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Abstract: A solar sail is a propellantless propulsion system that allows a spacecraft to use solar
radiation pressure as a propulsive source for planetary and deep space missions that would be
difficult, or even unfeasible, to accomplish with more conventional thrusters, either chemical or
electric. A challenging application for these fascinating propulsion systems is a heliocentric mission
that requires a displaced non-Keplerian orbit (DNKO), that is, a solar sail-induced closed trajec-
tory in which the orbital plane does not contain the Sun’s center of mass. In fact, thanks to the
pioneering work of McInnes, it is known that a solar sail is able to reach and maintain a family
of heliocentric DNKOs of given characteristics. The aim of this paper is to analyze the properties
of Mars-synchronous circular DNKOs, which have an orbital period matching that of the planet
for remote sensing applications. In fact, those specific displaced orbits allow a scientific probe to
continuously observe the high-latitude regions of Mars from a quasi-stationary position relative to
the planet. In this context, this paper also analyzes the optimal (i.e., the minimum-time) heliocen-
tric transfer trajectory from the Earth to circular DNKOs in two special mission scenarios taken as
a reference.

Keywords: solar sail; displaced non-Keplerian orbit; Mars exploration; optimal transfer trajectory;

preliminary mission design

1. Introduction

Solar radiation pressure is the physical phenomenon that enables the operation of solar
sails, a class of advanced propulsion systems for space navigation that convert sunlight into
propulsive acceleration without the need for propellant expenditure [1-3]. In particular,
photonic solar sails reflect photons coming from the Sun thanks to a large and thin mem-
brane coated with a highly reflective material (e.g., aluminum), while refractive [4,5] and
diffractive [6-8] sails exploit other optical phenomena such as refraction and diffraction
of light. Thanks to their intrinsic nature as propellantless propulsion systems, solar sails
are particularly suitable for carrying out long-term missions or covering trajectories that
require the continuous application of a steerable (but usually of small magnitude) thrust [9].

A category of heliocentric missions to which solar sails would be well suited is that
constituted by the generation and maintenance of displaced non-Keplerian orbits (DNKOs)
around the Sun [10]. They are two-dimensional, closed heliocentric trajectories that do not
contain the center of mass of the primary attractor of the solar sail itself [11,12] (i.e., the
Sun) and, for this reason, require a continuous propulsive acceleration to balance both the
(apparent) centrifugal and gravitational forces acting on the spacecraft. In this context,
it is interesting to recall that an approximation of a circular or an elliptical DNKO may
also be obtained by considering a sequence of Keplerian arcs patched by a set of suitable
(high-thrust-induced) impulsive maneuvers, as proposed first by McInnes [13] for a circular
orbit and then generalized by Caruso et al. [14] for a generic, elliptic trajectory.

The employment of a heliocentric DNKO is useful for monitoring high-latitude regions
of planets [15] (or generic celestial bodies) and it is an interesting potential option for
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many other mission applications, as discussed by McInnes at p. 25 of Ref. [16] and by
McKay et al. [10] in their useful and interesting survey paper published in 2011. Among
all the possible scientific applications, it is interesting to mention, for example, continuous
solar wind monitoring [17,18], real-time polar imaging and stereographic investigations
of a planetary surface [19-21], continuous communications with high-latitude regions,
and in situ observations of the planetary rings. That is the reason why so many studies
have dealt with the problem of reaching and maintaining DNKOs by means of a solar
sail-propelled spacecraft. In this context, Bookless and McInnes [12] proposed exploiting
solar sails to generate families of artificial libration points and displaced (periodic) orbits
around the Earth, while Gong et al. [19,22] analyzed the possibility of maintaining elliptical
DNKOs by means of a solar sail for planetary polar observation. In particular, Refs. [19,22]
investigated the relative orbit design and control methods for formation flight around an
assigned displaced orbit maintained by a spacecraft equipped with a classical (photonic)
solar sail. About ten years ago, Song et al. [21] analyzed solar sail displaced orbits in
Hill’s restricted three-body problem, while Ceriotti et al. [23,24] investigated the interesting
concept of a pole-sitter mission, in which the spacecraft is always above one of Earth’s
geographic poles to obtain the continuous observation of planetary high-latitude regions.
Finally, Heiligers et al. [25] analyzed the possibility of using a classical solar sail to generate
artificial equilibrium points and displaced periodic orbits around small bodies in the solar
system such as asteroids or binary asteroid systems. More recently, Bassetto et al. [26,27]
studied the performance of Zubrin’s magnetic sails [28-30] and Swartzlander’s diffractive
sails [6-8] in maintaining circular DNKOs of assigned characteristics, with applications in
a typical Earth-based mission scenario. From the point of view of the spacecraft dynamics
along a DNKO, station keeping has also been studied in the context of three-body problem
periodic orbits, which also suffer from deviations from nominal periodic behavior due to
unmodeled physics. In this respect, the interested reader can refer to Refs. [31-33].

