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Abstract: Due to the limited availability of fault samples and the expensive nature of marking fault
samples in Electric Multiple Unit (EMU) gearbox monitoring data, a study was conducted to simulate
the degradation process of key components in the CRH5 gearbox using rigid–flexible coupling
dynamics. Vibration acceleration data from the simulation were utilized to create a six-dimensional
hybrid feature domain representing the degradation process. By leveraging the capabilities of the
Hidden Markov Model (HMM) for handling hidden transitive probabilities in temporal data and
Gated Recurrent Unit (GRU) for addressing long-distance and high-dependence temporal data, a
GRU-HMM fault prediction model was developed. This model was validated using monitoring
data and the six-dimensional hybrid feature domain from the CRH5 gearbox and compared against
actual maintenance records. The findings indicated that the GRU-HMM fault prediction model can
effectively recognize the degradation patterns of multiple components, offering higher accuracy in
fault prediction compared to traditional models. These research outcomes are expected to optimize
EMU maintenance schedules based on usage conditions, enhance EMU utilization rates, and reduce
operational and maintenance costs, thereby providing valuable theoretical support.

Keywords: EMU; gear box; GRU-HMM; dynamics simulation; fault prediction

1. Introduction

As an important part of the traction transmission system, the gearbox affects the safety
and stability of the Electric Multiple Unit (EMU). The components within the gearbox are
subject to diverse loads, resulting in different types of malfunctions. Hence, analyzing
operational data from the gearbox and anticipating potential failures are essential for
ensuring the operational safety of the EMU.

The traditional method of mechanical system fault diagnosis involves using fault
samples with label information to construct a fault diagnosis model for rotating machinery
gearboxes, decomposing the complex vibration signals into modal functions, and analyzing
the single modes so as to reflect the local characteristics of non-smooth signals [1–3].
This method of modal decomposition is characterized by the instantaneous identification
of features but requires a large amount of data to produce effective results [4–6]. With
the development of artificial intelligence, deep learning methods have become the main
research direction of current fault diagnosis due to the advantages of efficient and powerful
feature extraction, and methods of deep learning mainly include support vector machines
and neural network algorithms [7–10]. The support vector machine still remains effective
when the data dimension is larger than the number of samples, and it excels at solving
nonlinear problems. However, SVM is sensitive to noisy data, not applicable to multi-class
classification problems, and cannot directly provide probability estimates [11–14]. Neural
networks have self-learning functions, can extract useful information from data through
learning, have the ability to find optimization solutions at high speed, and can quickly find
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solutions when dealing with complex problems. However, the training and development
of neural networks usually require a large amount of computational resources, which may
increase the cost [15–20].

In rail train fault diagnosis research, due to the difficulty of obtaining fault characteris-
tics from actual operation monitoring data, most scholars use accelerated life experiments
or dynamics simulation to obtain the fault characteristics of key components and use deep
learning algorithms to categorize and predict the fault characteristics [21,22]. Generally, the
frequency response function between acceleration signals is analyzed as a fault indicator
by establishing a dynamic model of the train or a specific component and analyzing the
impact of radial and axial vibration under different fault conditions [23,24]. Then, using an
RNN or CNN, normal and fault conditions are classified and recognized [25–28]. However,
in fault identification for EMU gearboxes, the complexity of the vibration response signal
components makes it difficult to extract the characteristic signals. Additionally, the high
cost of marking the fault samples through accelerated life experiments further complicates
the process. How to carry out accurate fault prediction and diagnosis of key components of
rolling stock through dynamics simulation and other cost-effective methods is the current
problem of fault prediction that needs to be solved in the field of rail transportation.

