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Abstract: Goal-conditioned Reinforcement Learning (RL) holds promise for addressing intricate
control challenges by enabling agents to learn and execute desired skills through separate decision
modules. However, the irregular occurrence of required skills poses a significant challenge to effective
learning. In this paper, we demonstrate the detrimental effects of this imbalanced skill (sub-goal)
distribution and propose a novel training approach, Classified Experience Replay (CER), designed
to mitigate this challenge. We demonstrate that adapting our method to conventional RL methods
significantly enhances the performance of the RL agent. Considering the challenges inherent in tasks
such as driving, characterized by biased occurrences of required sub-goals, our study demonstrates
the improvement in trained outcomes facilitated by the proposed method. In addition, we introduce
a specialized framework tailored for self-driving tasks on highways, integrating model predictive
control into our RL trajectory optimization training paradigm. Our approach, utilizing CER with
the suggested framework, yields remarkable advancements in trajectory optimization for RL agents
operating in highway environments.

Keywords: reinforcement learning; experience replay; self-driving; trajectory optimization

1. Introduction

Reinforcement Learning (RL) has made remarkable strides across various domains,
particularly in addressing sequential decision-making problems. Initial successes stemmed
from simulated game environments [1-3], primarily in discrete action spaces, marking
milestones in RL's development. Recent advancements have extended RL applications to
continuous action spaces, encompassing control tasks like manipulator robot control [4-6],
mobile robot navigation [7], and legged robot locomotion [8,9].

However, when applied to the domain of autonomous driving, RL faces formidable
challenges owing to the intricacies of traffic environments. Autonomous driving involves
navigating at high speeds while adhering to traffic regulations and responsively reacting to
nearby vehicles. This complexity has led to the adoption of goal-conditioned RL in path
planning approaches, aiming to separate decision making and trajectory generation [10-12].

A universal value function [13] serves as a standard framework for goal-conditioned
RL, particularly useful in environments with multiple sub-tasks [14,15]. However, the
irregular occurrence and dominance of certain sub-goals hamper optimal policy learning
in such settings, adversely impacting training performance. This imbalance in sub-goal
distribution is not unique to RL but is also pervasive in data-centric Artificial Intelligence
(AI) systems [16,17] and real-world applications. The highway environment exemplifies
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this imbalance, where the sub-goal of maintaining the current lane outweighs other sub-
goals, such as changing to an adjacent lane. This highlights the necessity of addressing this
imbalance to achieve high-performance agents.

Experience replay [18], applied in the deep Q-network algorithm [19], marked a signifi-
cant advancement in off-policy RL. The experience replay method stores transition samples
in a buffer, enabling the training of RL networks using uniformly randomly sampled
minibatches from this buffer. However, the uniform sampling method poses limitations
in effectively learning optimal policies, especially in environments characterized by im-
balanced sub-goal distributions across multiple goals. Addressing this challenge has been
the focus of research efforts aiming to enhance training efficiency within experience replay.
Prioritizing temporal difference error [20] and reinterpreting unsuccessful experiences
using methods like Hindsight Experience Replay (HER) [21] have shown effectiveness in
sparse reward environments, yet they struggle to fully resolve severe imbalances inherent
in practical applications.

To tackle this fundamental issue, we propose Classified Experience Replay (CER),
specifically designed for multi-goal tasks. CER optimizes sample selection by adjusting the
probability of choosing transitions associated with each sub-goal. Unlike traditional uni-
form sampling, CER’s mechanism strategically alters the selection probabilities, mitigating
the impact of imbalanced sub-goal distributions during training. Our empirical evaluations
show the detrimental effects of imbalanced sub-goal distributions on the training policy.
Through experimentation, we demonstrate that CER significantly improves sample effi-
ciency and enhances the trained agent’s performance in handling the challenges posed by
imbalanced sub-goal distributions in practical scenarios.

Another challenge in highway driving tasks lies in designing an effective reward
function. Unlike discrete success or fail task completion in game environments, the contin-
uous trajectory generation in driving tasks demands meticulous consideration at each step
due to multifaceted constraints. Designing an appropriate reward function for RL in such
constraint-rich environments proves challenging, often leading to overlapping reward com-
ponents and unexpected outcomes [22-25]. Achieving a comprehensive reward function
encompassing all objectives and regulations necessitates extensive iterative reward shaping,
a process prone to trial and error. Prior studies have attempted fine-grained rewards, aiming
to obtain an optimal policy of action for continuous control. Meanwhile, Model Predictive
Control (MPC) [26,27] optimizes vehicle control under constraints using objective functions.
However, despite yielding optimal solutions, the computational overhead for real-time
optimization in high-speed driving scenarios remains a challenge. Complex state space
models and longer horizon calculations escalate computational demands significantly.