In this paper, a scientific interplanetary probe equipped with a photonic solar sail
is required to trace a circular DNKO at an angular velocity equal to the mean motion of
Mars [16] so as to maintain a constant average phase shift with respect to the angular
position of the Red Planet along its heliocentric orbit. As part of Mars exploration missions,
it is worth mentioning the work of MacDonald et al. [34], who proposed an Earth-Mars
interplanetary communication relay in support of crewed missions to Mars. In fact, a Mars-
synchronous DNKO, with its revolution period matching that of Mars, would be useful
for remote sensing applications, allowing a scientific payload to continuously observe
the high-latitude regions of Mars from a quasi-stationary position relative to the planet.
Such a vantage point would offer unique possibilities to better understand some physical
phenomena of great scientific interest that are specific to high-latitude areas, such as the
existence of polygonal features, the occurrence of dust activities in the southern high-
latitude regions, the mechanism capable of generating the lobate features located at high
latitudes, or the origin of global-scale oscillations possibly due to waves in the atmosphere.
Analogous to what has been recently discussed by the authors in Ref. [35], this paper also
analyzes the rapid transfer trajectory from Earth to an assigned Mars-based DNKO as a
function of typical solar sail performance characteristics, which are selected consistently
with the propulsive requirements necessary for maintaining the target DNKO. In particular,
the mission scenario is studied by neglecting the uncertainties related to both the solar sail
optical parameters and the solar irradiance fluctuations [36-38].

This paper is structured as follows. Section 2 deals with the mathematical preliminaries.
In particular, it first recovers the well-known thrust vector model of an ideal solar sail, that
is, a flat solar sail with a perfectly reflecting coating, and then details the sail performance
required to maintain a circular DNKO of given characteristics. Section 3 graphically
illustrates the results previously presented and provides the distance of the spacecraft
from Mars as a function of a set of design parameters. Section 4 addresses the transfer
problem from the Earth to the circular DNKO, which is solved in an optimal framework by
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minimizing the total flight time, and shows the simulation results in two special scenarios
taken as references. The final section contains the concluding remarks.

2. Mathematical Preliminaries

In this section, we summarize the mathematical model for describing both the solar
sail-induced thrust vector and the propulsion system performance required to maintain
a heliocentric DNKO of assigned characteristics. The interested reader may find a more
exhaustive discussion about the arguments treated in this section by referring to McInnes’s
fundamental textbook on solar sailing [16] or to Wright’s book [39].

2.1. Thrust Vector Model of an Ideal Solar Sail

The propulsive acceleration vector provided by an ideal (i.e., flat and perfectly reflect-
ing) solar sail depends on its attitude relative to the Sun [16,39]. In particular, when the
degradation effects due to the space environment are neglected [40—42], the propulsive
acceleration vector a, can be written as

up:ﬁ% cos® a fi (1)
where B is the lightness number, that is, the ratio of the maximum propulsive accelera-
tion magnitude at a given distance from the Sun to the local magnitude of gravitational
acceleration; po ~ 1.3271 x 1011 km3/s? is the Sun’s gravitational parameter; r is the
Sun-spacecraft distance; i is the unit vector normal to the sail plane pointing outward
from the Sun; and a € [0, 71/2]rad is the sail cone angle, that is, the angle between the
Sun-spacecraft line and the direction of 7.