In summary, to solve the fault prediction problem of the scarcity of fault samples for
the EMU gearbox, this paper establishes a rigid–flexible coupling dynamics model of the
gearbox, taking into account the special characteristics of the CRH5 in the structure of the
gearbox and the completeness of the collected data. The focus is on studying the universal
joints, driving gear, and driven gears, which are the most frequent faults of the gearbox
system of CRH5, as the objects of the study. Based on the rigid–flexible coupling dynamics
model of the gearbox, the dynamics simulation of the whole life cycle degradation process
of the key components is carried out. Using the vibration and acceleration data of the
degradation process, a hybrid feature domain for the degradation of key components of
the gearbox is constructed. This approach addresses the problem of fault feature extraction
under the condition of scarcity of fault samples of the gearbox of the moving train. A fault
prediction model of the EMU gearbox based on GRU-HMM is proposed, which overcomes
the limitation of the traditional HMM regarding the input sequence length. This model
improves the fault prediction performance and improves the comprehensive identification
accuracy of the GRU-HMM fault prediction model by 15% compared to traditional HMM
and SVM fault prediction models. The research results improve the reliability of gearbox
failure prediction for EMU, improve the efficiency of EMU utilization, reduce the cost of
utilization and maintenance, and provide theoretical support for the transformation of the
maintenance mode into state repair. At the same time, it can also guarantee safe operation,
which has very important practical application value.

2. GRU-HMM Fault Prediction Model
2.1. Demand Analysis of GRU-HMM Fault Prediction Model

The transmission structure of the CRH5 is traction motor-universal shaft-gearbox, and
vibration acceleration and temperature data are collected simultaneously during operation.
The monitoring data capacity of one primary repair cycle is about 200,000 items, and the
data show time series characteristics, which are typical large-capacity and long-range
time series data. The Hidden Markov Model (HMM) is capable of modeling probability
distributions of time-series data, and the hidden state setting is well suited for multi-
component fault prediction studies. However, HMM has a limitation on the length of the
input sequence, has weak performance in dealing with dependencies over long distances,
and is prone to problems such as gradient vanishing and gradient explosion. Therefore,
the fusion of a Gated Recurrent Unit (GRU) with the HMM can solve the shortcomings
in the performance of the HMM and provide better access to the dependencies of long
sequence data, and its gating mechanism can also effectively solve the problems of gradient
vanishing and gradient explosion, which can effectively improve the accuracy of the fault
prediction model.
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2.2. Hidden Markov Fault Prediction Model

The HMM fault prediction model uses monitoring data and sets the initial model
parameters to maximize the conditional probability of the observed sequence using the
Baum–Welch algorithm [29,30]. The HMM fault prediction model can be formulated
as follows: λ = (π, A, B). It contains two state sets and three probability sets. On-site
research and literature analysis indicates that the most common reason for failure of the
CRH5 gearbox is universal joint and gear wear. Considering this characteristic, the HMM
fault prediction model is modeled as follows:

• The hidden state Q is defined as Q = {normal state, universal joint degradation, driving
gear degradation, driven gear degradation}, representing the hidden fault states of the
CRH5 gearbox; here, the hidden state N = 4.

• Observable state O, denoted as O = {o1, o2, . . ., oN}, where oi ϵ (v1, v2, . . ., vt), is a
dataset for monitoring the operating status of the CRH5. Here, observable state vt is a
feature vector capturing the data characteristics of the train running up to the moment
t under the four hidden states mentioned above.

• Initial vector π,

∏ = (π1, π2, π3, . . . , πN) =
C(i)

N
∑

S=1
C(s)

, πi = P(qi = si), 1 ≤ i ≤ N (1)

indicates the probability that the degraded state of the component occurs at the initial
time, where C(i) is the probability that the initial state is qi.

• State transition matrix A =
{

aij
}

N∗N ,

aij = P(qi+1 = sj|qi = si) =
Aij

N
∑

S=1
Ais

, 1 ≤ i, j ≤ N (2)

denotes the transfer probability of the gearbox component from state si to state sj.
• Confusion matrix B,

B =
{

bj(vi)
}

N∗M, bj(vi) = P(vi|qi = sj) =
Bij

N
∑

s=1
BIs

, 1 ≤ j ≤ N, 1 ≤ i ≤ M (3)

indicates the probability of occurrence of eigenvector vi in state si at train operating
moment t.

The HMM fault prediction model is based on the sequence O and the initial model
λ0 = (π, A, B). The parameters πi, aij, and bj(vi) are continuously improved and revalued
to obtain the new model λ = (π, A, B), bringing P = P(O

∣∣λ ) to a point of convergence.

