems.
PLoS ONE 2021, 16, €0255703. [CrossRef] [PubMed]

Freitas, D.; Lopes, L.G.; Morgado-Dias, F. Particle swarm optimisation: A historical review up to the current developments.
Entropy 2020, 22, 362. [CrossRef] [PubMed]

Rao, R.V. Jaya: An Advanced Optimization Algorithm and Its Engineering Applications; Springer: Cham, Switzerland, 2019.

Zitar, R.A.; Al-Betar, M.A.; Awadallah, M.A.; Doush, I.A.; Assaleh, K. An intensive and comprehensive overview of JAYA
algorithm, its versions and applications. Arch. Comput. Methods Eng. 2022, 29, 763-792. [CrossRef] [PubMed]

Civicioglu, P. Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 2013,
219, 8121-8144. [CrossRef]

Soyata, T. GPU Parallel Program Development Using CUDA; Taylor and Francis: Boca Raton, FL, USA, 2018. [CrossRef]
Gogoliniska, A.; Mikulski, L.; Piatkowski, M. GPU computations and memory access model based on Petri nets. In Transactions on
Petri Nets and Other Models of Concurrency XIII; Koutny, M., Kristensen, L., Penczek, W., Eds.; LNCS; Springer: Berlin, Germany,
2018; Volume 11090, pp. 136-157. [CrossRef]

Rahmaniani, R.; Crainic, T.G.; Gendreau, M.; Rei, W. The Benders decomposition algorithm: A literature review. Eur.]. Oper. Res.
2017, 259, 801-817. [CrossRef]

Sun, Y.; Chu, S.C.; Hu, P; Watada, J.; Si, M.; Pan,].S. Overview of parallel computing for meta-heuristic algorithms. |. Netw. Intell.
2022, 7, 656-684.

Essaid, M.; Idoumghar, L.; Lepagnot, J.; Brevilliers, M. GPU parallelization strategies for metaheuristics: A survey. Int. |. Parallel
Emergent Distrib. Syst. 2019, 34, 497-522. [CrossRef]

Hijazi, N.M.; Faris, H.; Aljarah, I. A parallel metaheuristic approach for ensemble feature selection based on multi-core
architectures. Expert Syst. Appl. 2021, 182, 115290. [CrossRef]

Cheng, J.R.; Gen, M. Parallel genetic algorithms with GPU computing. In Industry 4.0—Impact on Intelligent Logistics and
Manufacturing; Banyai, T., Petrillo, A., De Felice, F,, Eds.; IntechOpen: Rijeka, Croatia, 2020; pp. 69-93. [CrossRef]

Wang, L.; Zhang, Z.; Huang, C.; Tsui, K.L. A GPU-accelerated parallel Jaya algorithm for efficiently estimating Li-ion battery
model parameters. Appl. Soft Comput. 2018, 65, 12-20. [CrossRef]

Jimeno-Morenilla, A.; Sdnchez-Romero, J.L.; Migallén, H.; Mora-Mora, H. Jaya optimization algorithm with GPU acceleration.
J. Supercomput. 2019, 75, 1094-1106. [CrossRef]

Silva, B.; Lopes, L.G. An efficient GPU parallelization of the Jaya optimization algorithm and its application for solving large
systems of nonlinear equations. In Optimization, Learning Algorithms and Applications: Third International Conference, OL2A 2023,
Ponta Delgada, Portugal, 27-29 September 2023; Revised Selected Papers, Part II; Pereira, A.I, Mendes, A., Fernandes, EP,, Pacheco,
M.E, Coelho, J.P, Lima, J., Eds.; CCIS; Springer: Cham, Switzerland, 2024; Volume 1982; pp. 368-381. [CrossRef]

Silva, B.; Lopes, L.G. GPU acceleration of the Enhanced Jaya optimization algorithm for solving large systems of nonlinear
equations. In Book of Abstracts of the 4th International Conference on Numerical Computations: Theory and Algorithms—NUMTA 2023,
Pizzo, Calabria, Italy, 14-20 June 2023; Sergeyev, Y.D., Kvasov, D.E., Nasso, M.C., Eds.; Universita della Calabria, DIMES: Rende
(CS), Italy, 2023; p. 190.

Silva, B.; Lopes, L.G. GPU acceleration of the Enhanced Jaya optimization algorithm for solving large systems of nonlinear
equations. In Numerical Computations: Theory and Algorithms (NUMTA 2023); Sergeyev, Y.D., Kvasov, D.E., Astorino, A., Eds.;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2024; in print.

