friried applied
e sciences

Article

Fast-M Adversarial Training Algorithm for Deep Neural Networks

Yu Ma *, Dou An 230, Zhixiang Gu 3 Jie Lin 3 and Weiyu Liu 1

check for
updates

Citation: Ma, Y;; An, D.; Gu, Z; Lin, J.;
Liu, W. Fast-M Adversarial Training
Algorithm for Deep Neural Networks.
Appl. Sci. 2024, 14, 4607. https://
doi.org/10.3390/app14114607

Academic Editor: Luis Javier Garcia
Villalba

Received: 26 March 2024
Revised: 17 May 2024
Accepted: 21 May 2024
Published: 27 May 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Electronic and Control Engineering, Chang’an University, Xi’an 710018, China

MOE Key Laboratory for Intelligent Networks and Network Security, Xi’an Jiaotong University,
Xi’an 710049, China; douan2017@xjtu.edu.cn

Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
* Correspondence: mayu@chd.edu.cn

Abstract: Although deep neural networks have been successfully applied in many fields, research
studies show that neural network models are easily disrupted by small malicious inputs, greatly
reducing their performance. Such disruptions are known as adversarial attacks. To reduce the impact
of adversarial attacks on models, researchers have proposed adversarial training methods. However,
compared with standard training, adversarial training results in additional computational overhead
and training time. To improve the training effect without significantly increasing the training time, an
improved Fast-M adversarial training algorithm based on the fast adversarial training algorithm is
proposed in this paper. Extensive comparative experiments are conducted with the MNIST, CIFAR10,
and CIFAR100 datasets. The results show that the Fast-M algorithm achieves the same training effect
as the commonly used projected gradient descent (PGD) adversarial training method, with a training
time that is only one-third of that of PGD and a performance comparable to that of fast adversarial
training, demonstrating the proposed algorithm’s effectiveness.

Keywords: deep neural network; adversarial attack; adversarial samples; adversarial training

1. Introduction

The rise of deep learning has led to rapid developments in the field of artificial
intelligence, attracting an increasing number of researchers to the field. At the same time,
the number of fields in which deep learning is being applied is constantly increasing;
such fields include image classification, object detection, autonomous driving, and natural
language processing. However, while deep learning technology is seemingly successful,
like most traditional internet technologies, it also has its own shortcomings and security
issues [1].

Szegedy et al. [2] made a discovery in image classification using deep neural net-
works; by adding specific, imperceptible perturbations to an original image that can be
successfully classified by a neural network model and then classifying the perturbed im-age
with the same model, the result obtained is completely different from that before. This
indicates that seemingly small perturbations easily interfere with neural network models,
leading to a significant drop in classification accuracy. Goodfellow et al. [3] called these
data perturbations that produce classification errors “adversarial examples”, officially
introducing the concept of adversarial attacks. Since then, many researchers have started
working in this field.

Determining the extent to which deep neural network models resist adversarial at-
tacks is called the robustness problem of deep neural networks, which is still a very
active research area, especially in some application fields that prioritize security and safety,
such as facial recognition, autonomous driving, and object detection [4]. The goal of
improving neural network robustness is to train a robust neural network model or to add
a detection mechanism when processing data inputs, so that the neural network model
is accurate not only for the original data but also for data with adversarial perturbations.

Appl. Sci. 2024, 14, 4607. https:/ /doi.org/10.3390/app14114607

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14114607
https://doi.org/10.3390/app14114607
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2868-0186
https://orcid.org/0000-0003-2503-4525
https://doi.org/10.3390/app14114607
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14114607?type=check_update&version=2

Appl. Sci. 2024, 14, 4607

2 of 14

To this end, researchers have proposed many methods, such as defensive distillation [5],
adversarial detection [6,7], sample randomization [8], and adversarial training, to improve
the robustness of deep neural network models. Currently, adversarial training is considered
the most effective among these methods of defense and is the main focus of this article.
To improve the training effect without significantly increasing the training time, this
paper proposed an improved Fast-M adversarial training algorithm based on the fast
adversarial training paradigm. The main contributions are summarized as follows:

e This paper analyzes the differences between PGD adversarial training and free and
fast adversarial training in training overhead and discusses the influence of the step
size and the number of iterations on the training performance.

e This paper proposes an improved Fast-M adversarial training algorithm based on
the fast adversarial training method to reduce the computational overload while
maintaining the training performance.

e Extensive experiments are conducted with the MNIST, CIFAR10, and CIFAR100
datasets. Results show that the Fast-M algorithm achieves the same training effect
as the commonly used adversarial training method, with a training time that is only
one-third that of PGD adversarial training.

2. Related Work

The earliest adversarial training method [3] was proposed by using the fast gradient
sign method (FGSM) to add adversarial perturbations during model training to enhance
model robustness. However, as increasingly powerful adversarial attack algorithms ap-
peared, this training method was quickly defeated by stronger adversarial attacks. There-
fore, this training method is now considered an ineffective adversarial training method.
Madry et al. [9] proposed the projected gradient descent (PGD) method, which is currently
the most effective adversarial training method, and applied it to adversarial training. How-
ever, PGD often increases the training time by an order of magnitude compared to standard
training, resulting in significant computational overhead and making it difficult to deploy
for adversarial training on some larger networks. To address this difficulty, much work
has been studied on how to reduce the runtime of adversarial training while still achieving
high model robustness.

