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Abstract: The continual expansion in the number of images poses a great challenge for the annotation
of the data. Therefore, improving the model performance for image classification with limited labeled
data has become an important problem to solve. To address the problem, we propose in this paper a
simple and effective dual-training-based semi-supervised learning method for image classification.
To enable the model to acquire more valuable information, we propose a dual training approach to
enhance model training. Specifically, the model is trained with different augmented data at the same
time with soft labels and hard labels, respectively. In addition, we propose a simple and effective
weight generation method for generating the weight of samples during training to guide the model
training. To further improve the model performance, we employ a projection layer at the end of the
network to guide the self-learning of the model by minimizing the distance of features extracted from
different layers. Finally, we evaluate the proposed approach on three benchmark image classification
datasets. The experimental results demonstrate the effectiveness of our proposed approach.

Keywords: semi-supervised learning; self-supervised learning; image classification; dual training

1. Introduction

Deep learning has advanced swiftly in recent years. Great breakthroughs caused
by deep learning methods have been made in various computer vision tasks, such as
classification tasks [1,2], detection tasks [3,4], segmentation tasks [5,6] and so on. However,
the success is mainly attributed to huge labeled datasets, such as ImageNet [7]. In addition,
annotating such a large dataset is time-consuming and labor-intensive. Hence, it has
become a hot topic of research to find how to enhance the performance of the model
with only a few labeled data and many unlabeled data. The labeled data are usually
annotated manually, while unlabeled data are the data without such annotations. For
a few labeled data, researchers have proposed few-shot learning to improve the model
performance [8,9]. However, this kind of method ignores the benefits of unlabeled data.
Thus, semi-supervised learning methods are proposed to enhance the model performance
with few labeled data and many unlabeled data [10-12]. Recently, semi-supervised learning
methods have developed rapidly and achieved surprising success for image classification
with only a few labeled samples [13-16].

The use of large amounts of unlabeled data is the key to the success of the semi-
supervised learning method. In the early research on the semi-supervised learning method,
Lee et al. [17] proposed a simple method to make effective use of unlabeled data. They
trained a model with existing labeled data first and then generated the pseudo-labels
for unlabeled data by the model predictions. Afterward, the model was trained by the
unlabeled data with their pseudo-labels. However, due to the limited number of labeled
data, the effectiveness of the trained model cannot be guaranteed, and thus the accuracy
of generated pseudo-labels is poor, which significantly degrades the model performance.
Subsequently, researchers have attempted to utilize consistency regularization to train the
model [18,19]. This kind of method assumes that the predictions of the model should be
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the same when given the same data under small perturbations. However, training the
model by consistency regularization only helps the model to learn itself, but not to learn
task-relevant information. Task-relevant information can only be learned from the small
amount of available labeled data. As a result, the performance of the models trained by
such methods decreases significantly when the amount of labeled data decreases.

To address the above issues, FixMatch [16] combines the advantages of pseudo-labeling
methods and consistency-based methods to propose a simple and effective semi-supervised
learning method. Specifically, it converts the model prediction of the samples augmented
by weak data augmentation (e.g., random cropping and flipping) to one-hot labels. Then,
the model is trained with the data augmented by strong data augmentation (e.g., Ran-
dAugment [20], CTAugment [21]) with their one-hot labels. Furthermore, the method only
selects data with a high value of model prediction to train the model. The method achieved
great success for semi-supervised image classification and thus aroused the enthusiasm
of researchers for further study. After that, following the architecture of FixMatch, some
methods were proposed to improve the performance of the model [22,23]. CoMatch [22]
proposes graph-based contrastive learning to impose constraints on features. SimMatch [23]
further improves upon FixMatch by combining both semantic similarity and instance simi-
larity. However, the performance of these methods degrades sharply when the amount of
labeled data is further reduced [24].

Yang et al. [24] investigated the case when there are only a few labeled data. They
proposed a semi-supervised learning method based on interpolated contrastive learning to
improve the performance of the model when only two or three labels exist for each category.
Hu et al. [25] proposed a patch-mixing contrastive regularization method to ensure that
the feature representation is consistent with the task, thus improving the semi-supervised
classification performance with only few labeled data. However, these methods are based
on FixMatch, which only selects unlabeled data with high confidence for classification
training and does not fully utilize the available data.