This paper proposes a framework for achieving stable driving maneuver training
with reinforcement learning. To further promote efficient learning, we devise a two-stage
hierarchical structure for driving tasks. This structure separates decision-making and
trajectory generation modules, enabling online sub-goal generation conditioned for optimal
trajectory planning. Leveraging both CER and the hierarchical structure, the RL agent
exhibits enhanced training stability and adaptivity to evolving sub-goals. Moreover, we
develop an MPC-synchronized reward structure that eliminates the need for extensive
reward shaping. This hybrid structure allows concurrent computation of rewards alongside
MPC control signals, facilitating training by utilizing optimized references with reduced
reliance on manual crafting. Importantly, both the reward function and MPC are bypassed
during the evaluation phases, ensuring real-time performance without their computational
overhead. To evaluate our approach, agents are trained and tested in a complex gym
highway environment [28], showcasing the efficacy of the proposed RL-MPC hybrid
approach in navigating challenging highway scenarios efficiently. By demonstrating the
adaptability and efficiency of our framework in this robust testing ground, we pave the
way for the successful deployment of RL-based autonomous driving systems in dynamic
highway settings.

Our contributions in this paper are as follows:
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1.  We address imbalanced goal distributions in driving environments through a novel
off-policy training method called CER, enabling the RL agent to dynamically adapt to
changing sub-goals during driving scenarios.

2. We propose a two-stage hierarchical structure for driving tasks, separating decision
making and trajectory generation. This approach fosters efficient learning by facilitat-
ing online sub-goal generation tailored for optimal trajectory planning.

3. We introduce an MPC-synchronized reward structure that eliminates the need for
extensive reward shaping. This hybrid framework allows concurrent reward com-
putation alongside control signals, utilizing optimized references and minimizing
manual tuning.

The remainder of the paper is organized as follows: Section 2 presents an overview of
related works on the proposed method. Section 3 demonstrates the CER and the framework
for a highway driving task, while Section 4 presents the experimental environment and the
training results. Subsequently, we demonstrate the driving performance of the proposed
method. Our framework is then evaluated qualitatively and quantitatively compared with
other methods. Finally, Section 5 closes the paper with the conclusions.

2. Related Works

Many prior studies have employed RL for driving tasks, adopting diverse approaches
such as end-to-end architectures [29,30] and hierarchical methods [10-12]. End-to-end
approaches often oversimplify the complexity of driving tasks, encompassing multiple
decision, planning, and control layers in dynamic environments. For instance, ref. [29]
utilized Deep Deterministic Policy Gradients (DDPGs) [31] to generate control inputs like
steering and throttle from image inputs on a two-lane track. However, their assumption
of an environment with only the ego vehicle limited realism, as other vehicles were ne-
glected. A similar constraint applied to the use of Dueling Deep Q Networks (DQNs)
in [30], where the training and testing tracks were identical, hindering generalization.
Unfortunately, typical end-to-end approaches intertwine actions with decisions, making
maneuvers challenging to interpret and necessitating relearning from scratch when envi-
ronmental conditions change. In contrast, hierarchical approaches, as demonstrated by [10],
segregate the decision-making process from the trajectory generation process, mitigating
the drawbacks of the end-to-end paradigm. Such approaches employ multiple agents to
address various behaviors in driving situations.

In recent years, transformer [32] has emerged as a promising tool for training sequen-
tial actions, with several studies adopting them for self-driving tasks [33,34]. However, their
large network size and computational demands pose significant challenges, particularly in
real-time control applications such as autonomous vehicles.

Unlike end-to-end architectures, hierarchical approaches face fewer constraints on task
complexity. Here, the driving task is divided into decision-making and trajectory generation,
with RL used as the decision-making module to generate high-level commands, such as lane
keeping or lane changing. The motion planner is designed to capture vehicle dynamics using
a two-dimensional grid map planning method [10]. Alternatively, in [35], RL is used for both
decision making and motion planning with separate RL agents, initialized using the inverse
RL method [36]. Although this approach avoids rule-based methods, designing and shaping
rewards for each agent demands considerable time and effort.

In another study, ref. [12] employed a conditional variational autoencoder for high-
level decision making and an RL agent for control input generation based on the decision.
While RL excels at handling unseen scenarios, it falls short in reflecting changes in traffic
regulations and ensuring decision diversity. Moreover, limitations arise if speed limits
are not included in the observation during training, requiring the agent to be trained
anew. To address these concerns, some approaches leverage RL for decision-making and
rule-based models for trajectory generation, as exemplified by [11]. This method utilizes
a rule-based decision making module and generates control inputs from an RL agent,
specifying decisions more comprehensively in both lateral and longitudinal directions.
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However, the efficiency of designing and training multiple specialized agents with this
approach is questionable.

To tackle these issues, our research incorporates a straightforward rule-based decision-
making module to adapt to changes in traffic conditions and individual preferences. The
control input is generated by the RL motion planner, ensuring the adaptive management of
situations by utilizing concatenated state inputs from sub-goals and observations.

3. Classified Experience Replay and Driving Framework

Our goal is to enhance decision-making performance in sequential multi-goal problems
within an environment characterized by imbalanced goal distribution and to design a
motion planning and control framework for highway driving tasks. In this paper, we
focus on the off-policy RL method, which employs experience replay. In this section, we
introduce the motivation and method of our approach, as well as how we organized the
overall framework to apply it to multi-goal tasks.