Shafahi et al. [10] proposed the free adversarial training method, which trains a 4o
robust CIFAR10 model. It took 785 min to achieve a maximum accuracy of approximately
46% under a PGD adversarial attack with ¢ = 8/255 and 20 iterations, while PGD-7
adversarial training required 5418 min to obtain the same accuracy, which shows that the
same training result as that of PGD training can be obtained while reducing the training
time. Wong et al. [4] introduced cyclic learning rates [11] and mixed-precision training [12]
into adversarial training and applied them to PGD and free adversarial training methods,
achieving a significant acceleration of both training methods and greatly reducing the
time required for adversarial training. Ye et al. [13] proposed the Amata adversarial
training method, which for the first time introduced the idea of a simulated annealing
algorithm into adversarial training. Based on PGD adversarial training, Amata changes the
number of iterations and training step size of PGD adversarial training in stages. Amata
successfully trained a model with the same training effect as PGD-10 adversarial training
in approximately half the time. However, compared with fast adversarial training, it still
added more training time.

Gaurang et al. [14] proposed the GAMA (guided adversarial margin attack) adver-
sarial attack methodology. GAMA builds upon the fundamental principles established
by prior adversarial attacks like the fast gradient sign method (FGSM) and projected
gradient descent (PGD), elevating them with a refined relaxation technique that guides
the optimization process towards the creation of more potent adversarial perturbations.
Additionally, Gaurang et al. proposed Guided Adversarial Training (GAT), a pioneering
adversarial training approach that harnesses the power of GAMA, enabling the creation of
robust models that exhibit remarkable performance even when faced with contemporary

Appl. Sci. 2024, 14, 4607

3o0f14

defenses. Notably, this contribution tackles the challenge of gradient masking commonly
encountered in single-step training methods, offering a practical solution that enhances the
dependability of deep networks in the presence of adversarial attacks.

From the various adversarial training methods mentioned above, it is not difficult to
see that the goal of adversarial training is to achieve better training results with less training
time, and the above methods do not balance training time and training effectiveness.
If the training effect of PGD-7 is taken as the standard, although the training time of
fast adversarial training is much shorter than that of PGD-7, its training effect is poorer.
While training methods such as Amata can achieve a training effect comparable to that of
PGD-7, the training time is still several times that of fast adversarial training, requiring
significant computational costs. Therefore, to enhance the adversarial training effect while
minimizing training time, this paper proposes the Fast-M adversarial training algorithm.
The effectiveness of the proposed algorithm is verified in experimental environments.

3. Preliminary
3.1. Adversarial Attack

Adversarial attack refers to adding a certain perturbation ¢ to an image x with the true
label y under the condition of a fixed classifier fy with parameters 6 and a classification
loss function L to generate a new image sample x’ that can cause classification errors in
the classifier fp. The original image x is called the original sample, while the new image «/,
generated after adding ¢, is called the adversarial sample. This problem can be expressed
in the following form:

maxL(fy(x +8),y) st || 8}, < e

X' =x4+6 ey
fo(x") # fo(x) =y

where ||| , Tepresents a specific £, norm; here, £, {3, and £« can be chosen as the space.
The most commonly used norm is the £, norm, and € limits the range of the perturbation J.

After Szegedy et al. [2] discovered that neural network models are highly vulnerable
to adversarial attacks, various adversarial attack algorithms emerged. Among them were
many classical attack algorithms, including the fast gradient descent method (FGSM),
basic iterative method (BIM) [15], DeepFool [16], C&W [17], projected gradient descent
(PGD), one-pixel attack (OPA) [18], alternative black box attack (SBA) [19], zeroth order
optimization (ZOO) [20], etc. Some of these typical adversarial attack algorithms are
introduced below.

3.2. Fast Gradient Sign Method

The FGSM [3] is the earliest and most classic white-box gradient-based attack algo-
rithm. It is a nontargeted attack algorithm. Its working principle is to give the model
structure fy, weight parameters 6, and loss function L and then compute the gradient with
respect to the input (x,y). The sign vector of the gradient is multiplied by a very small
positive number, which is the attack perturbation radius or attack step size ¢, to produce a
small perturbation. Then, the perturbation is added to the original image to generate an
adversarial example:

Xado :x+€'5ign(vxL(f9(x)ry)) (2)

The FGSM algorithm is a very simple but effective attack method. The term VL (fp(x),y)
in Formula (2) represents the first-order derivative with respect to the input x. It shows
that only one backward propagation of the gradient is needed to achieve a successful
attack. The reason this method is effective is that during the training of a neural network
model, the model weights are updated in the direction of the gradient, reducing the
loss value. Empirically, the smaller the model’s loss value is, the higher its classification
accuracy. This method calculates an input that increases the model’s loss value along the
direction of the gradient, and thus, in the case of a fixed network structure of the model,

Appl. Sci. 2024, 14, 4607

4of 14

the loss value is increased, which leads to a significant decrease in the model’s accuracy for
adversarial samples.