2.3. GRU Updates the HMM Input State Vector

GRU, a type of Recurrent Neural Network, addresses the performance limitations of
the HMM in handling long-distance dependencies and excels in predicting time-series data.
Firstly, the gearbox operation data of the on-board monitoring system of the EMU are input
to the GRU as a training set for training, the result of the activation function of the GRU is
input to the HMM as the initial fault probability, and the results of the training of the GRU
are input to the HMM as the state transition matrix. In conjunction with the experimental
testing of the model, the number of hidden layers of the GRU network was set to 2. Due to
the large amount of input data, the number of GRU units used in each layer was set to 128.
The computational procedure for updating the input of the GRU to the HMM is as follows:

• Construct an initial failure probability output layer, using gearbox operation monitor-
ing data as training set, calculate the output conditional probability Pi ∈ [0, 1] for each
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fault type using the Softmax activation function. The output updates the initial vector
of the HMM,

Pi =
Vi

∑n
t=1 Vi

, i = 1, 2, . . . , n (4)

where Vi is the weighting factor for each fault type and n is the number of hidden
states in the gearbox.

• Calculate the reset gate, which calculates the amount of stage information to be
forgotten by the eigenvalues and fault type output probabilities from the previous
time step,

Rt = σ(XiVir + Ht−1Pir + br) (5)

where Rt denotes the reset vector; Xi denotes the fault eigenvalue; Ht−1 denotes
the hidden state of the fault type at the previous time step; br denotes the weight
parameter; and σ is a sigmoid function with the value range of (0,1).

• Calculate the intermediate state values and calculate the proportion of stage infor-
mation propagated by the quantity product of the reset vector and the fault output
probability,

Ht = tanh(XiVI + (Rt ⊙ Ht−1)Pi + bh) (6)

where Ht denotes the intermediate state value and bh denotes the weighting parameter.
• Calculate the update gate, which calculates the amount of stage information to be

retained by the fault characterization value and the fault type output probability from
the previous time step,

Zt = σ(XtViz + Ht−1Piz + bz) (7)

where Zt denotes the update vector and bz denotes the weight parameter.
• Calculate the output value, which is used as the state transition matrix to update the

parameters of the HMM,

Ht = Zt ⊙ Ht−1 + (1 − Zt)⊙ H̃t (8)

where Ht denotes the output state vector at time t.

2.4. GRU-HMM Fault Prediction Model Algorithm Flow

The algorithm flow of the GRU-HMM fault prediction modeling algorithm for the
EMU gearbox is shown in Figure 1.
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(1) Perform wavelet de-noising and normalization on the operation monitoring data
samples O = {o1, o2, . . ., oN} and the degradation feature sets F = {f 1, f 2, . . ., fN} of each
component to determine the training and testing sets.

(2) Define the HMM hidden state n = 4 and initialize the parameters π0, a0, and b0(v0).
(3) Construct the GRU network model, set the number of hidden layers, M = 4. The

number of GRU units in each layer, u = 128.
(4) Input the training set, optimize the network weights and parameters through

iterative training, and find the optimal prediction step size and each parameter.
(5) Output the GRU training results to update the HMM parameters πi, aij.
(6) Define the forward variable αM(i),

αt(i) = P(o1, o2, . . . , ot, qt = si|λ ), 1 ≤ i ≤ N (9)

(7) Define the backward variable βM(i),

βM(i) = P(ot+1, ot+2, . . . , oT , qt = si|λ ), 1 ≤ i ≤ N (10)

(8) Perform training on the parameters of the Baum–Welch algorithm. Define the
variable γt

(n)(i), denoting the probability of being in state qi at moment t. Define the
variable ξm

(n)(i,j), denoting the probability of being in state qi at moment t and in state qj at
t + 1,

γt
(n)(i) =

αt(i)βt(i)
N
∑

i=1
αt(i)βt(i)

(11)

ξt
(n)(i, j) =

αt(i)αij(ot+1)βt+1(j)
N
∑

i=1

N
∑

j=1
αt(i)αij(ot+1)βt+1(j)

(12)

(9) Update the HMM model parameters πi, aij, and bj(vi) again. If the values of πi, aij,
and bj(vi) have converged, the algorithm ends; otherwise, go back to (5) to continue the
iteration as follows:

πi =

N
∑

n=1
γt

(n)(i)

N
(13)

aij =

N
∑

n=1

T−1
∑

t=1
ξt

(n)(i, j)

N
∑

n=1

T−1
∑

t=1
γt(n)(i)

(14)

bj(vi) =

N
∑

n=1

T−1
∑

t=1,o(n)n=vk

γt
(n)(i)

N
∑

n=1

T−1
∑

t=1
γt(n)(i)

(15)

(10) Output model λ = (π, A, B), using the test set to output the failure probabilities
P = P(O

∣∣λ ).