3.1. Classified Experience Replay

In environments where the sub-goal ¢ € G is manually switched, the quantity of
transitions stored in the replay buffer varies depending on the distribution of sub-goals.
While a uniform distribution is typically used for sampling the minibatch, this approach
may lead to an uneven utilization of each sub-goal ¢ and its corresponding transitions,
thereby adversely affecting training performance. This effect is exacerbated in cases of more
imbalanced sub-goal distributions. To mitigate this issue, we propose classified experience
replay. Unlike conventional methods that use a single buffer, we employ multiple buffers,
each having the same dimensions as the sub-goal space G € R". Every transition is stored in
the buffer corresponding to its associated g. During policy updates, transitions are equally
sampled from all buffers, thereby mitigating the disproportionate sub-goal experience
during training and preventing the agent from becoming overly reinforced towards specific
goals. Figure 1 illustrates the process of storing and utilizing transitions in CER.
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Store transition
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Figure 1. Visualization of classified experience replay. Transitions are stored in the classified buffer
and uniformly sampled to train the agent, ensuring a balanced selection of transition samples.
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Sub-goal
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To evaluate the impact of an imbalanced sub-goal distribution on the agent’s training,
we devised a straightforward cliff walk scenario featuring two cliffs (see Figure 2). Here, the
agent aims to navigate from the start state S to the goal state G under different sub-goals:
“Straight”, “Up”, and “Down”. The optimal trajectory to the goal state varies depending on
these sub-goals, which are manually designated before each episode. The agent receives
rewards for reaching the goal, with specific rewards varying based on the sub-goal. Figure 2
depicts the reward settings in the environment for each sub-goal, with colors representing
the one-step reward received by the agent for stepping on each cell.

L ey Reward
L - () (ii) (i)
- - 111 +1
s N G | —100
- |l h. ) -1
= . i T —0s
[T T T am [ 171 [T —15

Figure 2. The twin cliff walk environment and reward configuration are depicted. The colored arrows
in the left figure illustrate the optimal paths for achieving each sub-goal. The reward maps for each
sub-goal are depicted as (i-iii).

To demonstrate the effect of sub-goal distribution on training performance, we trained
and tested the agent in 10 cases with varying probabilities for g;,.,,- The probability dis-
tribution is shown in Figure 3a. Initially, the probabilities of the sub-goals were uniform,
with p(gstraignt):P(§up):P(§down) = 1:1:1. Subsequently, we gradually increased the proba-
bilities of gstraignt and gup until reaching a ratio of p(gstraign:):P(§up):P(8down) = 10:10:1. We
compared the performances of agents trained using DQN and DON with CER. The total
buffer sizes used for DQN + CER were equivalent to the single buffer size used in DQN. A
test was considered successful only if the agent found an optimal path for any g, denoted
by O for optimal path, SO for sub-optimal path, and F for failure to reach the goal state.
Figure 3b presents the test results, with the optimality test indicating whether the agent
found an optimal path to the final destination under a given sub-goal. The agent trained
with DON frequently failed to reach the goal state as the probabilities became biased. In
contrast, the agent trained with DQN with CER consistently found the optimal path under
any sub-goal, irrespective of the non-uniformity in probabilities.

Probability distributions of sub-goal
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[ Z &
#5 3
= p(gdawn) = p(gup) p(gstraight) Dowm n “ m
(a) Probability of sub-goal distribution per episode (b) CER + DQN vs. DON trained result comparison

Figure 3. (a) shows the probability distribution of each sub-goal from case #1 to case #10. In case #1, the
distribution of three sub-goals is uniform, but as the cases progress, the distribution becomes biased
towards two sub-goals other than g;,,,,. (b) demonstrates the success or failure of the trained agent.
The symbol in each cell indicates whether the agent found a path from the start cell to the goal cell. O
denotes an optimal result, SO denotes a sub-optimal result, and F denotes failure in finding a path.



Appl. Sci. 2024, 14, 5213

6 of 19

3.2. Two-Stage Hierarchical Framework for Driving Task

In dynamic environments like highways, the task of determining where to drive and
executing detailed maneuvers is intricately linked. This inherent complexity in decision
making and control poses significant challenges. To address this, we adopted a two-
stage hierarchical framework with separate modules for decision-making and trajectory
generation. The overall structure of our framework, depicted in Figure 4, comprises the
decision-making and motion planning modules. For trajectory generation, we employ
an RL agent conditioned on the sub-goals determined by the decision-making module.
Additionally, we utilize MPC to generate reference trajectories during the training of the
motion planner. In this section, we demonstrate the proposed framework in detail.