3.3. Projected Gradient Descent

The PGD method [9] is a nontargeted attack algorithm that uses the f norm. Its
principle is to first initialize a starting perturbation randomly near the original sample
within the perturbation radius € (a spherical noise region) and then compute the gradient
of the perturbed sample. With a fixed attack step size &, the perturbation is iteratively
updated using Formula (2), and if the perturbation exceeds the attack perturbation radius
€, it is projected back to the corresponding position within €. The perturbed sample is
updated continuously until the iteration is finished or the best perturbation is obtained to
generate an adversarial example. The PGD attack is currently the most powerful first-order
{« norm attack. If a neural network model has good defense against PGD attacks, it also
has good defense against other first-order attacks. Therefore, the PGD attack is often used
to evaluate the robustness of models against adversarial defenses, and it is also one of the
main evaluation criteria for the adversarial defense algorithms proposed in this paper.

4. Discussion of Typical Adversarial Training Algorithms

Madry et al. [9] proposed the “max-minimization model”, which was the first to
transform adversarial training into a robust optimization problem. It can be represented by
the following formula:

mnE)0 | EFL o (x4 0).y) ®

where x is the original image, v is the true label of x, L is the loss function, fj is the network
model structure with weight parameters 6, J is the adversarial perturbation to be added,
and S is the set of attack radii or perturbations. The goal of adversarial training is to find
the point around the original data that maximizes the model’s loss and then update the
model parameters to minimize the loss at that point. That is, by using powerful adversarial
attack algorithms to generate optimal adversarial examples and then feeding them to the
model for training, a robust model can be obtained. A key aspect of adversarial training
is finding the point of internal loss maximization. Meanwhile, if the gradients within the
attack radius S are all zero and the loss values at each point are the same, then the model is
perfectly stable within this attack radius.

4.1. PGD Adversarial Training

To achieve internal maximization in Formula (3), Madry et al. [9] proposed the PGD
adversarial attack algorithm mentioned earlier. During training, a K-step PGD attack is
used to approximately maximize the internal loss and obtain the best adversarial sample.
Then, the adversarial samples are used to update the model’s weight parameters. The
specific implementation is shown in Algorithm 1. Compared to conventional standard
training, PGD adversarial training usually takes K times longer due to the K additional
gradient computations in each training round.

4.2. Free Adversarial Training

To reduce the time required for adversarial training, Shafahi et al. [10] proposed
the free adversarial training method, which is shown in Algorithm 2. It uses the FGSM
adversarial attack to compute M iterations on a “mini-batch”. The perturbation is not
reset between minibatches, and only one backward propagation is performed between
iterations of a minibatch while computing the gradients of both the perturbation and the
model. Therefore, T rounds of free adversarial training are equivalent to M - T rounds of
standard training.

Appl. Sci. 2024, 14, 4607

50f 14

Algorithm 1. K-Step PGD Adversarial Training

Input: Training rounds T , training model fg, training dataset (x,y) and its size

N, perturbation radius ¢, training step size O, number of iterations K
1 Initialize @ Initialize model weight parameter €
2 for t=1—>T do

3 |fori=1—N do

4 0=0 //Initialize the perturbation to 0, or perform a random initialization
5 for j=1—> K do

6 O=0+ar-sign(V;L(fy(x, +0),3)))

7 0 =clip(d,—¢,¢)

8

9

end

6= e_VBL(fH(xz +é),y,.) //Update model weight parameter &

Algorithm 2. Free Adversarial Training

Input: Training rounds 7, training model fg, training dataset (x, y) and its size

N, perturbation radius ¢, number of minibatch iterations M
1 Initialize 8, 6=0 //Initialize model weight parameter 6, disturbance & =0
2 for t=1>T/M do

3 for i=1—> N do

4 for j=1-> M do

5

\% §,V9 ZVL(f:g(xl +5),y,-) //Calculate gradients for 0 and €
6 e ZG—VQ /[Update model weight parameter 0
7 o=0+e-sign(Vy)
8 Jd =clip(d,—¢,¢)
8 end
9 end
10 end

4.3. Fast Adversarial Training

Wong et al. [4] believed that the key to the effectiveness of free adversarial training
lies in the fact that the perturbation of each minibatch is not reset. The perturbation from
the previous iteration is used as the initial starting point for the next iteration, which is
equivalent to giving the perturbation of the FGSM attack a nonzero initialization. Therefore,
they proposed fast adversarial training, which initializes the perturbation of each batch
between +e and uses an FGSM attack for adversarial training. The implementation details
are shown in Algorithm 3, where the clip in line 6 refers to a specific operation that limits
the generated value range of the adversarial disturbance to €, avoiding excessive noise
in the generated image. Wong et al. [4] noted that fast adversarial training works best
when the training step size & = 1.25¢. On the CIFAR10 dataset, a model trained for only
15 rounds can achieve 45% accuracy under 50 iterations of PGD attack with 10 random
restarts. Moreover, one round of fast training takes the same time as two rounds of standard
training, which is much less than the time required for PGD adversarial training.

Appl. Sci. 2024, 14, 4607

6 of 14

Algorithm 3. Fast Adversarial Training

Input: Training rounds 1, training model fg, training dataset (x, y) and its size

N , perturbation radius e, training step size «

1 Initialize @ //Initialize model weight parameter 0
2 for t=1->T do

3 for i=1—> N do

4 6 = Uniform(—e,¢) //Randomly initialized perturbation, bounded by size t¢
5 6 =0+a-sign(V;L(f(x,+6),y))

6 o =clip(d,—¢,¢)

7 0=0 _VQL(];(XZ +é),yl-) //Update model weight parameter &
8 end

9 end

5. Fast-M Adversarial Training Algorithm
5.1. Design Rationale

Based on the previous discussion of the PGD adversarial training algorithm, free
adversarial training algorithm, and fast adversarial training algorithm, it is easy to see that
the main difference among them lies in the number of iterations for computing adversarial
perturbations during training and the step size a used for computing the perturbations.
Specifically, PGD adversarial training uses a small step size with multiple iterations to
compute adversarial perturbations, while fast adversarial training uses a large step size
with a single iteration. These two methods use opposite approaches but achieve similar
results, indicating that the key to adversarial training lies in the choice of the step size and
number of iterations for each training round. Based on this analysis, an improvement to
the fast adversarial training algorithm is proposed in this paper.