Silva, B.; Lopes, L.G. GPU-based acceleration of the Rao optimization algorithms: Application to the solution of large systems of
nonlinear equations. In Intelligent Data Engineering and Automated Learning—IDEAL 2023; Quaresma, P., Camacho, D., Yin, H.,
Gongalves, T., Julian, V., Tallén-Ballesteros, A.J., Eds.; LNCS; Springer: Cham, Switzerland, 2023; Volume 14404, pp. 107-119.
[CrossRef]

Silva, B.; Lopes, L.G. A massively parallel BWP algorithm for solving large-scale systems of nonlinear equations. In Proceedings
of the IEEE High Performance Extreme Computing Conference (HPEC), Boston, MA, USA, 23-27 September 2023; pp. 1-6.
[CrossRef]

Bezanson,].; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65-98.
[CrossRef]

Besard, T.; Foket, C.; De Sutter, B. Effective extensible programming: Unleashing Julia on GPUs. IEEE Trans. Parallel Distrib. Syst.
2019, 30, 827-841. [CrossRef]

Gao, K.; Mei, G,; Piccialli, F.; Cuomo, S.; Tu, J.; Huo, Z. Julia language in machine learning: Algorithms, applications, and open
issues. Comput. Sci. Rev. 2020, 37, 100254. [CrossRef]

Etiemble, D. 45-year CPU evolution: One law and two equations. In Proceedings of the Second Workshop on Pioneering
Processor Paradigms, Vienne, Austria, 25 February 2018. [CrossRef]

http://dx.doi.org/10.5267/j.ijiec.2019.6.002
http://dx.doi.org/10.1088/1742-6596/1455/1/012007
http://dx.doi.org/10.3390/app12020896
http://dx.doi.org/10.1371/journal.pone.0255703
http://www.ncbi.nlm.nih.gov/pubmed/34428219
http://dx.doi.org/10.3390/e22030362
http://www.ncbi.nlm.nih.gov/pubmed/33286136
http://dx.doi.org/10.1007/s11831-021-09585-8
http://www.ncbi.nlm.nih.gov/pubmed/34075292
http://dx.doi.org/10.1016/j.amc.2013.02.017
http://dx.doi.org/10.1201/9781315368290
http://dx.doi.org/10.1007/978-3-662-58381-4_7
http://dx.doi.org/10.1016/j.ejor.2016.12.005
http://dx.doi.org/10.1080/17445760.2018.1428969
http://dx.doi.org/10.1016/j.eswa.2021.115290
http://dx.doi.org/10.5772/intechopen.89152
http://dx.doi.org/10.1016/j.asoc.2017.12.041
http://dx.doi.org/10.1007/s11227-018-2316-7
http://dx.doi.org/10.1007/978-3-031-53036-4_26
http://dx.doi.org/10.1007/978-3-031-48232-8_11
http://dx.doi.org/10.1109/HPEC58863.2023.10363575
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1109/TPDS.2018.2872064
http://dx.doi.org/j.cosrev.2020.100254
http://dx.doi.org/10.48550/arXiv.1803.00254

Appl. Sci. 2024, 14, 5349 42 of 42

43. Moré,].J.; Garbow, B.S.; Hillstrom, K.E. Testing unconstrained optimization software. ACM Trans. Math. Softw. 1981, 7, 17-41.
[CrossRef]

44. Friedlander, A.; Gomes-Ruggiero, M.A.; Kozakevich, D.N.; Martinez,].M.; Santos, S.A. Solving nonlinear systems of equations by
means of quasi-Newton methods with a nonmonotone strategy. Optim. Methods Softw. 1997, 8, 25-51. [CrossRef]

45. Bodon, E.; Del Popolo, A.; Luksan, L.; Spedicato, E. Numerical Performance of ABS Codes for Systems of Nonlinear Equations; Technical
Report DMSIA 01/2001; Universita degli Studi di Bergamo: Bergamo, Italy, 2001.

46. Ziani, M.; Guyomarc’h, F. An autoadaptative limited memory Broyden’s method to solve systems of nonlinear equations. Appl.
Math. Comput. 2008, 205, 202-211. [CrossRef]

47. Kelley, C.T.; Qi, L.; Tong, X.; Yin, H. Finding a stable solution of a system of nonlinear equations. J. Ind. Manag. Optim. 2011,
7,497-521. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/355934.355936
http://dx.doi.org/10.1080/10556789708805664
http://dx.doi.org/10.1016/j.amc.2008.06.047
http://dx.doi.org/10.3934/jimo.2011.7.497

	Introduction
	Metaphorless Optimization Algorithms
	Jaya Algorithm
	Enhanced Jaya Algorithm
	Rao Optimization Algorithms
	Best-Worst-Play Algorithm
	Max–Min Greedy Interaction Algorithm

	GPU Parallelization of Metaphorless Optimization Algorithms
	Principles of CUDA Programming
	Methodology Used for GPU-Based Parallelization
	GPU-Based Acceleration of the Jaya Optimization Algorithm
	GPU-Based Acceleration of the Enhanced Jaya Algorithm
	GPU-Based Acceleration of the Rao Optimization Algorithms
	GPU-Based Acceleration of the BWP Algorithm
	A Novel GPU-Based Parallelization of the MaGI Algorithm

	Computational Experiments
	Experimental Setting and Implementation
	Hardware Used in the Computational Experiments
	Test Problems

	Results and Discussion
	Conclusions
	References