}

Gym Highway < /—..-’—/l
Environment F

Guidance ego vehicle & n nearby vehicles -
A — Cloned

every Environment

m steps

m_

» DM module

MPC expert

behavior command | observatio i |
- 1

(o ————— |—X:—>¢ MP module | |

I

1

i . .
every ' Steering & Acceleration

msteps |

observation

I
]
MP module | |
AgentI Steering & Acceleration :
1

control inputs

Figure 4. Overview of the hierarchical framework, comprising the Decision-Making (DM) module
and the Motion Planning (MP) module. The behavior command determined by the DM module acts
as a sub-goal for the RL agent. Additionally, the MPC module regularly (represented as m steps)
computes trajectories, providing expert trajectory data for reward calculation.

3.2.1. Decision Making

In driving scenarios, decision-making can vary depending on the specific objectives. In
our research, we employed a Decision-Making (DM) module that determines the vehicle’s
actions, represented as its “turn lamp”. Our approach incorporates two primary considera-
tions: adhering to the center of the guidance lane and avoiding unnecessarily slow driving.
While these considerations adequately address highway driving situations, certain nuanced
decisions remain, such as determining when to accelerate or decelerate, the optimal timing for
lane changes, and adjustments to the steering angle for passenger comfort. These nuanced
decisions are difficult to address with a complex state machine and lack the necessary gener-
ality and robustness. Therefore, our DM module focuses solely on lane-changing decisions,
leaving other control decisions to be handled by the RL motion planner.

The DM module receives input in the form of a predetermined guidance lane and the
current state of the vehicle. Using odometry information, the DM module calculates the
Time-To-Collision (TTC) value between the ego vehicle and its surroundings at each time
step. Longitudinal TTC serves as a safety margin for lane changes, permitting lane-change
commands only when the measured TTC values exceed predetermined thresholds for
both the front and rear directions. These thresholds remain fixed throughout training.
The ego vehicle strives to adhere closely to the guidance target lane, but if a preceding
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vehicle is driving slowly, the agent must decide whether to overtake or maintain its current
lane. Guidance lanes are randomly generated in each episode, with a mandatory lane
change occurring every 800 m by designating a different target lane. Figure 5 illustrates the
operation of the DM module, depicting the ego vehicle as a yellow box and surrounding
vehicles as blue boxes. Additionally, specific designations are used: yellow lines represent
frontal TTC measurements (Figure 5b), orange lines represent rear time-to-collision mea-
surements (Figure 5b), and red lines represent designated global guidance (Figure 5c,d).
The DM module determines lane-changing actions based on the current TTC values and
the guidance path. In Figure 5d, for example, the ego vehicle transitions to the right lane to
overtake the vehicle ahead.

AN S SIS S S S

(c) Guidance lane (d) Behavior command - Change lane

Figure 5. Decision-making process visualization in simulation. (a) The simulation environment
showing multiple lanes and nearby vehicles. (b) Front and rear TTC values are depicted as orange and
yellow dashed lines. (c) The guidance lane is indicated by red lines. (d) The green stripe represents
the decision made by the ego vehicle. TTC values at (b) and the guidance lane at (c) determine the
sub-goal of the current state of the ego vehicle. As depicted in (d), the DM module can decide to
change lanes even when the vehicle is on the guidance lane if the TTC value is too small.

3.2.2. Motion Planning

The decision output from the DM module is transmitted to the RL agent by concatenat-
ing it with the observation, subsequently generating the control input of the vehicle. Given
the inherent uncertainty in driving scenarios, it is safer to constrain movements within an
expected range through decision making rather than directly generating a control signal.
The corresponding MDP formulation is presented below.

(1) State Space and Action Space: The state space comprises absolute and relative
observations. Absolute observation encompasses the ego vehicle’s odometric information
and the odometric information of four surrounding vehicles. Odometric information,
denoted as O; € R®, includes two-dimensional position and velocity information, as
well as the heading angle: Oy = [sx,sy, Ux, Uy, lp]{ Here, k represents the index of the
vehicle, with 0 assigned to the ego vehicle and 1, 2, 3, and 4 representing nearby vehicles
in clockwise order from the ego vehicle’s center of mass. Relative information includes
the time-to-collision value ttc for nearby states and the derived target lane liarget from
high-level decisions and the current ego vehicle’s position. The state accumulates four
consecutive decision time steps to ensure the Markov property. The action space a € R?
comprises the steering angle  and acceleration «, which collectively serve as the control
input for the system dynamics.

(2) Reward Function: The core component of the reward function involves comparing
the ego vehicle’s odometric states with those generated by synchronized MPC. To facilitate
MPC for vehicle control, we employed a linearized kinematic bicycle model as described
in [37]. In this model, we introduced the longitudinal distance d; between the ego vehicle
and the vehicle in front as an additional state variable. This incorporation enables us to
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impose a constraint on maintaining a safe front gap. MPC shares the same action space
and state space with an RL agent. The objective of the driving task is to follow a reference
velocity and desired lateral position while adhering to inequality conditions that satisfy the
vehicle’s dynamics.