This paper considers adversarial training as a process in which the neural network
model “grows” by updating its parameters after being repeatedly “defeated” by attack
algorithms, thereby enhancing its defense capabilities against adversarial attacks. The
model can only grow after being successfully “defeated”, which is a process of “finding and
filling gaps”. The purpose of adversarial training is to proactively identify vulnerabilities
in a neural network model that can be exploited by adversarial attack algorithms. Then, by
updating the weight parameters, these vulnerabilities can be fixed, achieving “immunity”
against adversarial attacks. Therefore, the key to adversarial training is to identify the
model’s vulnerabilities, which is the same principle upon which the internal maximiza-
tion in Formula (3) is based. To find the model’s vulnerabilities, an effective adversarial
perturbation that can affect the model must be obtained.

5.2. Method

Inspired by the ideas of Ye et al. [13] regarding the impact of PGD adversarial train-
ing iterations on model robustness, this paper proposes replacing the simple increase in
the internal adversarial perturbation calculation in fast adversarial training with staged
increments. Fast adversarial training can be seen as giving one adversarial perturbation
calculation to the neural network model in each round of training, where each round of
training has an “even distribution”. However, adversarial training in the early stages of
neural network model training has little effect on improving model robustness. Therefore,
the proposed method removes the adversarial perturbation calculation iteration in the early
stages of fast adversarial training to lower computational costs and increase the number of
calculation iterations of the adversarial perturbation in the later stages of model training to
obtain better adversarial samples and improve the robustness of the training model.

Based on the above points, this paper proposes a Fast-M adversarial training algorithm
using the staircase iteration strategy, where M denotes the predetermined number of stages.

Appl. Sci. 2024, 14, 4607

7 of 14

The core of this method is the strategy of calculating the number of iterations for adversarial
perturbation calculation at different stages. The proposed method divides the total training
rounds T of the model’s adversarial training into M stages, and the number of iterations for
adversarial perturbation calculation at each stage is m. The method adopts the approach of
incrementally increasing the number of adversarial perturbation calculations for each stage.
If the current training round is t, the number of iterations for adversarial perturbation
calculation at the current stage is m, which is calculated with the following formula:

m=[(t-(M/T))], t€[0,T—1] 4)

The difference between this strategy and the one in the Amata adversarial training
method lies in the fact that the number of iterations m in this strategy starts from 0. That is,
the model’s adversarial training does not perform adversarial perturbation calculations in
the first stage. Only the number of stages M needs to be set, and the iteration number of
each stage is calculated using the floor function. Therefore, the range of m is [0, M — 1].

The key to the Fast-M adversarial training algorithm is to use a fixed large attack step
size and to increase the number of iterations M in stages for adversarial training. The
specific process is given in Algorithm 4.

Algorithm 4. Fast-M Adversarial Training

Input: Training rounds 1, training model fg, training dataset (x,y) and its size

N, perturbation radius ¢, attack step size &, number of stages M
Initialize 6 //Initialize model weight parameter €
for t=1—>7T-1 do

1
2
3 | m=[-/

4 for i=1—> N do

5 & = Uniform(—¢,¢) //Randomly initialized perturbation, bounded by size *¢
6 for j=0—->m do

7 0=0+a-sign(V;L(f,(x,+9),y,))

8 0 =clip(d,—¢,¢)

9

end
10 0=0 —VOL(fe(xl + 5),)/,) //Update model weight parameter &
11 end
12 end

A round of fast adversarial training can be split into a standard training round and
a round of FGSM adversarial perturbation calculation with random initialization. The
main increase in training time compared to standard training is the time used for backward
propagation in the additional round of FGSM adversarial perturbation calculation. For
one Epoch =T of fast adversarial training, the additional backward propagation count
is T (assuming training on a complete dataset and ignoring the batch size). Therefore,
if the Fast-M algorithm proposed in this paper is used for adversarial training, the total
additional backward propagation count N,;, at Epoch =T is as follows:

T-1

Nago =) (L(t- (M/T))]))

t=0

Table 1 shows the total number of backward passes required for different training
epochs and stage numbers M = 3, M = 4, and M = 5 with Fast-M adversarial training.
From the table, for M = 3, the number of required backward passes with our proposed
algorithm is roughly the same as that with standard fast adversarial training. For M = 5, the

Appl. Sci. 2024, 14, 4607

8 of 14

number of backward passes is roughly the same as that with two-iteration fast adversarial
training. Therefore, in theory, the training time of the Fast-3 algorithm is roughly the same
as that of fast adversarial training, while the training time of the Fast-5 algorithm is close to
the training time of two-iteration fast adversarial training.

Table 1. Backward propagation times of fast adversarial training under different training epochs and
different stage numbers M.