3. Simulation Modeling of Dynamics for EMU Gearbox System

CRH5, incorporating French ALSTOM technology for manufacturing, is designed for
a maximum speed of 250 km/h. The biggest difference between the CRH5 and other EMUs
is the transmission system, which adopts the structure of a traction motor and universal
shaft-mounted gearbox, in which the universal shaft is connected to the traction motor and
the gearbox through the universal joints at the two ends; the structure of the CRH5 gearbox
is as shown in Figure 2.
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3. Simulation Modeling of Dynamics for EMU Gearbox System 
CRH5, incorporating French ALSTOM technology for manufacturing, is designed for 

a maximum speed of 250 km/h. The biggest difference between the CRH5 and other EMUs 
is the transmission system, which adopts the structure of a traction motor and universal 
shaft-mounted gearbox, in which the universal shaft is connected to the traction motor 
and the gearbox through the universal joints at the two ends; the structure of the CRH5 
gearbox is as shown in Figure 2. 

 
Figure 2. CRH5 gearbox structure. Figure 2. CRH5 gearbox structure.

To facilitate the subsequent dynamic simulation, the model is simplified by deleting
the upper and rear covers of the box as well as all bolts, nuts, and spacers, and the traction
motor is replaced by a bracket to optimize the hermetic structure of the gear, axle, and box.
The exploded view of the optimized gearbox modeling is shown in Figure 3.
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3.1. CRH5 Gearbox Rigid–Flexible Coupling Dynamic Modeling

The rigid–flexible coupled dynamics model is employed to analyze the vibration
characteristics of the universal joint, driving gear, and driven gears of the gearbox in the
normal state and fault state. This model can more accurately reflect the vibration signal
characteristics.
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3.1.1. Theory of Rigid–Flexible Coupled Dynamics

Universal joints and gears undergoing elastic deformation need to be interpreted in
terms of a relative deformation field, which must satisfy the boundary conditions of the
member, and the expression is then as follows:

u f 1 =
∞
∑

k=1
ak fk

u f 2 =
∞
∑

k=1
bkgk

u f 3 =
∞
∑

k=1
ckhk

(16)

where uf1, uf2, and uf3 denote the deformation components of the flexible body coordinates
(x1, x2, and x3); ak, bk, and ck are the coefficients with respect to time t, and fk, gk, and hk are
the basis functions of the deformed body.

The motion constraints of universal joints and gears need to consider elastic deforma-
tion. Their motion constraint equations are as follows:

C(q, t) = 0
Cqq = −Ct

Cq
..
q = −

[
Ctt +

(
Cq

.
q
) ..
q + 2Cqt

.
q
] (17)

where C is the constraint equation; q,
.
q,

..
q are the velocity, position, and acceleration vectors

of the flexible body; Cqq is the coordinate velocity of the flexible body; and Cq
..
q is the

acceleration of its motion.
The CRH5 gearbox rigid–flexible coupled dynamics system is connected by constraints

and force elements, and the dynamics equations of the system are as follows:

Mi ..
qi
+ CiT

qi λ = Qi
e + Qi

V , i = 1, 2, 3 (18)

where M is the inertia matrix of the gearbox; λ is the Lagrange operator; Qe is the general-
ized external force vector; QV is the generalized inertia force vector related to the velocity
quadratic; and i denotes the flexible body components, i.e., the universal joints, driving
gear, and driven gear.

3.1.2. Working Environment and Model Setup

The 3D model of the CRH5 gearbox is imported into ADAMS, and the material and
mass properties of the solid unit are defined to realize multi-rigid body dynamics modeling
of the CRH5 gearbox. Since it is necessary to analyze the vibration characteristics of the
gearbox universal joints, driving gear, and driven gears in normal and fault states, the
research object is softened to establish a rigid–flexible coupling dynamics model. The entire
rigid–flexible coupled dynamics simulation model of the CRH5 gearbox is composed of
three flexible bodies, including universal joints, the driving gear, and driven gears, and
eleven rigid bodies, including the gearbox case, bushings, axles, and connecting shafts. The
six bearings in the gearbox are modeled using the Adams Machinery module in ADAMS.
The gearbox case and axle take one vertical degree of freedom to characterize the wheel–rail
excitation; the rest of the components take three degrees of freedom in the longitudinal,
transverse, and vertical directions; the whole system contains 38 rigid and flexible degrees
of freedom.