In particular, the lightness number  is the typical performance parameter of an ideal
solar sail and can be written as
21, A7

mepe

p= 2)
where I, ~ 1360.8 W /m? is the solar constant (i.e., the solar irradiance at the reference
distance r, £ 1au from the Sun), A is the surface area of the sail, m is the total mass
of the spacecraft (assumed to be constant), and c is the speed of light in vacuum. From
Equation (2), it turns out that, basically, the sail lightness number is inversely proportional
to the sail loading m /A, defined as the ratio of the spacecraft mass to the sail exposed

area [16,39].

2.2. Sail Performance Required to Maintain a Circular DNKO

Consider a heliocentric mission scenario in which a solar sail-based spacecraft traces a
DNKO designed to obtain continuous observation of Mars high-latitude regions.

With reference to the scheme in Figure 1, we introduce a perifocal reference system
T0(O; p, g, w), where O is the center of mass of the Sun, axis p is aligned with the eccen-
tricity vector of Mars heliocentric orbit (omitted in the figure for simplicity), and axis w is
parallel to the angular momentum of Mars orbit. Therefore, the plane (p, q) coincides with
the orbital plane of Mars in its motion around the Sun.

The heliocentric DNKO to be maintained is a circular trajectory of constant radius
p, which is centered on the point O’ belonging to axis w; see Figure 1. The plane of the
displaced orbit (i.e., the green disk in the previous figure) is parallel to the orbital plane of
Mars (i.e., the gray disk in the figure), and the distance between the two planes is denoted
by H, which is positive (or negative) if O’ belongs to the positive (or negative) semiaxis w.
Furthermore, the solar sail-based spacecraft travels along the circular DNKO at a constant
angular velocity w, which corresponds to the mean motion of Mars around the Sun, that
is, w £ / o/ ad ~ (0.5240 deg/day, where a ~ 1.5237 au is the semimajor axis of Mars
heliocentric orbit.
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of Mars p Mars orbit

Figure 1. Conceptual scheme of a heliocentric, circular DNKO with a displacement equal to H with
respect to the orbital plane of Mars (the gray disk in the sketch). The green disk indicates the plane
of the DNKO, which is covered by the spacecraft with a constant angular velocity w at a distance 4
from Mars.

In this way, the period of revolution of the spacecraft matches that of Mars, thus
allowing remote sensing applications of the high-latitude regions of the Red Planet to
be carried out. For an assigned value of angular velocity w, a circular DNKO may also
be equivalently characterized by the elevation angle v, that is, the angle between the
Sun-spacecraft line and the orbital plane of Mars, and the Sun-spacecraft distance 7, as it is
sketched in Figure 1. Note that the conversion from the pair {r, ¢} to the pair {p, H} is
given by the two simple equations

p=rcosy , H=rsiny 3)

while the reverse conversion is given by

r=1/p*+H? , 'y:arctan<I:> 4

The heliocentric motion of the solar sail-based spacecraft is analyzed in a spherical
reference frame Ts(O; 7, 0, 7v), with the origin S in the spacecraft center of mass and unit
vectors {p,, Py, P, } defined as

N kx#?
© PR

PN

pPr=

A

’ Py

(1>

~ 1=

ﬁrxﬁe (5)

where r is the Sun-spacecraft position vector and k is the unit vector of Mars orbital
angular momentum, that is, the direction of k is perpendicular to the orbital plane of
Mars. In particular, the position of the spacecraft is determined by three parameters,
namely, the radial distance 7, the azimuthal angle 6 € [0, 2 71) rad, and the elevation angle
v € [—m/2, /2] rad. With reference to Figure 2, 0 is the angle (measured counterclock-
wise) between p and the projection of vector r onto the (p,q) plane, while 7 is the angle
between the direction of r and the (p, q) plane. Note that the sign of y corresponds to the
(conventional) sign of the DNKO displacement H; compare Figures 1 and 2.
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Figure 2. Solar sail-based spacecraft in a spherical reference frame 75 and definition of angles 6 and
. The gray surface indicates the orbital plane of Mars.