Therefore, we propose a dual-training-based semi-supervised image classification
method in this paper. We first add an extra projection layer at the end of the backbone,
as shown in Figure 1. Although our method constructs an extra layer, the number of
parameters of the extra layer can be almost negligible. Thus, it does not require more
memory of GPU. Produced using WideResNet-28-2 as the backbone, the statistics of the
number of parameters for different methods are shown in Table 1.
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Figure 1. The proposed model architecture. (a) backbone; (b) our model. Different colors represent
different features.
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Table 1. The number of parameters for different methods with WideResNet-28-2 as the backbone.

Method FixMatch [16] CoMatch [22] SimMatch [23] Ours
Parameters(M) 1.4676 1.4924 3.0013 1.4773

Furthermore, we propose a dual training approach that allows the model to learn
various useful knowledge simultaneously. Specifically, for unlabeled data, we generate
the pseudo-labels with the model prediction of weakly augmented data. After that, we
train the model with the data augmented by two different strong data augmentations. The
randomness of data augmentation helps the model learn various information simultane-
ously. In addition, to further increase the difference between the information learned by
the model, we respectively utilize the hard labels and soft labels for model training. Hard
labels are the one-hot form of model predictions. In addition, hard labels are generated
by the same method in FixMatch, and we also utilize the same threshold to select data
with high confidence for training, while soft labels generated by the model predictions of
weakly augmented data can be seen as hard labels with label smooth. In addition, we use
distribution alignment to further improve the soft labels.

To further improve the training of the model with soft-labeled data, we propose a
simple and effective weight generation method for generating sample weights. Specifically,
for each batch, we normalize the maximum probability of model prediction by the Softmax
function to get the weight of each sample. Then we multiply the weight and the number of
data so that the sum value of the weights is the same as before.

Inspired by the effectiveness of self-supervised learning [26], we utilize the features
extracted from different layers with data augmented by different augmentations to guide
the self-learning of the model. By minimizing the cosine distance between these features,
the model can learn more useful information by itself.

Finally, we evaluate our method on three benchmark datasets for image classification
and verify that the proposed approach can effectively improve the performance of the
model for image classification with only few labeled data.

The rest of the paper is organized as follows. The related works of semi-supervised
learning and self-supervised learning are described in Section 2. The details of our proposed
method are shown in Section 3. The implementation details and the experimental results
are described and discussed in Section 4. Finally, the conclusion is presented in Section 5.

2. Related Work
2.1. Semi-Supervised Learning

Since it is a time-consuming and labor-intensive task to annotate a huge number of
data, how to fully utilize a small number of labeled data to maintain model performance
has become an urgent issue. A semi-supervised learning method has shown its potential to
solve the issue. Recently, the most popular methods designed for semi-supervised learning
include pseudo-labeling methods [17,27-29] and consistency-based methods [18,19,30].
The purpose of pseudo-labeling methods is to generate pseudo-labels for unlabeled data
and then regard them as labeled data to train the model. Therefore, Lee et al. [17] first
used the model predictions as pseudo-labels of unlabeled data. Rizve et al. [27] further
selected the samples with high confidence to be labeled and introduced complementary
labels for unlabeled data with low confidence. Then they further selected samples to train
the model by the uncertainty estimation method. Iscen et al. [28] constructed the nearest
neighbor graph based on features to annotate unlabeled data. The main idea of consistency-
based methods is consistency regularization. Tarvainen et al. [18] built a teacher model
by exponential moving average and trained the model to produce the same prediction as
that of the teacher model. MixMatch [19] combines the labeled data and unlabeled data
by MixUp [31] and then minimizes the difference between the model predictions from
data with various augmentations. Miyato et al. [30] perturbed the input data by virtual
adversarial loss.
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Recently, some pseudo-labeling methods combined the advantages of consistency-
based methods and achieved great success for semi-supervised image classification. Fix-
Match [16] utilizes weakly augmented data to generate pseudo-labels and trains the model
by strongly augmented data. It also sets a threshold to select samples that need to be
learned. Based on the architecture of FixMatch, CoMatch [22] learns the class probabili-
ties and low-dimensional embeddings of the data. SimMatch [23] further takes semantic
similarity and instance similarity into consideration and improves the model performance.
Yang et al. [24] introduced interpolated contrastive learning. Hu et al. [25] proposed a
patch-mixing contrastive-learning-based method for image classification and achieved
impressive results with few labeled data.