The View Flex module of ADAMS can generate flexures, but the generated flexures
are only oriented to simpler components, and for complex components such as gears their
accuracy is greatly reduced, which is not suitable for research needs. Therefore, by using
ANSYS to divide the cross joints and gears into unit meshes that satisfy the calculation
accuracy, performing rigid treatment at the connection of components as connection nodes,
saving the modal analysis calculation results into .mnf format files, and importing the com-
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ponents into ADAMS for further parameterization, the rigid–flexible coupling dynamics
model of the CRH5 gearbox is constructed.

3.2. CRH5 Gearbox Rigid–Flexible Dynamics Model Contact Force Setting
3.2.1. CRH5 Gearbox Rigid–Flexible Coupling Dynamic Modeling

Using ADAMS for CRH5 gearbox rigid–flexible coupled dynamics modeling, the cross
shaft and follower shaft of the universal joint, as well as the normal contact force of the
active and follower gears, can be calculated by the impact function method. The impact
model equates the meshing contact process as a nonlinear spring-damping model based on
the depth of penetration, and the magnitude of the contact force is directly proportional to
the depth of penetration and the contact stiffness. The function expression is as follows:

Fn = K × δe + step(δ, 0, 0, dmax, Cmax)
dδ

dt
(19)

For the tangential contact force, the Coulomb friction method is used to calculate the
force, whose magnitude is proportional to the positive pressure and whose direction is op-
posite to the direction of the relative slip velocity, with the following functional expression:

Fs = −Fn × step(vt,−VS,−1, VS, 1)× step(ABS(vt), VS, fst, Vd, fdy) (20)

3.2.2. Contact Force Parameter Setting

According to the analysis of domestic and international studies [31,32], the parameters
are set as follows:

• Modulus of elasticity E. Reflecting the stiffness of the material during elastic deforma-
tion, E = 2.07 × 1011.

• Poisson’s ratio µ. Reflecting the coefficient of transverse deformation of the material
in one direction, µ = 0.3.

• Contact coefficient K. Related to the shape and material properties of the contact
surface, it is calculated according to Hertz contact theory, K = 1.29 × 106.

• Contact index e. Reflecting the degree of nonlinearity of the material and calculated
according to the Hertz contact theory, e = 1.5.

• Damping coefficient C. Reflecting the energy loss when objects collide, empirically, C
= 10.

• Gear cutting depth d. Empirically, d = 0.1 mm.
• The coefficient of kinetic friction fdy = 0.05, the kinetic slip velocity vd = 10 mm/s, the

coefficient of static friction fst = 0.08, and the static slip velocity vs = 1 mm/s.
• According to a related study [33], load-bearing loads and line excitation curves are

incorporated at the axle.

3.3. Feasibility Testing

The motor input time is 60 s and the angular velocity is 0–18,000 d/s. The gear meshing
force curve is shown in Figure 4. According to related research [34], the bevel gear meshing
force is about 25 KN under an approximate working condition; the simulation results are
consistent with this measurement.

Then, the monitoring data of a particular train CRH5 from 9 June 2021 18:08:08 to
18:27:43 is selected for simulation. Compare the trend of the simulation results with the
actual monitoring results. The traction motor angular velocity input curve during this time
period is shown in Figure 5.

The vibration data from the online monitoring system of China Railway will be
preprocessed, and the Root-Mean-Square (RMS) of the time-domain vibration acceleration
every 5 s will be displayed as the time-domain characteristic value. After calculating the
RMS of the simulated time-domain vibration acceleration and comparing the time-domain
characteristic value of the actual operation, it is found that the general trends of the two
coincide with each other. The actual and simulation comparisons are shown in Figure 6.
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The frequency-domain vibration acceleration of the simulation is obtained using
fast Fourier transform. The same treatment as the time-domain vibration acceleration
is compared with the actual vibration frequency-domain eigenvalues, and the general
trends of the two are found to match. The simulation and actual comparisons are shown in
Figure 7.
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Through the above analysis, the results of the CRH5 gearbox dynamics simulation
model are basically consistent with the actual operation data, indicating the feasibility of
this dynamics simulation model.