Figure 4 illustrates the synchronization process of MPC, where decisions from the
DM module serve as the reference for the MPC trajectory, and the MPC trajectory, in turn,
serves as the reference for the RL reward function. This approach enables the trained agent
to achieve trajectory optimization performance comparable to that of an MPC controller
with reduced computation time. The MPC reference trajectory is computed at every m
step from the ego vehicle’s current state to ensure reference stability. These m steps of the
reference trajectory are calculated within a cloned environment and then transferred to
the original environment for reward calculation. In addition to the odometric reward, the
change of action is also factored in to prevent oscillation or abrupt changes in the control
input. The running reward is calculated as follows:

1 1
Trunning = 5(00 - Ogef)TH<00 — Ogef) + EaTRa, (1)

where H and R are diagonal matrices used to weigh each element. Another element of the
reward function involves checking the termination conditions, which occurs in the event of
collision or deviation from the traffic road of the ego vehicle, and is defined as follows:

()

—1, if collision occurs or the vehicle deviates from the track
Tterminal =

0, otherwise

Building upon the framework detailed in Section 3.2, we trained our motion planning
agent with our proposed off-policy training method, CER. Notably, CER is compatible with
a range of off-policy algorithms.

4. Experimental Results

In this section, we evaluate how the proposed framework enhances the performance
of trajectory optimization in dynamic highway settings. Our agent is trained in the gym
highway environment [28], featuring multiple lanes and nearby vehicles, requiring the
generation of appropriate control inputs based on odometry information for both its own
position and that of nearby vehicles. The objective in this environment is to maintain
a target speed of 30 m/s (108 km/h) while staying within the target lane and avoiding
collisions. The base RL algorithms are implemented using the open-source RL framework,
stable-baselines3 [38] with PyTorch, and the open-source toolbox do-mpc [39] is used for
the MPC calculation.

To assess the effectiveness of our training method and driving framework, we imple-
ment CER in TD3 [40], which is considered the state-of-the-art deterministic policy gradient
RL method. As the baseline method, we employ TD3 with the UVFA [13] structure for the
goal-conditioned policy.

In an ablation study, we explore the impact of the behavior policy in the training
process by integrating expert demonstrations with the stored transitions in the buffer.
Trajectories from the MPC controller are utilized for reward calculation, with these trajec-
tories also serving as expert demonstrations integrated into the training process, denoted
as CER[M]. While adhering to the network hyperparameters outlined in [40], additional
buffers are employed for our configuration. To ensure training stability, the reward scale is
clipped within the range of [—1, +1]. Each episode consists of 1000 steps, with termination
triggered if the agent deviates off track or collides with another vehicle.

This section is structured as follows: In Section 4.1, we assess whether CER enhances
training performance and compare the performances of TD3 in the highway environment
with and without CER. Section 4.2 provides a detailed analysis of trajectories and sub-goal
decisions, while Section 4.3 presents an evaluation of action diversity in the trained agent.
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We demonstrate the adaptability of our hierarchical module to changes in the decision-
making module in this section. Lastly, in Section 4.4, we conduct an ablation study to
examine the effect of the behavior policy on the CER training agent.

4.1. Training Performance Evaluation

We conducted training using TD3 both with and without CER on driving tasks to
evaluate whether CER enhances training performance. Figure 6a illustrates the average
episode length curve per 1000 episodes over the complete training steps, with a maximum
episode length of 1000 steps. Additionally, Figure 6b depicts the reward curves for the
baseline method and the proposed method. As shown in Figure 6b, the use of CER
contributes to enhanced training speed and performance.
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Figure 6. Reward curves of baseline method (TD3) and proposed method (TD3 + CER). The col-
ored areas on each graph represents the boundaries of each measure, with averages calculated per
10 episodes, while lines represent averages per 1000 episodes.

4.2. Driving Performance Evaluation

In this section, we demonstrate the superior task competency of our method compared
with the baseline method by showcasing several scenarios.

4.2.1. Case 1: Lane Keeping

In Figure 7, the maneuver of the proposed method and the baseline method is shown
within the same simulation environment, under identical maneuver conditions of nearby
vehicles. Despite this uniformity, noticeable discrepancies in the paths generated by our
method and the baseline method are observed. To assess the lane-keeping performance of
each path, Figure 8 zooms into a segment spanning from 1100 to 1500 m. The Center of the
Lane (CoL) represents the position where the vehicle should be located, determined by the
sub-goal output from the DM module referenced in Section 3.2.1. The positional deviation
is computed using the mean square error between CoL and the vehicle’s lateral position.
Based on the maneuver data depicted in Figure 8a, TD3 + CER demonstrates an average
deviation of 0.06 m and a maximum deviation of 0.07 m, accompanied by stable steering
angles as illustrated in Figure 8c. In comparison, TD3 exhibits an average deviation of
0.49 m and a maximum deviation of 0.7 m under similar conditions. Figure 8d highlights
the fluctuation of steering angles. Our method achieves minimal lane deviation through
smooth steering control inputs.
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Figure 7. Scenario 1, comparison of trajectories between TD3 + CER agent and TD3 agent.
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Figure 8. Case study of lane-keeping performance: Section from 1100 m to 1500 m in Scenario
1. (a,b) depict the lane-keeping maneuvers of our method and the baseline method, respectively.
(c,d) show the steering angles corresponding to the maneuvers in (a,b). “CoL” denotes the center
of the lane, representing the optimal position for the vehicle. The red rectangle in (a) and the green
rectangle in (b) denote the location of the vehicle at each labeled time step. In this lane-keeping
scenario, the suggested method demonstrates superior performance, exhibiting stable lane-keeping
maneuvers and steering angles, as evidenced by the stable steering angle changes.