As better detailed in Section 3.1, the solar sail-based spacecraft is outside the sphere
of influence (SOI) of Mars and, therefore, the perturbative effect of the planet can be
neglected [43]. Following the method detailed in [16] and looking at the scheme in Figure 3,
the balance between propulsive, gravitational, and centrifugal accelerations acting on the
spacecraft results in the following two scalar equations

,B—cos a sina = pw? siny (6)

,Bﬂ— cos’ & + p w? C(>S’y—‘u—O (7)

which describe the spacecraft equilibrium in a rotating reference frame along p, and p,,
respectively.

v’ / n
solar sail \

. \
nominal plane ) /

Sun

Figure 3. Sketch of the gravitational (yellow vector), propulsive (red vector), and centrifugal (green
vector) accelerations acting on the spacecraft during the flight along the DNKO.

Now, by substituting Equation (6) into Equation (7) and using Equations (3) and (4),
one obtains the following analytical result, which expresses the sail cone angle « as a
function of the triplet {p, H, r}, viz.

n = arctan<p Hr 2) (8)

B —rp
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while the required lightness number B is obtained from Equation (6) by using
Equations (3) and (4). In that case, the result is

1—7r p2 /a3
= cos® ®)
where « is given by Equation (8). Note that changing the sign of H (or, equivalently, of )
does not produce any change in the value of the required lightness number B, while it causes
the cone angle to change its sign. Therefore, by virtue of this symmetry, only the results
relating to positive 7y values are shown in the rest of this paper. The previous analytical
results can be considered as a specific application to a Mars-based mission scenario of the

general mathematical model discussed in [16].

3. Numerical Results

Using the mathematical model described in the previous section, the performance
required by the ideal solar sail is evaluated as a function of the desired characteristics of the
heliocentric, circular DNKO. In this context, Figure 4 shows the required values of {«, 5}
as a function of {p/a, H/a}.

In particular, Figure 4a is consistent with a low-performance solar sail (i.e., f < 0.05),
while Figure 4b is consistent with a medium/high-performance solar sail (i.e., § > 0.05).
For comparison with the performance of actually designed solar sails, the obtained lightness
number is just under 0.01 for the LightSail 2 [44] (i.e., B ~ 0.0098), Near-Earth Asteroid
Scout (NEA Scout) [45,46] (i.e., B ~ 0.0093), and Advanced Composite Solar Sail System
(ACS3) [47] (i.e., B ~ 0.0077) missions. Therefore, based on the classification made in this
paper, the aforementioned first-generation missions fall in the group of low-performance
solar sails.

0.1
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025 ) I .40 I I
0.016 | 0.08**20*‘**:**:* ‘*4‘* - F*T**
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Figure 4. Required values of {a, B} as a function of {p/a, H/a}. The gray areas correspond to the
envelope of the SOI of Mars. (a) Low-performance ideal solar sails. (b) Medium /high-performance
ideal solar sails.

Note that the gray areas in Figure 4 correspond to the envelope of all the spheres
of influence of Mars during its revolution around the Sun. In fact, the SOI of Mars is a
spherical region that moves in the interplanetary space following the Red Planet and with
a variable radius depending on the Sun-Mars distance. We can indeed express the radius
Rgor of Mars SOI as

- 1 \ 25
Rsor = pg " (10)
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where y , ~ 42,828 km? /s? represents the gravitational parameter of Mars and
Po = 1% ¢ cosv

is the Sun-Mars distance, ranging from a minimum of 1.3814 au to a maximum of 1.6660 au,
as a function of the planet true anomaly v (i.e., the angle between axis p and the current
Sun-Mars line).