4. CRH5 Gearbox Degradation Feature Extraction and Analysis

Fault prediction of CRH5 gearbox key components requires the degradation char-
acteristics of the key components over their full lifecycle to improve the accuracy of the
prediction. Therefore, it is necessary to simulate the degradation process of key compo-
nents using dynamics simulation, extract their vibration acceleration signals, calculate the
vibration eigenvalues at each stage of the full lifecycle, and use the vibration eigenvalues
and operation monitoring data to predict potential failures of key components.

4.1. Transient Fault Simulation and Deep Learning of Critical Component Degradation Processes

To accurately describe the degradation process of the key components of the CRH5 gear-
box, this study utilizes the transient process at the key stage of component degradation
for dynamics simulation, extracts the time-domain vibration acceleration signals at the
key stage of component degradation, and trains the degradation characteristics of the key
components over the whole life cycle using deep learning.

Taking the driving gear as an example, according to the relevant literature and field
research [35–37], the degradation process of the gear is found to be driven by pitting and
spalling caused by impact-type failures, leading to the uniform wear state characteristic of
stable-type failures. Figure 8 shows a schematic diagram of the key stages of degradation
such as pitting, spalling, and wear of a single tooth of the driving gear. After remodeling
the degradation critical stage, it is imported into ANSYS for meshing and generating a
flexible body. The new flexure is imported into ADAMS to replace the normal state driving
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gear and a dynamic simulation is performed. Its time-domain vibration acceleration signal
is extracted for training.
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Since the degradation process of parts is time-sequential and there is a causal rela-
tionship between adjacent degradation stages, the training of each piece of transient fault
simulation data can also be carried out using the GRU-HMM model proposed in this
paper, but the model is only carried out to the initial vector update stage. A convergence
optimization function F needs to be added to the GRU for gear degradation trend training,

F = θ − β∇θ∑Ti∼p(T) LTi ( fθi ) (21)

where f is the convergence function, θ is the model update gradient after training a set of
tasks, β is the step size of the gated neural network, and LTi ( fθ) is the loss of the function
after the task Ti.

The training objective of GRU is to minimize the loss; the objective function and the
loss function are as follows:

min
θ

∑Ti∼p(T) LTi ( fθi ) = ∑Ti∼p(T) LTi ( fθ−β∇θ LTi
( fθi

)) (22)

LTi ( fθ) = ∑xj ,yj∼Ti

∥∥∥ fθ(xj)− yj
∥∥∥ (23)

where xj denotes the jth data and yj denotes the relative predicted data.
Taking the driving gear at 1500 rpm as an example, the time-domain vibration accelera-

tion of the normal state and three degradation state simulations are shown in Figure 9. After
training the GRU-HMM model, the time-domain vibration acceleration of the driving gear
at 1500 rpm operating conditions for the whole life cycle is shown in Figure 10. The training
model for the full lifecycle of degradation was validated using the gearbox dataset from
Southeast University, comparing the relevant literature and EMU on-board monitoring
data, which proved that this method is feasible [38,39].

After remodeling the critical degradation stages of the universal joints, driving gear,
and driven gears, the time-domain vibration acceleration at 500 rpm intervals from 0 to
3500 rpm are calculated separately for each component. These will be used in the construc-
tion of the hybrid feature domain.
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4.2. Constructing Hybrid Feature Domains

The hybrid feature domain is constituted with time-domain feature metrics, frequency-
domain feature metrics, and energy distribution after wavelet packet decomposition. The
time-domain and frequency-domain feature metrics are shown in Table 1.
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Table 1. Time-domain and frequency-domain vibration characterization metrics.

Designation Expression (Math.) Designation Expression (Math.)

RMS
Xrms =

√
N
∑

N=1
x2(n)

N
Pulse index I = max|x(n)|

x

Margin index L = max|x(n)|
Xrms

Gravity frequency
Fc =

N
∑

n=1
fn ·s(n)

N
∑

n=1
s(n)

Kurtosis index
K =

N
∑

n=1
[x(n)−x]

4

(N−1)σ4
x

RMS frequency
Fr =

√√√√√ N
∑

n=1
f 2
n ·s(n)

N
∑

n=1
s(n)

where x(n) is the time-domain sequence of the vibration signal, x is the mean value of x(n), s(n) is the spectrum of
the signal x(n), and fn is the frequency value of the nth spectral line.