Epoch M=2 M=3 M=4 M=5 M=6 Fast Fast x 2
10 15 19 24 30 33 20 30
20 30 39 50 60 68 40 60
30 45 60 74 90 105 60 90
40 60 79 100 120 138 80 120
50 75 99 124 150 173 100 150

6. Experiments

To verify the effectiveness of the Fast-M adversarial training algorithm, a series of
comparative experiments are conducted with the MNIST, CIFAR10, and CIFAR100 datasets
in this chapter. Multiple neural network models are trained using various adversarial
training algorithms. Then, multiple adversarial attack algorithms are tested, and the results
are compared and evaluated with respect to classification accuracy and training time
against the results of the Fast-M adversarial training algorithm proposed in this paper.
All experiments on the MNIST dataset were run on a laptop with 1 NVIDIA GTX 950 m,
using LeNet as the backbone network. All experiments on the CIFAR10 dataset were run
on a single server with an NVIDIA Tesla P100, using pretrained ResNet18 as the back-
bone network. The experimental environment for both is Python 3.7. The deep learning
framework is Pytorch 1.7.

6.1. Verification of Fast-M on MNIST

The performance of fast adversarial training on the MNIST dataset is comparable
to that of PGD adversarial training but with significantly less time needed. This paper
compares fast adversarial training, PGD-20 adversarial training, and the proposed Fast-M
adversarial training on the MNIST dataset. Each of the three training methods is trained
for 10 rounds of adversarial training, with the training epochs ranging from Epoch = 5 to
Epoch = 50. A model is trained every five rounds, resulting in a total of 10 models with
different training epochs. The models are then evaluated, and the results are shown in
Figure 1.

From Figure 1b,c, the three adversarial training methods have similar defense capabil-
ities against PGD adversarial attacks. With the increase in the number of training rounds,
they all achieve 90% accuracy for PGD-20 and 80% accuracy for PGD-50 adversarial attacks.
However, in the case of fewer training rounds, the training effect of Fast-M adversarial
training is better than that of fast adversarial training. At the same time, from Figure 1d,
the training time of Fast-3 is essentially equivalent to that of fast. This indicates that on the
MNIST dataset, Fast-M can train a neural network model with an effect comparable to that
of fast adversarial training in the same amount of time.

However, the MNIST dataset is small, and the network model structure is relatively
simple, with low model capacity. Therefore, simple adversarial training quickly achieves
optimal robustness in a small amount of training time, which has limited reference value.
To address this, this paper conducts comparative experiments on the CIFAR10 dataset.

Appl. Sci. 2024, 14, 4607

9 of 14

Clean Accuracr/%

PGD-50 Attack Accuracr/%

100

98

96

94

90

100

80

60

40

20

100
;E’ 90 1
=
3
g
3
S 80
<
-
g
£
< 70
I
\
Q
o
—Oo— Fast & 60 —o— Fast
PGD-20 PGD-20
= Fast-3 —>— Fast-3
T T T T T 50 T T T T T
10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(a) (b)
40
—o— Fast
351 . PGD-20
= Fast-3
30
=
‘g 25
.2 -
= 20 4
g 8
EIS-
10 1 =il
—o— Fast > 2
PGD-20 5 prd
—— Fast-3 g
T T T T T 0 T T T T T
10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(c) (d)

Figure 1. Comparison of Fast-3 adversarial training and original fast adversarial training on the
MNIST dataset.: (a) accuracy for the original clean sample; (b) accuracy for a PGD-20 attack; (c) accu-
racy for a PGD-50 attack; (d) training time.

6.2. Verification of Fast-M on CIFAR10
6.2.1. Number of Iteration Stage Selection

The key to Fast-M adversarial training lies in dividing the adversarial training process
into several different stages. This is because different numbers of stages result in different
maximum iteration numbers for model training, which affects the training effect. Moreover,
having too many stages significantly increases the time required for adversarial training.
On the other hand, having too few stages may result in a poor or even no training effect.
Therefore, it is necessary to select a suitable number of training stages M.

This paper experiments with five different cases by setting M = 2, M = 3, M = 4,
M =5, and M = 6, while keeping the training step size & = 8/255. Each case is subjected
to 10 independent rounds of adversarial training with a gap of 5 rounds between 5 and
50 rounds, and the training time is recorded. Then, the models trained under each case
are evaluated using PGD-20 adversarial attacks, and the results are recorded. The specific
experimental results are shown in Figure 2.

From Figure 2b, it can be observed that with the increase in training rounds, the
difference in training time between different values of M gradually increases, which is
consistent with the theoretical data in Table 1. Moreover, from Figure 2a, the model’s
accuracy gradually improves with increasing M. When M = 4, the accuracy of the
adversarial training model for PGD-20 reaches a large and stable value. As M continues to
increase, the accuracy only slightly increases, while the training time increases significantly.
Therefore, on the CIFAR10 dataset, selecting M to be 4 or 5 is appropriate.

Appl. Sci. 2024, 14, 4607

10 of 14

55

50

s
by

PGD Accuracr/%
=

30

80

—0— M=2
704 —¢ M=3

w Y
= =)
L L

Train Time/min
+
(=]
2

—o— M=2

M=3 20 4
—e— M=4
—— M=§ 10
—h— M=6

T T T r T T T T T
20 30 40 50 0 10 20 30 40 50
Epoch Epoch

(a) (b)

Figure 2. Comparison of Fast-M adversarial training on CIFAR10 with different iteration stage
numbers M: (a) accuracy for a PGD-20 attack; (b) training time.