4.2.2. Case 2: Lane Changing

In Figure 9, rapid sequential lane changes are observed. Between 1100 and 1300 m,
two-lane changes take place consecutively. The detailed trajectory is depicted in Figure 10,
where the proposed method adeptly follows the target lane, while the baseline method
experiences delay and failure during the lane change. Additionally, between 1400 and
2200 m, the baseline method fails to maintain the lane, indicating deficiencies in steering
control. Furthermore, within the desired speed range of 20 to 30 m/s, TD3 also struggles
with velocity control.
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Figure 9. Scenario 2, comparison of trajectories between TD3 + CER agent and TD3 agent.
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Figure 10. Case study of lane-changing performance: Section from 1100 to 1300 m in Scenario 2. The
lower label of the vehicle (rectangle box) indicates the time step, while the upper label indicates the
velocity of the vehicle at each time step. The maneuver of the suggested method in (a) follows CoL
while maintaining the desired velocity range. In contrast, the maneuver without CER, depicted in (b),
fails to follow CoL and exceeds the desired velocity range.

4.2.3. Case 3: Overtaking

In Figure 11, both mandatory and discretionary lane changes (overtaking) occur. The
gray areas denote the predetermined guidance lane, indicating mandatory lane changes
for the ego vehicle. To assess each agent’s performance in following sub-goals, Figure 12
shows the maneuvers of each agent with sub-goals at each time step. Both agents must
opt to change lanes to the right at 1000 m as a mandatory lane change. While our method
successfully follows the target lane, the TD3 agent deviates from the target lane after
1000 m. A closer examination of the overtaking action is provided in the section from
1100 to 1470 m in Figure 13, where the maneuver is depicted in both global Figure 13a,b
coordinates. In relative coordinates, the origin is set as the obstacle vehicle. Here, the agent
in our method executes an overtaking maneuver while maintaining a safe distance from
the obstacle vehicle.

I L R =—=TD3+CER
12 - ——TD3

Lateral position (m)

T |
o (2210 R =1y I v 2 S £=801_ _
| |
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
longitudinal position (m)

Figure 11. Scenario 3, comparison of drive paths for TD3 + CER agent and TD3 agent.
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Figure 12. Sub-goals and resulting paths of each agent are depicted in the figure. The yellow line
represents the sub-goal decisions, labeled as “left”, “right”, and “idle”. As the guidance lane changes
at 1000 m, mandatory lane changes must occur for both agents in (a,b). While a lane change occurs
in (a), it does not take place in (b).
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(a) TD3 + CER, overtaking maneuver at global coordinate. (b) TD3 + CER, overtaking maneuver at relative coordinate.

Figure 13. Case study of overtaking performance: Section from 1100 to 1470 m in Scenario 3. The
stability of the lane-changing maneuver is shown in (a). Examining the relative maneuver of the ego
vehicle to the obstacle vehicle during overtaking, illustrated in (b), the ego vehicle maintains a safe
gap, ensuring a safe overtaking maneuver.

4.3. Action Diversity Evaluation

To assess the adaptability of our trained agent, we evaluated the performance of our
best-performing policy from TD3 + CER using three different decision-making modules.
Each decision-making module generated distinct sub-goals within the same scenario,
allowing us to examine how effectively the motion planner responded to these sub-goals.

Figure 14 illustrates the vehicle trajectory influenced by three distinct decision-making
modules, representing different driving styles: original (blue), aggressive (red), and tolerant
(yellow). The variation in time-to-collision thresholds resulted in different behaviors within
identical situations. Table 1 displays the thresholds for each DM module, denoted by
TTCtront and TTCrear. Figure 14a presents the trajectories of each vehicle with line markers
and highlights the predetermined guidance lanes, represented by discrete gray areas every
800 m. The original decision-making module reflects the approach used during training.
The “tolerant” module employed higher thresholds for lane changes, while the “aggressive”
module exhibited a propensity for frequent lane changes. These DM modules and the
associated maneuver analyses were evaluated under identical conditions on a four-lane
highway with 50 nearby vehicles. Table 2 presents an analysis of the trajectories generated
by each DM module using an identical motion planner, including the number of lane
changes (N ) and the average velocity (vavg.)-

Figure 14c depicts the velocities of each vehicle within the preferred speed range
of 20 to 30 m/s. The “aggressive” approach involved frequent lane changes to maintain
speed, particularly when encountering slower vehicles ahead. Conversely, the “tolerant”
approach strictly adhered to the guidance, sometimes even decelerating. The dashed gray
line in Figure 14c represents the desired speed limit of 30 m/s. In instances where no
vehicle was in front, such as at 100 m in Figure 14c, the vehicles accelerated close to the
desired 30 m/s. Our best-performing policy demonstrated adaptive behavior, generating
diverse actions within the same scenarios based on the provided sub-goals.
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Table 1. DM parameters for different driving styles.
DM Parameters Original Aggressive Tolerant
TTCtont 7s 10s 3s
TTCrear 4s 8s 2s

Lateral
position (m)

(a) Comparison of trajectories over the entire section.