Wavelet packet decomposition is a time-frequency domain feature extraction algorithm
that is able to observe frequency information in a small area of the frequency domain. Let
sj,k(i) be the reconstructed signal of the kth band of the jth layer obtained after wavelet
packet decomposition of the original signal; then, its corresponding energy Ej,k is as follows:

Ej,k =
∫ ∣∣∣sj,k(t)

∣∣∣2dt =
N

∑
i=1

∣∣∣sj,k(i)
∣∣∣2 (24)

where N is the length of the signal, k is the ordinal number of the sub-bands of the wavelet
packet in layer j, and the number of sub-bands is M = 2j. Ej and Wj are the energy and
eigenvectors of each sub-band in layer j.

Ej =
M−1

∑
k=0

Ej,k (25)

Wj =

[
Ej,0, Ej,1, . . . , Ej,M−1

]T

Ej
(26)

Setting the wavelet packet decomposition layer to 3, W3 is an eight-dimensional vector,
which, together with the six-dimensional time-frequency domain feature metrics described
above, contributes to a fourteen-dimensional hybrid feature domain.

4.3. Hybrid Feature Domain Sensitivity Analysis

Taking a 1500 rpm working condition as an example, there are 3000 sampling points of
vibration acceleration in the normal state and degradation process of the key components
of the gearbox, and every 100 sampling points of each state type are intercepted as a
sample, for a total of 30 samples for each state type. The six characteristic indexes in time
and frequency domains are calculated, respectively, and, after normalizing the calculation
results, the comparison diagrams of normal state and degradation positions are shown
in Figure 11. Among them, the RMS, kurtosis index, and RMS frequency have better
sensitivity to component degradation, but they cannot be accurately differentiated for
fault location.

The wavelet packet decomposition feature indexes of 30 samples for each state are
calculated, and the feature indexes are compared in Figure 12. Among them, W(3,3), W(3,4),
and W(3,7) are more sensitive to degradation and can be effectively separated from different
locations by combining the RMS, kurtosis index, and RMS frequency. Therefore, these six
feature indicators are selected to construct a six-dimensional hybrid feature domain. The
remaining feature indicators with low sensitivity are eliminated.
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Figure 12. Comparison of wavelet packet decomposition feature metrics. (a) W(3,0); (b) W(3,1);
(c) W(3,2); (d) W(3,3); (e) W(3,4); (f) W(3,5); (g) W(3,6); (h) W(3,7).

The full lifecycle degraded hybrid feature domain of CRH5 gearbox key components
is set in the preprocessing stage of the GRU-HMM fault prediction model. Before fault
prediction, the operation monitoring data are noise reduced and the six-dimensional
hybrid feature domain is calculated. The RMS, kurtosis index, and RMS frequency during
operation are compared with the full lifecycle degradation hybrid feature domain to
determine the initial probability of failure π. Then, the eigenvalues of W(3,3), W(3,4), and
W(3,7) are used to determine the location of the hidden failure, and the initial probability
parameter is updated by the GRU to perform the failure prediction.
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5. Instance Verification
5.1. Source of Experimental Data

The verification data come from the operation monitoring data of a CRH5 within
30 days before advanced repair in an EMU depot of China Railway. This CRH5 had
undergone a life-critical replacement of the driving gear and driven gears of the gearbox
system during this advanced repair. Thus, this dataset has better verification for GRU-
HMM fault prediction and hidden fault judgment.

Because of the large number of operational monitoring data entries, the low-speed
monitoring data resulting from transitions or waiting were deleted, and the monitoring
data for every 48 h were used as a set of samples, totaling 15 sets of samples. Wavelet
packet noise reduction was applied to all sample data, using the first ten sets of samples as
the training set and the last five sets as the test set for fault prediction of the CRH5 gearbox.