2.2. Self-Supervised Learning

Self-supervised learning is one of the effective unsupervised learning methods, which
is often seen as the pretraining of the model by exploring the relationships between data
or features without the utilization of labels. By training with a self-supervised learning
method, the models often have better initial parameters for subsequent specific tasks,
such as classification tasks, detection tasks, segmentation tasks and so on. SimCLR [32]
constructs positive and negative sample pairs by the data with different augmentation.
Specifically, the same data augmented with different data augmentation are considered as
a positive sample pair, while different data compose negative sample pairs. The purpose of
SimCLR is to reduce the distance between features of positive sample pairs and expand the
distance between features of negative sample pairs. BYOL [33] trains the model only with
positive samples and abandons the negative sample pairs. SwWAV [34] further introduces
the clustering method and clusters the data by Sinkhorn—Knopp [35]. It minimizes the
difference between the clustering results of the same data with different data augmentation
to train the model. SimSiam [26] proposes a simple self-supervised learning method based
on a Siamese network, which removes the need for clustering and moving exponential
averaging. SimSiam [26] further simplifies the self-supervised learning method while
ensuring the effectiveness of the method.

3. Our Approach

In this section, we describe the details of our proposed method. We show the training
procedure of our method in Figure 2. We first present the details of our proposed dual
training strategy, and then describe the generation of sample weight. Finally, we introduce
the cosine-distance-loss-based self-supervised learning method. Algorithm 1 shows the
procedure of our method.
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Figure 2. The training procedure of our method. Different colors represent different modules
and features.
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Algorithm 1 Dual-Training-Based Semi-Supervised Learning.

1 Input: Labeled dataset D; = {( ,yl)} M_ , Unlabeled dataset D,, = {x}N_,

2 Setting: Learning rate I, Batch size B, Ratio of unlabeled data y, Loss weight «, §, 7y,
Threshold 7, SGD algorithm with momentum, maximum epochs

3 Initialization: Encoder f(-), Projection g(-), Classifier h(-)

4 for epoch < maximum epochs do

5 = Aug_w(x})

6 x0Ty, 1”25 = Aug w(xi), Aug_s(x¥), Aug_s(x¥)

7 Lsup = Lcls( i /y)

s Plsoft _ h(g(f( uw)))

9 fOft DA( soft)

10 plh‘”d = argmax(plsoft)

11 mask = l(max(plsof ) > 1)

12 = Softmax(max(pl; ft)) x B

13 Ldual = D‘%EZI\L1 chls( i 17 plwﬂ) + :BNZN 1 mask * Lcls( 12 ’ plhard)
14 Lgis = %(Lcas(g(f(xz’f)) f")) + Leos(g(f(x;5)), f (%))
15 Ltotal = Lsup + Layar + vLais

16 Update Encoder f(+), Projection g(-), Classifier h(-)

17 end for

18  Output: Encoder f(+), Projection g(-), Classifier h(-)

3.1. Dual Training Strategy

FixMatch [16] found that training the model with strongly augmented data whose
labels are generated by the model prediction of weakly augmented data can achieve great
success for image classification. However, it set a threshold to select samples with high
confidence and ignore other samples. In addition, the model converges slowly because
of the high randomness of data augmentation. A large number of iterations is required
for FixMatch to achieve satisfactory results. Therefore, we proposed a novel dual training
strategy to fully utilize all data and help the model learn more meaningful information.