For example, consider the two scenarios indicated in Figure 5. In particular, scenario
A is obtained with p = 0.9988404 and H = 0.01 4 (from which f ~ 0.1), while scenario B is
obtained with p = 0.999423 g and H = 0.005 2 (from which B ~ 0.05). Note that « ~ 71 deg
in both cases. These two possible cases (the former consistent with a high-performance
solar sail and the latter with a medium-performance solar sail) are used as examples in the
next sections.

0.012 -

0.01 |- - - M - -
0.008 #////L'

<

& 0.006 |

0004 ——-

0.002 S e

0 | |
o o oo

Q%7 QR
pla

Figure 5. Required values of {«, B} as a function of {p/a, H/a} for scenarios A and B, which are
consistent with a high-performance and a medium-performance ideal solar sail, respectively.

3.1. Evaluation of the Mars-Spacecraft Distance

The effectiveness of a scientific mission to monitor the high-latitude regions of Mars
depends on the distance d of the spacecraft from the planet; see the scheme in Figure 1.
Note that the monitoring of Mars polar region can be also obtained with a Keplerian orbit
with a suitable inclination. However, in that case, the observation of the high-latitude
regions of the planet is carried out only in a part of the spacecraft (planetocentric) orbit,
while a DNKO ensures continuous monitoring. By replicating the procedure described in
Ref. [27], in this section we quantify the Mars-spacecraft distance, showing that it depends
on four parameters, namely, the DNKO radius p, the DNKO displacement H, the true
anomaly v of Mars, and the point in the planetary orbit (described by the angle V) at which
the spacecraft and Mars have the same angular position in their (always parallel) planes
of motion.

For this purpose, consider the components of the Sun-spacecraft position vector r in
the spherical reference frame 7, that is

p cosf

[r]7, = |p sin® (12)
H
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where 6 is the angle between the projection of r into the orbital plane of Mars and axis p,
as it is sketched in Figures 1 and 2. The components of the Sun-Mars position vector in 7o,
instead, are given by

Pg COSV

[rcf]To = |pg sinv (13)
0

where p » is given by Equation (11). In particular, the value of § may also be written as
0=w(t—ty)+ 0 (14)

where t is the time and 6 is the angular offset between the spacecraft and axis p at the initial
time g = 0. The latter is here defined, without loss of generality, as the time instant at which
Mars passes the perihelion (i.e., v(tg) £ 0), from which it follows that 6 also describes
the angular offset between the spacecraft and Mars at the reference time tj. Therefore, for
net of multiples of one period of revolution of Mars (corresponding to about 687 days),
the time ¢ can be written as a function of v as

B
t=4/— (E—esinE) (15)

O}
©

where E € [0, 27) rad is the eccentric anomaly of Mars, given by the well-known formula

1—
E£2 arctan( 1 +Z tanZ) (16)

The value of 6y may be determined backward from the value of v (namely, V) such that
0 = v, that is, the value of v (assumed to exist) at which the solar sail and Mars have the
same angular position in their planes of motion around the Sun. Accordingly, the value of
E when v = v is given by

— 1—e v
E=2 arctan( TTe tan 2) (17)
the corresponding time instant is
_ a3 _ _
t=4/— (E—esinE) (18)
Ko
while 6 is given by
Op=7—wt (19)

Bearing in mind that f = (V) (see Equations (17) and (18)), then Equation (19)
gives ) = 6y(v), which is plotted in Figure 6. Note that |6)| is maximum when v ~
{94.02, 265.98} deg and its value is about 10.71 deg. Accordingly, the angular offset be-
tween the spacecraft and Mars, defined as

pL0—v=w(t—t —(v-") (20)

is an explicit function of {v, 7} according to Equations (15)—(18), so it changes throughout
the period of revolution of Mars. However, as already shown in [27], its mean integral
value with respect to v, that is, the function

cpéi

27
% o $dv = 6 1)
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turns out to coincide with the angular displacement between the solar sail-based spacecraft

and Mars when the latter passes the perihelion.