6.2.2. Training Step Size Selection

The effect of the training step size a on fast adversarial training was discussed above.
However, since Fast-M has internal iterations, a smaller training step size may lead to the
phenomenon of “catastrophic overfitting”. Therefore, in this paper, different training step
sizes « were compared under the parameters of M = 5 and € = 8/255. The training step
size was varied from 1/255 to 16/255, and the experimental results are shown in Figure 3.

—e&— PGD Acc

Accuracr/%
w
(=}

10 1

0 2 4 6 8 0 12 14 16
Train Step Size(x/255)

Figure 3. PGD attack accuracy of Fast-5 adversarial training with different training step sizes
on CIFAR10.

Figure 3 shows the PGD attack accuracy of Fast-5 adversarial training on the CIAFR10
dataset under different training step sizes. It can be seen from the figure that Fast-M
adversarial training can also experience “catastrophic overfitting”. However, a smaller
training step size « can also achieve good training results. When « is between 4 /255 and
12/255, the accuracy of the trained model for the PGD-20 attack is stable. The maximum
accuracy is achieved when & = 8/255. Therefore, the most appropriate choice for the
training step size « on the CIAFR10 dataset is approximately 8/255, which is consistent
with the perturbation limit range €.

6.2.3. Evaluation Comparison of Fast-M Adversarial Training

To demonstrate the effectiveness of the Fast-M adversarial training method, this
paper compares it with three other adversarial training methods: fast adversarial training
(e = 8/255, « = 10/255), free adversarial training (m = 8, ¢ = 8/255), and PGD adversarial
training (K = 7, € = 8/255, « = 2/255). The Fast-M method used in this paper takes
M =4, e = 8/255, and &« = 8/255. The training starts from Epoch = 5, with one model

Appl. Sci. 2024, 14, 4607

11 of 14

Clean Accuracr/%

100

90

80

70

60

trained every five epochs, until Epoch = 50. Ten different neural network models are
trained independently, and the training time is recorded. Then, the trained models are
tested for their accuracy based on the original clean samples and on the samples for the
PGD-20 (e = 8/255) attack. The results are shown in Figure 4.

55.0
—O— Fast
~—4— Free 525
—e— PGD-7 X
—e B 500
E
3 4754
<
% 4501
g
o 425
(\Il
Q
O 40.0
oy
37.5 1 —e— PGD-7
—>— Fast-4
T T T T T 35.0 T T T T T
10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(a) (b)

140

120

100

80 1

60

Train Time/min

40 1

0 10 20 30 40 50
Epoch

()

Figure 4. Comparison of Fast-M adversarial training and multiple adversarial training methods on
CIAFR10: (a) accuracy for the original clean sample; (b) accuracy for a PGD-20 attack; (c) training time.

As shown in Figure 4b, both Fast-4 adversarial training and PGD-7 adversarial training
achieved an accuracy of over 50% for the PGD-20 attack. Moreover, the accuracy of Fast-4
adversarial training was slightly higher than that of PGD-7 adversarial training. On the
other hand, the accuracies of free adversarial training and fast adversarial training for
the PGD-20 attack were both approximately 47%. It is also clear that the accuracy of fast
adversarial training for the PGD-20 attack did not exceed 50%, even as the number of
training rounds was increased, and remained at approximately 46%. In contrast, Fast-4
adversarial training and PGD-7 adversarial training under the same number of training
rounds easily achieved 50% accuracy under the same attack.

As shown in Figure 4a,b, although fast adversarial training does not perform well
for PGD-20 adversarial attacks, its evaluation accuracy for the original clean samples is
similar to that of the other three adversarial training methods. However, its advantage is
not significant, achieving an accuracy of approximately 85%, while the other three methods
achieve an accuracy of 83%. The gap in accuracy between the original clean samples and
PGD adversarial samples is relatively small, indicating a balance between the two. In
adversarial training, neural networks are trained to simultaneously handle adversarial
examples and clean examples. By minimizing the loss of adversarial examples, the network
learns the features of adversarial examples to more accurately identify and classify them.
However, during the adversarial training process, if not properly constrained, the neural
network model may overly focus on adversarial examples. This excessive attention can
lead to a decrease in classification accuracy when dealing with clean examples. Because

Appl. Sci. 2024, 14, 4607

12 of 14

the network learns how to differentiate adversarial examples, it may overfit the features of
adversarial examples and overlook the characteristics of clean examples.

As shown in Figure 4c, the training times of Fast-4 adversarial training and fast
adversarial training are much less than those of PGD-7 and free adversarial training (m = 8)
under the same number of training rounds. Furthermore, the training time of Fast-4
adversarial training is only slightly higher than that of fast adversarial training, is still
within the same range, and does not increase significantly. It is worth noting that free
adversarial training cannot benefit from cyclic learning as PGD adversarial training does,
so its training time is similar to that of PGD-7 adversarial training in the case of m = 8.

Therefore, based on the experimental results in Figure 4, the proposed Fast-M al-
gorithm is very effective. It improves the accuracy of fast adversarial training for PGD
adversarial attacks by over 5% while ensuring that the training time does not increase
significantly. Moreover, the accuracy after improvement is slightly higher than that of
traditional PGD-7 adversarial training.