Given a labeled dataset D; = {(xl,yl) | and an unlabeled dataset D, = {x} ,
where M and N respectively represent the number of labeled and unlabeled data, x! ; and
yﬁ are the i labeled datum and its label. x} is the i unlabeled datum. For the unlabeled

dataset, we first augment the data with weak data augmentation and fit them into the
model to obtain the predictions, which are used as the soft labels.

P = (g (F(x™))) (1)

Inspired by the effectiveness of distribution alignment [21,36], we also apply the
distribution alignment to soft labels to improve their accuracy:

~soft

T = P < (g (£ @
soft
soft P
pli Z 11 lsoft (3)
where f(-), g(-) and h(-), respectively, mean the encoder, the projection layer and the

~soft
classifier. pl;  is computed by the moving average of the prediction of unlabeled data.
Next, we can generate hard labels from soft labels:

lhard

plir = argmax(pli*!") 4)
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where the argmax(-) function is used to yield one-hot labels from soft labels. Then, the
threshold T is set to select the data with high confidence:

mask = l(max(plfoft) > T) (5)
where 1(-) is the mask function to choose the samples whose maximum prediction is higher

than threshold 7. After computing the soft and hard labels, we can train the model with
unlabeled data by standard cross-entropy loss:

u,s

1N
Lsoft = NZizl WLcls(xi,1 ’ pl?Oft) (6)

1N
Lhard = ﬁZizl maSkLcls<lezs/ plzhmd) (7)

where w is the weight of each sample, which is described in Section 3.2.
In summary, the total loss of dual training can be written as

Liyar = D‘Lsoft + BLnard 8)

where « and f are the weights of Lj,,,;. With dual training strategy, we train the model with
all unlabeled data to fully utilize the existing data. Furthermore, we train the model with
samples augmented by different strong augmentation at the same time and the labels of
used samples are different (i.e., soft labels and hard labels). Therefore, the model can learn
more meaningful information at once, which significantly improves the performance of
the model.

3.2. The Generation of Sample Weight

Each sample is weighted equally in the standard categorical cross-entropy loss. How-
ever, the semi-supervised learning method often labels unlabeled data by the model trained
with the original labeled data. As a result, the accuracy of the model predictions decreases
as the amount of labeled data decreases. Hence, training the model with samples with
the same weights can make the model learn more incorrect information. Giving different
weights to the samples is a simple and effective way to overcome this disadvantage. For
instance, MentorNet [37] constructs an additional model to learn the sample weights and
train the other model by weighted samples. However, this method needs an additional
model. Focal loss [38] adds a scaling factor to the standard categorical cross-entropy loss to
control the weight of different categories. However, the focal loss is originally designed
for object detection and the weights are mainly for categories. In addition, the focal loss
requires artificially set hyperparameters. To address these problems, we proposed a simple
way to generate weights for different samples, which is displayed in Figure 3.

We first apply the distribution alignment to the prediction of the model to obtain the
soft labels. Then, we select the maximum probability of each label and concatenate them
into a vector V € RBX1 where B is the batch size. Afterward, we use the Softmax function
to normalize the vector:

V= Softmax(max(plls-oft)) 9)

As the original sum of sample weights is B x 1 and the sum of the normalized vector
is only 1, when we use the normalized vector as the sample weight, it significantly reduces
the information learned by the model with each image batch. Therefore, we multiply the
normalized vector by the batch size to keep the sum of the sample weights constant. Thus,
the weight of samples can be given by

w=VxB (10)
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Sample n-1

Sample n

With the sample weight w, we can make the model focus more on the samples with
high confidence but also learn from the other samples. Thus, it can make full use of
all samples.

Sample
Number

Samples Samples Samples

Figure 3. The generation of the sample weight. Different colors represent different dimensions
of vectors.