12

T

|

|
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6
3
o0
[
Z 0
<

N \
| | | | |
| | | | |
12 | | | | | |
O B S S PO P
L N I 20 S A S
v (deg)

Figure 6. Variation of ) with v as given by Equation (19).

The distance d between the spacecraft and the center of mass of Mars, given by

d= \/(Pd cosv —p C089)2 + (pg sinv—p sine)2 + H?

(22)

is an explicit function of {p, H, v, v} and is represented (normalized with respect to a)
in Figure 7 for H = 0.0054. In particular, p/a ranges between (1 —e) ~ 0.9066 (which
corresponds to the perihelion of Mars orbit) and the maximum value that ensures a feasible

(i-e., positive) value of B. This last condition holds if 7 p?> < a3; see also Equation (9).

Figure 8, instead, shows the variation of d/a as a function of {v, 7} in the scenario A.
The corresponding figure for scenario B is substantially coincident with Figure 8 and has
been omitted. Note that Figure 8 also displays the radius of Mars SOI, which is given by
Equations (10) and (11) as a function of v. Finally, Figure 9 shows the variation of min, (d/a)

with ¥ for scenarios A and B.
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Figure 7. Variation of d/a with {p/a, v, v} for H/a
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Figure 9. Variation of min, (d/a) with ¥ for scenario A (black line) and scenario B (red line).
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4. Preliminary Study of the Heliocentric Transfer Trajectory

The problem of the heliocentric transfer from Earth to the target DNKO is addressed
in this section with the simplifying hypotheses that the solar sail-based spacecraft starts
from a circular orbit of radius rq, = 1au and that the plane of motion of the starting orbit
is coplanar to the orbit of Mars, that is, to the (p,q) plane; see the scheme in Figure 1.
These two assumptions, in fact, allow both the dynamic model and the optimal control
law adopted in [35] to be retrieved while appropriately changing the boundary conditions.
Note that these two simplifying hypotheses are reasonable since the orbital plane of Mars is
slightly inclined with respect to the ecliptic plane (i.e., about 1.85 deg) and the eccentricity of
Earth’s orbit is very small (i.e., about 0.0167). Practically, such a situation may be achieved
by launching the spacecraft at the moment in which the Earth’s orbit intersects the orbital
plane of Mars and giving it a velocity change (which is of the order of 1 km/s) to make the
required orbital plane change in addition to the velocity change necessary to escape from
the gravitational field of Earth. During the (interplanetary) transfer phase of the mission,
the spacecraft uses the solar sail-induced propulsive acceleration to reach the target DNKO.
In this respect, the sail propulsive characteristics are the same required to maintain the
target DNKO.

According to Ref. [48], the (heliocentric) equations of motion of a spacecraft in the
spherical reference frame are

R (24)
7 CoSy
v
r
2 2
U5 + U o)
o =225 1q (26)
t —
By — Vg U, tany — v, vy +ap 27

r

2
. vy tany + v, v,
Uy = -

p +ay (28)
where {v;, v, UW} are the components of the spacecraft inertial velocity in 7g, while
{a;, ag, a,} are the components of the propulsive acceleration vector a, in 7s. The latter,
with the aid of Equation (1) and Figure 10, may be written as a function of the sail cone
angle @ and clock angle ¢ as

ar =B l; 5 cos® w (29)
ag =P % cos?  sinw cos & (30)

2x sina sind (31)

_gho
a, =P 7 COs
where f§ is given by Equation (9), while angles & and § are the two typical control parameters
in a three-dimensional solar sail transfer. In particular, as it is schematized in Figure 10,
¢ € [0, 27r) rad is the angle between p, and the projection of 7 onto the (py, p.,) plane.
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<
Figure 10. Solar sail thrust vector control angles {«, J}.