5.2. Verification of GRU-HMM Fault Prediction Model

The HMM initial vector, state transfer matrix, and confusion matrix are first calculated
from the training set with the following values:

π = [0.782, 0.115, 0.06, 0.025, 0.018];

A =


0.9530 0 0.0118 0.0352

0 0.9855 0.0145 0
0.0097 0.0179 0.9470 0.0255
0.0822 0 0.0254 0.8925

;

B =


[

18.5143 0.1184
0.1184 0.0508

] [
654.462 4.5942
4.5942 0.0551

]
[

526.172 1.82
1.82 0.0967

] [
569.049 −8.9019
−8.9019 0.4765

]


The hybrid feature domain is substituted into the GRU for feature fusion, and the
initial vectors and state transfer matrices are updated. The log-likelihood probabilities of
the initial vector updates for each hidden fault type are shown in Figure 13. Where the log-
likelihood probability of the driving gear increases at increasing speed levels, especially at
high speeds, the risk of failure of the driving gear increases. The log-likelihood probability
of the universal joint has the highest risk of failure at moderate speeds. The log-likelihood
probability of the universal joint has the highest risk of failure at moderate speeds. The
log-likelihood probability of the driven gear is higher at lower speeds, decreases with
increasing speed, and then increases again at higher speeds, indicating that the risk of
failure of the driven gear is higher at low- and high-speed operations.
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The updated initial vectors and state transfer matrices are substituted into the GRU-
HMM for training. The probability distribution of hidden states is calculated using the test
set, and the results are normalized to obtain the fault prediction results for each type of
failure mode. The results of the velocity–hidden state distribution for one of the sample
sets of the test set are shown in Figure 14. The probability of hidden failures of the driving
gear and driven gears is higher from the figure. Through the maintenance records of the
EMU undergoing advanced repairs in the manufacturing plant, comparing the replaced
gear sets, it is proven that the predicted results match the actual results, and the feasibility
of the GRU-HMM fault prediction model is demonstrated.
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5.3. Comparative Analysis

To verify the advantage of the proposed fault prediction method in terms of its fault
identification accuracy, the traditional HMM and SVM diagnostic models were compared
for the prediction of EMU gearbox faults. The recognition accuracies of the four degraded
positions are shown in Table 2. The recognition accuracy of GRU-HMM was found to
be significantly higher than that of the traditional HMM and SVM methods. However, a
higher recognition time compared to the other two methods was observed due to the fact
that this method requires multiple trainings for the hybrid feature domain, initial vector,
and state transfer matrix.

Table 2. Comparison of recognition accuracy of various fault prediction methods.

Model Normal State Universal
Joint Driving Gear Driven Gear

Recognition
Times
(min)

GRU-HMM 0.988 0.9 0.975 0.975 7.5
HMM 0.912 0.622 0.683 0.725 2.3
SVM 0.925 0.883 0.875 0.875 3.1

6. Conclusions

• A model for predicting faults in the CRH5 gearbox has been developed by establishing
a dynamic coupling dynamics model and utilizing vibration acceleration data from
key components throughout the gearbox’s degradation process. By creating a six-
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dimensional degradation hybrid feature domain, the issue of extracting fault features
with limited CRH5 gearbox fault samples is addressed. The hybrid feature domains
obtained through dynamics simulation also have some limitations. For example, the
simulation data are not generalized enough to fully simulate the data fluctuations
caused by wheel–rail excitation during EMU operation, and the performance of the
model in the real environment cannot be fully evaluated. The accelerated life test of
key gearbox components will be utilized to compensate for the above shortcomings in
the subsequent study.

• The proposed GRU-HMM CRH5 gearbox fault prediction model combines the strengths
of HMM in handling time-series data with GRU to overcome limitations on input
sequence length, enhancing its ability to handle long-range dependency data. The
effectiveness of the GRU-HMM fault prediction model was confirmed using opera-
tional monitoring data from a CRH5 prior to advanced repair and actual overhaul
component records. Compared to traditional fault prediction models like HMM and
SVM, the combined accuracy of the GRU-HMM model was found to be 15% higher.

• Although the GRU-HMM fault prediction model improves the recognition accuracy, it
requires a large number of calculations in the preprocessing and training phases of the
monitoring data, resulting in time-consuming fault prediction. In the subsequent study,
the hyperparameters of the model will be adjusted to find the optimal combination
of parameters to reduce the computation time. Cross-scale fault prediction studies
of EMU gearboxes at a material scale and structural scale will also be considered,
combining the multi-physical field coupling effect of temperature–vibration–load and
performing comprehensive analysis to improve the accuracy of fault prediction.
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