3.3. Self-Supervised Learning Based on Cosine Distance

SimSiam [26] designs a simple and effective self-supervised learning method based
on the Siamese network. It can achieve competitive results without a large batch size
compared with prior works [32-34]. The main idea of it is that the features extracted by
the same sample should be as similar as possible. Inspired by the effectiveness of feature
learning, we minimize the feature distance to promote the model learning from itself,
which can be seen in Figure 4. Specifically, we regard the features extracted by weakly
augmented data from the encoder as the basic features. The features extracted by strongly
augmented data from the projection layer are seen as learnable features. We train the model
by minimizing the cosine distance between learnable features and basic features. Thus, the
loss of self-supervised learning can be written as

Leos = %(D(fn/fb) + D(fi2, fv)) (11)
where
fn=g(f(xj7)) (12)
fro = g(f(x%)) (13)
fo = () (14)
D(fu, fy) = — AL (15)

Ml 16l
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Figure 4. Self-supervised learning based on cosine distance. Different colors represent different
modules and features.

4. Experiments

This section describes the information of three classification datasets used in our
experiments and presents the implementation details and experimental results to show the
performance of the proposed method.

4.1. Datasets

We conducted the experiments on Cifar10, Cifar100 [39] and SVHN [40] datasets for
semi-supervised image classification. The information of each dataset is listed in Table 2.
The Cifar10 and Cifar100 datasets contain 10 and 100 categories, respectively, and both
have 50,000 images for training and 10,000 images for testing. The image size has been
standardized to 32 x 32. Following the setting in ICL-SSL [24], for the Cifar10 dataset, we
trained the model with three different numbers of labeled data, including 20, 30 and 40. For
the Cifar100 dataset, the numbers of labeled data are 200, 400 and 800, respectively. The
SVHN dataset contains 99,289 images, each with a size of 32 x 32. The official training and
test set include 73,257 and 26,032 images, respectively. We tested our method on the SVHN
dataset with 250, 500 and 1000 labeled data, respectively.

Table 2. The information of three benchmark datasets.

Dataset Image Size Training Set Test Set Categories
Cifar10 32 x 32 50,000 10,000 10
Cifar100 32 x 32 50,000 10,000 100
SVHN 32 x 32 73,257 26,032 10

4.2. Implementation Details

We used the WideResNet-28-2 [41] as our backbone for all datasets. Random flipping
and cropping were used as weak augmentation and RandAugment [20] was used as
strong augmentation. For a fair comparison, we followed the settings in ICL-SSL [24] and
p-Mix [25]. For Cifar10, the batch size was set to 64 and the ratio of unlabeled data was 5.
The SGD algorithm was employed for training with the initial learning rate of 0.03. The
momentum was 0.9 and the weight decay was 0.0005. The hyperparameters «, § and y
were set to 5, 5 and 0.1, respectively. The number of epochs was 300. For Cifar100, we
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set the batch size to 16 and the ratio of unlabeled data was also 5. We employed the SGD
algorithm with the same setting as that for Cifar10 to train the model. The initial learning
rate was 0.005 and the total epochs were 300. The hyperparameters were set the same as for
Cifar10. For the SVHN dataset, the hyperparameters were seta = 0.5,  =5and y = 0.1,
and other settings were the same as for Cifar10.

We trained our method on five runs with different random seeds and reported the
mean accuracy and variance as the score of model performance, as the previous work
did [25].

4.3. Comparison with State-of-the-Art Methods

We compared our proposed method with several state-of-the-art methods, includ-
ing t-Model [42], Mean-Teacher [18], MixMatch [19], FixMatch [16], CoMatch [22], Sim-
Match [23], ICL-SSL [24] and p-Mix [25]. Among them, FixMatch [16] first achieved great
success by combining the advantages of pseudo-labeling methods and consistency-based
methods. CoMatch [22] and SimMatch [23] introduced the information of categories and
features to improve FixMatch. ICL-SSL [24] and p-Mix [25] further considered fewer labeled
data and improved the model performance.

We present the comparison results of our method and other compared methods
on Cifar10 and Cifar100 with different numbers of labeled data in Table 3. It can be
observed that our method outperformed all the other compared methods with different
numbers of labeled data. For instance, our method achieved an accuracy of 92.67% with
only 20 labeled data on Cifar10, which is 0.72% and 3.94% higher than p-Mix [25] and
ICL-SSL [24], respectively. For Cifar100, a more complex dataset with more categories, our
method can also achieve the best results, as can be seen by the significant margin between
our proposed method and other compared methods. The results demonstrate that our
method has the ability to achieve better results with fewer labels, which helps reduce the
cost of annotating labels.