Table 2. Analysis results for different driving styles.

Analysis Original Aggressive Tolerant
Nic 9 6 8
Vavg. 25.2m/s 25.1m/s 224m/s
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(b) Distance from the vehicle in front.
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(c) Change in velocity over the entire section.

Figure 14. Action diversity evaluation with the TD3 + CER agent. Table 1 displays varying hyperpa-
rameters of the decision-making modules: “original”, “aggressive”, and “tolerant”. (a) demonstrates
different maneuvers made according to the varying decision-making modules. The distance and
velocity plots in (b,c) reveal more evident characteristics of each decision-making module, along with
the corresponding trajectories generated from each module. This result indicates that the trained MP
module agent does not overfit to specific DM modules (“original”) but adheres to sub-goals.

4.4. Ablation Study

In our MDP formulation, we integrated trajectories from the MPC controller as odom-
etry references in the calculation of the running reward. These trajectories were repurposed
as expert demonstrations during the training of our motion planner, with the expectation
of accelerating convergence in the training process. This variant, referred to as CER[M],
employed approximately 10% of each buffer for MPC demonstrations to mitigate the risk of
policy failures due to extrapolation errors [41]. Consequently, TD3 + CER[M] was trained
with two behavior policies: the agent itself and the MPC policy.

Figure 15 illustrates the reward graph of the proposed methods (TD3 + CER and
TD3 + CER[M]) alongside the baseline method (TD3). Notably, TD3 + CER[M] achieved
convergence much faster compared with TD3 + CER, indicating that CER can significantly
enhance the performance of the trained agent. Moreover, the judicious use of expert
demonstrations can expedite convergence speed during training.

In Figure 16, the maneuver and velocity changes of each algorithm’s best-performing
policy are visualized. Each algorithm generates distinct trajectories under the same scenario.
Notably, TD3 + CER[M], trained with MPC demonstrations, exhibits similar maneuver and
velocity changes to MPC during the evaluation period.

Table 3 provides a detailed comparison of each trajectory, focusing on trajectory
similarity to MPC and deviation from the target lane. The accumulated Euclidean distances
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between the MPC trajectory and the target line throughout the scenario are presented,
reflecting the trajectory similarity criterion. Additionally, the deviation from the target lane,
indicative of decision-making module responses at each time step, is analyzed. Among the
RL-based approaches, TD3 + CER[M] demonstrates the closest trajectory similarity to MPC
and the smallest deviation from the target lane. While exhibiting trajectory similarities
with the MPC motion planner, our proposed method achieves a significant reduction in
computational time during the scenario, approximately by a factor of one-tenth.

Table 3. Quantitative analysis in Scenario 4. Considering the sum of Euclidean distance to the target
lane as an indicator of how well the agent adheres to sub-goals, TD3 + CER outperforms the baseline
method. Furthermore, TD3 + CER[M] generates trajectories most similar to MPC, as evidenced by the
criteria of Euclidean distance to the MPC trajectory. Notably, the computation time of the RL agent is
significantly less than that of MPC, suggesting the potential of substituting MPC with an RL agent
trained using our proposed method.

Methods
Evaluation
MPC TD3 + CER[M] TD3 + CER TD3
Euclidean Distance
to MPC Trajectory 0.00 m 41720 m 117141 m 1530.63 m
Euclidean Distance 126 m 8.58 m 5.82m 47.89 m
to Target Line
Average
Velocity 27.53m/s 25.61m/s 22.63m/s 20.51 m/s
Number of
Lane Changes 1 ? 3 0
Computational Time 6.99 s 0.76 s 0.78's 0.72's

for 1000 Steps

[---TD3 + CER(ours) ——TD3 ——TD3 + CER[M](ours)]
700 -

Episode reward

0 1 2 3 4 5

Training step 07

Figure 15. Reward curves of baseline method (TD3) and proposed method with (TD3 + CER) and
without MPC expert demonstration (TD3 + CER[M]).
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Figure 16. Maneuver and velocity analysis with the addition of the MPC expert demonstra-
tion method. When the agent employs MPC demonstration, it trains to imitate the MPC’s policy
more straightforwardly.

We assessed the trained policy of each method across two-, three-, and four-lane high-
way environments, conducting 100 repetitions for each test. Success for each episode was
defined as the agent completing 1000 time steps without encountering forced termination
conditions (such as collision or deviation from the track). The success rate, representing the
number of successful cases out of the total cases, is presented in Table 4. Additionally, we
analyzed the average quality of maneuvers based on deviation and velocity, as outlined
in Table 5. Our method consistently exhibited the smallest deviations from the lane cen-
ter across all environments, while also maintaining velocity within the desired bounds.
Collision with other vehicles was the sole cause of failure. In the two-lane environment,
the absence of additional lanes made it challenging to overtake the slow-moving vehicles
ahead, necessitating more delicate acceleration control.