To further demonstrate the effectiveness of the Fast-M adversarial training algorithm, it
is compared with various existing adversarial training algorithms under different parameter
settings. The comparison results are shown in Table 2.

Table 2. Comparison of various adversarial training algorithms on the CIFAR10 dataset after
30 rounds of training.

Algorithm Standard FGSM PGD-20 PGD-50 PGD-20 Training Time
(e = 8/255) (e = 8/255) (e = 8/255) (e =10/255) (min)
Fast 84.13% 54.8% 46.73% 46.28% 36.63% 25.670
Free (m = 4) 86.04% 53.92% 44.89% 44.57% 33.41% 43.820
Free (m = 8) 82.12% 53.93% 47.94% 47.76% 38.48% 85.819
PGD-7 81.26% 55.8% 50.99% 50.75% 42.14% 83.241
PGD-10 80.67% 55.45% 50.85% 50.76% 42.67% 112.321
Amata 80.64% 55.38% 50.05% 49.84% 41.44% 67.747
Fast-3 81.78% 55.88% 50.74% 50.51% 41.39% 25.892
Fast-4 81.42% 56.3% 51.32% 51.11% 42.65% 30.202
Fast-5 81.41% 56.16% 51.66% 51.42% 43.04% 35.126
Fast-6 81.30% 56.12% 51.57% 51.38% 43.10% 39.887

From the data in Figure 4, all the compared adversarial training algorithms reach a
stable accuracy for PGD adversarial attacks after 30 rounds of training and no longer have
significant changes. Therefore, all algorithms in this comparison experiment were trained
for 30 rounds, and their training times were recorded for comparison.

The algorithms compared in this experiment include fast, free (m = 4), free (m = 8),
PGD-7, PGD-10, Amata (Kmin = 2, Kmax = 10), and the proposed Fast-3, Fast-4, and Fast-5.
In addition to comparing training time, different perturbation ranges and different numbers
of iterations of PGD adversarial attacks were also added as further evaluation methods.
From the data shown in Table 2, the Fast-M adversarial training algorithm not only has a
significant advantage in training time but also has better accuracy than other compared
adversarial training algorithms under various attack methods, which sufficiently proves
the effectiveness of the Fast-M adversarial training algorithm.

6.3. Verification of Fast-M on CIFAR100

In order to further verify the validity of the Fast-M method, we utilized the more
complex PreActResNet34 architecture on the CIFAR100 dataset, which contains images
with more diverse content. The experimental results, as shown in the Table 3, reveal that
under PGD adversarial attacks on a more intricate dataset and network structure, the
original Fast method exhibited minimal defensive capabilities. Conversely, our proposed
Fast-M method demonstrated defense capabilities comparable to PGD adversarial training.
Specifically, when M = 5, the results indicate superior performance on both clean test data

Appl. Sci. 2024, 14, 4607

13 of 14

and under PGD-20 and PGD-50 adversarial attacks compared to PGD adversarial training.
Notably, the training time required is less than one-third of PGD-10, further validating that
our Fast-M adversarial training method achieves results akin to PGD adversarial training
at a significantly reduced training cost and in some cases surpasses it.

Table 3. Comparison of various adversarial training algorithms on the CIFAR100 dataset using
PreActResNet34 after 100 epochs of training.

. PGD-20 PGD-50 Training Time
Algorithm Standard (€ = 8/255) (€ = 8/255) (mii)
Fast 58.24% 0.54% 0.3 53.11
Free (m = 8) 49.13% 12.14% 11.93% 107.16
Free (m = 8) 56.06% 20.55% 20.26% 213.55
PGD-7 55.51% 20.32% 20.06% 211.32
PGD-10 54.89% 21.38% 21.15% 289.33
Fast-3 (ours) 59.02% 20.31% 20.01% 54.39
Fast-4 (ours) 57.81% 21.53% 21.28% 67.05
Fast-5 (ours) 57.78% 22.18% 21.88% 80.11

7. Conclusions

This paper proposes an improved Fast-M adversarial training algorithm based on the
fast adversarial training method. The Fast-M adversarial training algorithm presented in
this article can train a more robust neural network model in the same training time as the
fast adversarial training method. The model’s classification accuracy for PGD adversarial
attacks can reach the same level as a neural network model trained for more time using
PGD adversarial training or even slightly surpass it. Additionally, extensive comparative
experiments on the MNIST, CIFAR10, and CIFAR100 datasets were conducted. The experi-
mental results fully validate the effectiveness of the proposed method. However, compared
to PGD adversarial training, it does not show a significant improvement. This may be
due to the limitations imposed by the conventional FGSM adversarial perturbation. Using
FGSM adversarial perturbation for adversarial training does not yield a noticeable defense
effect against PGD adversarial attacks. Future research should focus on obtaining stronger
adversarial samples for adversarial training without significantly increasing the required
training time. Additionally, we intend to explore the utilization of approximation methods
and precomputing techniques to mitigate the computational complexity associated with
our proposed approach. One potential avenue involves precomputing a set of adversarial
samples and reusing them during the training process, thereby further reducing the train-
ing costs. We firmly believe that this research direction holds promise in enhancing the
practicality and efficiency of our method. We look forward to making significant strides
in this direction, striking a better balance between the computational efficiency of adver-
sarial training and the robustness of the trained models, thereby advancing the practical
application of adversarial training.