Since the spacecraft initially covers a heliocentric circular orbit of radius rg that
is coplanar to Mars orbit, Equations (23)—(28) are completed by the initial (i.e., at time
t; 2 0) conditions

r(ti) =re, 0(t) =0;, v(t;)) =0, v,(t;) = v, (t;) =0, vg(t;) = % (32)

For a given control law « = a(t) and 6 = 4(t), with t € [0, t¢] (where 7 represents
the total transfer time towards the target DNKO), the time variations of the propulsive
acceleration components are given by Equations (29)—(31) and the resulting trajectory is
obtained by numerically integrating Equations (23)—(28) with initial conditions (32).

The solar sail trajectory was analyzed in an optimal framework by minimizing the
flight time #; required to transfer the vehicle from the circular parking orbit to the final
circular DNKO of given characteristics {p, H}. Note that, in this case, the spacecraft
lightness number is obtained from Equation (9). The trajectory optimization problem
consists of finding & = a(f) and 6 = 4(t) that maximize the performance index

]2t (33)

while driving the spacecraft states to their target values at the (unknown) time ¢ ¢, viz.

r(te) = \/p? +H?, y(tf) = arctan(f) ,r(te) = 0y(tf) =0, vp(ts) =pw  (34)

Note that the final value of 6 is left free during the optimization process. In particular,
the optimal (i.e., minimum-time) trajectory was obtained with an indirect approach by
enforcing the necessary conditions for optimality according to Pontryagin’s maximum
principle [49]. The mathematical model used for the optimization procedure, that is, the ex-
pression of the Hamiltonian function, the expression of the transversality condition, and the
Euler-Lagrange equations, is detailed in Ref. [35]. The differential equations governing
the two-point boundary-value problem associated with the optimization problem were
integrated in double precision using a variable order Adams-Bashforth-Moulton solver
scheme [50] with absolute and relative errors equal to 10~ 12. In particular, the two-point
boundary-value problem associated with the indirect-approach-based optimization pro-
cedure was solved using a shooting method [51] with a tolerance of 10~8. In this context,
the first guess of the initial unknown costates was obtained by adapting the procedure
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recently proposed by the second author for a solar sail-propelled [52] or an electric thruster-
based [53] spacecraft.

Mission Applications

The results of the solution of the optimization problem are shown in Figures 11 and 12
for scenario A and in Figures 13 and 14 for scenario B. In particular, the sail lightness
number of scenario A (or B) is f ~ 0.1 (or B =~ 0.05), and the corresponding optimal
transfer time is t; ~ 949 days (or 498 days).
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Figure 11. Time variation of spacecraft states for scenario A, where § ~ 0.1. (a) variation of {r, p, H}
with t; (b) Variation of {v;, v, vp} with t.
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Figure 12. Optimal control and resulting trajectory for scenario A, where g ~ 0.1. (a) Variation of
{a, 6} with t; (b) minimum-time optimal transfer trajectory.
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Figure 13. Time variation of spacecraft states for scenario B, where  ~ 0.05. (a) Variation of {r, o, H}

with t; (b) variation of {vy, v, vy} with t.
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Figure 14. Optimal control and resulting trajectory for scenario B, where B ~ 0.05. (a) Variation of

{a, 6} with t; (b) minimum-time optimal transfer trajectory.

Consistent with an insertion in a circular DNKO, the velocity components {v;, v, }
are zero at the end of both transfers, while the final values of vy are both equal to pw,
that is, vg ~ 24.101 km/s for scenario A and vy ~ 24.115km/s for scenario B. As far as
the time variation of the control angle « is concerned, note that its value at the end of the
transfer does not coincide (in general) with the value necessary to maintain the desired
DNKO. Therefore, at the end of the transfer, it will be necessary to implement a new control
law for maintaining the DNKO, i.e., the one provided by Equation (8) with unit vector
fi belonging to the (p,, p. ) plane. Finally, note the trend of the clock angle & over time.
In both the analyzed scenarios, the J value is close to 0 deg or 360 deg, which means that
the (p,, ft) plane is almost parallel to the (p,, py) plane for the entire duration of the orbit-
to-orbit transfer. This interesting result derives from the fact of having considered target
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DNKOs very close to the orbital plane of the parking orbit and, consequently, from having
quasi-two-dimensional transfers between coaxial circular orbits of assigned radii.