Table 3. Comparison with state-of-the-art methods in test accuracy (%) on Cifar10 and Cifar100
datasets with different numbers of labeled data. The bold represents the best result.

Cifar10 Cifar100
Method
20 Labels 30 Labels 40 Labels 200 Labels 400 Labels 800 Labels
-Model [42] - - - 8.53 + 0.25 11.67 + 0.37 17.64 £ 1.0
MeanTeacher [18] 21.79 + 0.57 2451 +£0.35 24.93 4+ 0.62 7.11 £+ 0.06 11.54 + 0.28 17.82 £+ 0.09
MixMatch [19] 38.51 4 8.48 50.10 £ 5.81 59.08 £ 3.04 455 + 0.45 17.68 + 0.07 26.75 +1.13
FixMatch [16] 72.63 +5.37 86.65 + 3.56 89.69 + 4.58 9.31 4+ 0.08 24.44 + 0.35 28.12 4+ 0.30
CoMatch [22] 83.43 +9.20 88.68 £+ 3.79 90.14 4+ 2.86 22.39 +1.35 29.60 4 0.88 37.00 £ 0.59
SimMatch [23] 78.13 £ 6.12 90.01 £ 4.15 91.05 £+ 3.11 25.43 +1.98 38.66 = 1.61 52.41 £ 0.76
ICL-SSL [24] 88.73 + 5.69 90.30 £+ 3.10 91.78 £ 2.23 14.06 + 0.52 26.52 +£1.20 33.81 + 0.63
p-Mix [25] 91.95 4+ 5.95 92.64 + 1.69 93.65 + 0.10 25.25 +3.28 38.01 +2.96 48.24 + 391
Ours 92.67 £ 2.59 93.21 + 2.45 94.71 £ 0.26 29.43 £ 2.02 43.90 + 1.49 53.52 + 0.54

We further investigated the classification accuracy of our method with normal numbers
of labeled data on the SVHN dataset. Table 4 illustrates the results of experiments conducted
on the SVHN dataset with 250, 500 and 1000 labeled data. As shown in Table 4, our method
can still achieve the best result. For instance, our method outperformed the p-Mix [25]
with an accuracy of 0.26% on the SVHN dataset with 1000 labeled data, which strongly
demonstrates the effectiveness of our method with normal numbers of labeled data.
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Table 4. Comparison with state-of-the-art methods in test accuracy (%) on SVHN dataset with 250,
500 and 1000 labeled data. The bold represents the best result.

SVHN
Method

250 Labels 500 Labels 1000 Labels
1-Model [42] 42.66 = 0.91 53.33 +£1.39 65.90 + 0.03
Mean-Teacher [18] 42.70 +£1.79 55.71 + 0.53 67.71 +1.22
MixMatch [19] 92.12 £+ 0.06 94.53 + 0.43 95.13 + 0.04
FixMatch [16] 95.45 + 0.07 95.73 + 0.15 95.94 + 0.10
ICL-SSL [24] 95.58 +0.14 95.80 + 0.12 96.05 + 0.14
p-Mix [25] 97.41 £ 0.02 97.39 £ 0.01 97.45 + 0.01
Ours 97.42 £+ 0.06 97.62 £ 0.06 97.71 £ 0.08