Author Contributions: Conceptualization, YM., D.A. and Z.G.; methodology, YM., D.A. and Z.G.;
software, Z.G.; validation, Y.M. and Z.G.; formal analysis, Z.G.; investigation, D.A. and Z.G.; resources,
D.A.; data curation, Z.G.; writing—original draft preparation, YM. and Z.G.; writing—review and
editing, YM., D.A. and Z.G.; visualization, Z.G.; supervision, D.A. and J.L.; project administration,
D.A. and J.L.; funding acquisition, Y M., D.A. and W.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 62173268, the National Postdoctoral Innovative Talents Support Program of China under Grant
BX20200272, the Natural Science Basic Research Program of Shaanxi under Grant 2021JQ-288, and
the Fundamental Research Funds for the Central Universities, CHD under Grant 300102320101.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2024, 14, 4607 14 of 14

Data Availability Statement: The original contributions presented in this study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Akhtar, N.; Mian, A. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access 2018, 6, 14410-14430.
[CrossRef]

2. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2013, arXiv:1312.6199.

3. Goodfellow, L].; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. In Proceedings of the International
Conference on Learning Representations, Banff, AB, Canada, 14-16 April 2014; Volume 101.

4. Wong, E.; Rice, L.; Kolter,].Z. Fast is better than free: Revisiting adversarial training. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6-9 May 2019; Volume 103.

5. Papernot, N.; McDaniel, P; Wu, X; Jha, S.; Swami, A. Distillation as a defense to adversarial perturbations against deep neural
networks. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22-26 May 2016;
pp. 582-597.

6. Metzen,]. H.; Genewein, T.; Fischer, V.; Bischoff, B. On detecting adversarial perturbations. In Proceedings of the International
Conference on Learning Representations, Toulon, France, 24-26 April 2017.

7. Feinman, R.; Curtin, R.R; Shintre, S.; Gardner, A.B. Detecting adversarial samples from artifacts. arXiv 2017, arXiv:1703.00410.

8. Pinot, R,; Ettedgui, R.; Rizk, G.; Chevaleyre, Y.; Atif,]. Randomization matters how to defend against strong adversarial attacks.
In Proceedings of the 37th International Conference on Machine Learning, PMLR, Virtual Event, 13-18 July 2020; pp. 7717-7772.

9. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks.
In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April-3 May 2018;
Volume 97.

10. Shafahi, A.; Najibi, M.; Ghiasi, M.A.; Xu, Z.; Dickerson, J.; Studer, C.; Davis, L.S.; Taylor, G.; Goldstein, T. Adversarial training for
free! In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8—14 December 2019;
Volume 32.

11. Smith, L.N.; Topin, N. Super-convergence: Very fast training of neural networks using large learning rates. In Proceedings of the
Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, SPIE, Baltimore, MD, USA, 14-18 April
2019; Volume 11006, pp. 369-386.

12. Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.; Elsen, E.; Garcia, D.; Ginsburg, B.; Houston, M.; Kuchaiev, O.; Venkatesh, G.;
et al. Mixed precision training. In Proceedings of the International Conference on Learning Representations, Vancouver, BC,
Canada, 30 April-3 May 2018; Volume 95.

13. Ye, N, Li, Q.; Zhou, X.Y.; Zhu, Z. Amata: An annealing mechanism for adversarial training acceleration. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2-9 February 2021; Volume 35, No. 12. pp. 10691-10699.

14. Sriramanan, G.; Addepalli, S.; Baburaj, A. Guided adversarial attack for evaluating and enhancing adversarial defenses. In Pro-
ceedings of the Advances in Neural Information Processing Systems, Virtual, 6-12 December 2020; Volume 33, pp. 20297-20308.

15. Kurakin, A.; Goodfellow, L].; Bengio, S. Adversarial examples in the physical world. In Artificial Intelligence Safety and Security;
Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; pp. 99-112.

16. Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. Deepfool: A simple and accurate method to fool deep neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016;
pp. 2574-2582.

17. Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on
Security and Privacy (SP), San Jose, CA, USA, 22-24 May 2017; pp. 39-57.

18. Su,].; Vargas, D.V,; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 2019, 23, 828-841.
[CrossRef]

19. Papernot, N.; McDaniel, P.; Goodfellow, L; Jha, S.; Celik, Z.B.; Swami, A. Practical black-box attacks against deep learning systems
using adversarial examples. arXiv arXiv:1602.02697, 2016.

20. Chen, PY,; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.J. Zoo: Zeroth order optimization based black-box attacks to deep neural

networks without training substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
Dallas, TX, USA, 3 November 2017; pp. 15-26.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.1109/TEVC.2019.2890858

	Introduction
	Related Work
	Preliminary
	Adversarial Attack
	Fast Gradient Sign Method
	Projected Gradient Descent

	Discussion of Typical Adversarial Training Algorithms
	PGD Adversarial Training
	Free Adversarial Training
	Fast Adversarial Training

	Fast-M Adversarial Training Algorithm
	Design Rationale
	Method

	Experiments
	Verification of Fast-M on MNIST
	Verification of Fast-M on CIFAR10
	Number of Iteration Stage Selection
	Training Step Size Selection
	Evaluation Comparison of Fast-M Adversarial Training

	Verification of Fast-M on CIFAR100

	Conclusions
	References