5. Conclusions

In this paper, we analyzed the performance required by a flat and perfectly reflecting
solar sail (the thrust vector of which is described by an ideal force model) in a heliocentric
mission scenario where the requirement is to maintain a circular displaced non-Keplerian
orbit for remote sensing applications of the high-latitude regions of Mars. In this sense, this
paper extends the scientific literature regarding solar sail-induced displaced non-Keplerian
orbits. In this specific context, the Mars-spacecraft distance was evaluated during the
revolution period of the Red Planet as a function of the characteristics of the solar sail-
induced (Mars-synchronous) displaced orbit. Accordingly, the solar sail-based spacecraft is
able to follow Mars during its motion around the Sun (i.e., the spacecraft and the planet of
interest roughly share the same angular position), while the vehicle travels its trajectory on
a plane parallel to the orbital plane of Mars. In this way, high-latitude planetary regions are
continuously visible and potentially observable.

In this scenario, an optimal approach was used to calculate the minimum flight time
of the solar sail-based spacecraft towards the circular displaced non-Keplerian orbit around
the Sun. In particular, the optimal flight times were obtained through an indirect approach,
and the resulting rapid transfer trajectories correspond to medium/high-performance solar
sails (i.e., solar sails with a lightness number greater than 0.05), which have the thrust
performance necessary to maintain the target DNKOs. In this context, the optimization
process shows that the minimum flight time necessary for a transfer from the Earth to
the target DNKO is 949 days for a medium-performance solar sail and 498 days for a
high-performance solar sail.
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Abbreviations and Symbols

ACS3 Advanced Composite Solar Sail System

DNKO displaced non-Keplerian orbit

Notation

a semimajor axis of Mars heliocentric orbit [au]

A sail surface (reference) area [m?]

ap propulsive acceleration vector [mm/s?]

ar radial component of the propulsive acceleration vector [mm /s?]

ag azimuthal component of the propulsive acceleration vector [mm/s?]
ay normal component of the propulsive acceleration vector [mm/s?]

c speed of light in vacuum [km/s]

d Mars-spacecraft distance [au]

e eccentricity of Mars heliocentric orbit

E eccentric anomaly [deg]

H displacement between Mars heliocentric orbital plane and the DNKO [au]
Iy solar constant [W/m?2]

] performance index [days]
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k unit vector of the Mars orbital angular momentum
m total spacecraft mass [kg]

fl unit vector normal to the sail nominal plane

O Sun’s center of mass

o center of the circular DNKO

P, radial unit vector

Po azimuthal unit vector

p, normal unit vector

{p, 9, w} axes of the reference frame 7o

Sun-spacecraft distance [au]
Sun-spacecraft (position) vector [au]

re reference distance [1 au]

S spacecraft center of mass

t time [days]

To perifocal reference frame

Ts spherical reference frame

vy radial component of spacecraft inertial velocity [km/s]
(7] azimuthal component of spacecraft inertial velocity [km/s]
Uy normal component of spacecraft inertial velocity [km/s]
o sail cone angle [deg]

B sail lightness number

% elevation angle [deg]

0 clock angle [deg]

0 azimuthal angle [deg]

Ho Sun’s gravitational parameter [km?3/s2]

v true anomaly [deg]

[y radius of the circular DNKO [au]

¢ angular offset between the spacecraft and Mars [deg]
w Mars mean motion [deg/day]

Subscripts

i start of the transfer

f end of the transfer

0 start of the observation phase

J of Mars

Superscripts
. derivative with respect to time
— reference value
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