Table 4. Quantitative analysis: Success rate measured as the number of successful cases out of the
total cases. Out of 100 random road environment conditions, each with a corresponding number of
lanes, TD3 + CER[M] exhibits the highest success rate.

Methods
Domain
TD3 TD3 + CER[M] TD3 + CER
2-lane 53/100 95/100 94/100
3-lane 78/100 98/100 98/100

4-lane 72/100 96/100 92/100
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Table 5. Quantitative analysis of driving performance, including lane-following accuracy and

maintenance of desired velocity. Given that the target speed range is 30 m/s, TD3 + CER[M] shows

maintaining the most approximate value to the target speed. However, given the deviations from the

target lanes, TD3 + CER exhibits the smallest values. Notably, suggested methods are superior to

baseline methods in every evaluation criterion.

Method
Domain Evaluation
TD3 TD3 + CER[M] TD3 + CER
Avg. Deviation 031 m 0.12m 0.09 m
2-lane ng. Dev'iat‘ion 0.49 m 0.18 m 0.20 m
Min. Deviation 0.09 m 0.03m 0.03m
Avg. Velocity 19.36 m/s 24.61m/s 23.33m/s
Avg. Deviation 0.32m 0.11m 0.08 m
3lane Mfflx. Dev.iat.ion 0.99 m 0.21 m 0.28 m
Min. Deviation 0.11m 0.04m 0.02m
Avg. Velocity 20.87 m/s 26.87m/s 25.28m/s
Avg. Deviation 0.35m 0.10m 0.09 m
4-lane ME.iX. Dev.iat.ion 0.90 m 0.20m 0.23m
Min. Deviation 0.11m 0.06 m 0.02 m
Avg. Velocity 21.53 m/s 2797 m/s 2549 m/s

5. Conclusions

This paper has presented an off-policy RL training method to address environments

characterized by imbalanced sub-goal distributions. Our work demonstrates how incor-
porating CER into off-policy algorithms can significantly improve performance. The key
contributions and findings of this research are summarized as follows:

1.

Imbalanced Sub-Goal Distribution and CER Technique: In Section 3, we utilized
the twin cliff walk example to demonstrate how disproportional goal distributions
in multi-goal environments can adversely impact training efficiency and optimality.
Our adaptation of the CER technique to off-policy algorithms showed improved
performance compared with methods that do not incorporate CER, demonstrating
the validity of employing our method for multi-goal tasks. We adapt this approach to
highway driving scenarios in the subsequent section.

Hierarchical Framework for Highway Driving Task: We proposed a hierarchical
framework suitable for dynamic highway environments and trained a motion planner
using our suggested training method. By employing separate modules, our agent
proficiently generates control inputs across various scenarios without necessitating
re-training or transfer learning. This flexibility allows for the easy modification of the
decision-making module, empowering the agent to accommodate changes in traffic
regulations or individual driving preferences.

Simplifying the reward function by synchronizing the online MPC trajectory led
to two notable advantages: a more straightforward design of the reward function
and maneuvering capabilities of the RL-trained motion planner comparable to an
optimized MPC path planner, with computational demands reduced to less than
one-tenth of the original.

Discussions and Future Work: The incorporation of CER into the training of the
motion planner demonstrated substantial improvements in both sample efficiency
and performance. Our proposed method fosters the generation of uniform data in
the training process, departing from uniform sampling to yield optimal solutions.
Our method consistently outperformed other approaches without CER integration,
underscoring its efficacy in addressing tasks, even in continuous control problems
where traditional RL methods encounter difficulties in training.
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However, there are limitations to the proposed framework. As replay buffers are
defined independently for individual sub-goals, the method assumes that the sub-
goals are known in advance, necessitating some degree of prior knowledge of the task.
This dependency on predefined sub-goals could limit the method’s applicability in
scenarios where such prior knowledge is not readily available or where some sub-
goals may be added or removed. Despite necessitating multiple buffers, the overall
buffer capacity remains the same as that of a general single-experience replay buffer.
Consequently, our method is adaptable to various off-policy algorithms, offering
enhanced performance in multi-goal environments.

Ensuring safety in driving tasks is paramount. Incorporating additional techniques to
constrain undesirable control actions, such as oscillations, exceeding speed limits, and
executing safety maneuvers like emergency stops, can further enhance the robustness
and reliability of the driving task. This can be achieved by adding masking layers or
using constraint RL methods.

While our method demonstrates significant advancements, particularly in handling
imbalanced sub-goal distributions and improving training efficiency, our future work will
involve adding more safety-aware constraints for continuous control in driving tasks. These
enhancements aim to improve the robustness and applicability of our framework in diverse
and complex traffic scenarios.
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