4.4. Ablation Study

This subsection investigates the impact of different components in our method. We first
investigated the effectiveness of our proposed dual training strategy for model performance.
The experiments were conducted on Cifar100 with 800 labeled data. Since our proposed
dual training strategy includes training with soft labels and hard labels, to verify the
effectiveness of the dual training strategy, we alternately evaluated the method with only
soft labels and only hard labels on Cifar100 with 800 labeled data, which can be seen in
Table 5. It should be noted that the dual training strategy trains the model with data from
two different kinds of strong data augmentation, while training with single labels only
employs data augmented once. In addition, in this paper, training with hard labels means
that we only use high-confidence samples selected by threshold. The method achieved an
accuracy of 50.96% with only hard labels. The accuracy rose to 51.98% when the model
was trained with soft labels instead of hard labels. However, it also showed a significant
margin between training with a single kind of label and the dual training strategy. Next,
we compared the performance of the model with different dual training strategies. These
results are also presented in Table 5, which shows that the model trained by a dual training
strategy with both hard and soft labels can reach the highest accuracy of 54.34%, which is
0.55% and 1.97% higher than using only hard labels or only soft labels, respectively. As
such, a dual training strategy with both hard and soft labels is beneficial for improving
model performance. During the training process, we found that using soft labels to train
the model can accelerate the convergence of the model, which can be seen in Figure 5.
However, training only with soft labels increases the risk of the model learning incorrect
knowledge, resulting in poor performance at the end of the training. Using hard labels
makes the model learn less information at the beginning of training but promotes the
model’s focus on more confident samples, thus reducing the risk of learning incorrect
knowledge. Hence, we combined the hard labels and soft labels to train our model and
achieved the greatest accuracy.

Table 5. The effectiveness of the dual training strategy on Cifar100 with 800 labeled data. The bold
represents the best result.

Method Test Accuracy (%)
Single hard labels 50.96
Single soft labels 51.98
Dual training with hard labels 53.79
Dual training with soft labels 52.37

Dual training strategy 54.34
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Figure 5. The test accuracy of different methods.

In this study, we employed the distribution alignment to further improve the accuracy
of pseudo-labels of unlabeled data. Therefore, in order to investigate the influence of distri-
bution alignment in our method, we tested the method with and without the distribution
alignment on Cifar100 with 800 labeled data, the results of which are listed in Table 6.
As shown in the table, by simply applying the distribution alignment to our method, the
accuracy increased from 51.79% to 54.34%, which significantly demonstrates the importance
of distribution alignment. In addition, we proposed a simple weight generation method to
improve the training of the model. It is apparent from Table 7 that the model achieved an
accuracy of 52.30% without sample weight, which is 2.04% lower than that of the method
with sample weight. The experimental results show that distribution alignment and sample
weight are beneficial in improving the performance of the model.

Table 6. The effectiveness of distribution alignment on Cifar100 with 800 labeled data. DA: distribu-
tion alignment. The bold represents the best result.

Method Test Accuracy (%)
Ours w/o0 DA 51.79
Ours with DA 54.34

Table 7. The effectiveness of sample weight on Cifar100 with 800 labeled data. SW: sample weight.
The bold represents the best result.

Method Test Accuracy (%)

Ours w/0 SW 52.30
Ours with SW 54.34
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To improve the classification ability of the model and guide the self-training of the
model, we minimized the distance between features extracted from different layers by
cosine distance loss. We also conducted experiments in Cifar100 with 800 labeled data to
investigate the influence of the cosine distance loss. Table 8 illustrates the results of our
method with and without cosine distance loss. By adding the cosine distance loss during
training, the accuracy rose from 54.04% to 54.34%, which demonstrates the usefulness of
the cosine distance loss.

Table 8. The results of our method with and without cosine distance loss on Cifar100 with 800 labeled
data. CDL: cosine distance loss. The bold represents the best result.

Method Test Accuracy (%)
Ours w/o0 CDL 54.04
Ours with CDL 54.34

5. Conclusions

In this paper, we proposed an effective semi-supervised learning method based on
dual training for image classification. We improved the model performance with few labels
without substantially increasing the number of model parameters. We proposed the dual
training strategy, which combines the advantage of soft labels and hard labels, to help the
model learn more useful information and fully utilize existing data. In order to prompt
the model to focus on the samples with high confidence without ignoring the rest of the
samples, we proposed a simple weight generation method to guide the model training.
Furthermore, we employed the cosine distance loss based on features to improve the self-
learning of the model and enhance the model performance. To evaluate the effectiveness of
our proposed method, we conducted experiments on three image classification datasets
and compared with other methods. Experimental results demonstrate that our method
can work more effectively than other compared methods with few labels. In the future,
we will further improve our method by replacing cosine distance and applying a stronger
data process.
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