
Citation: Chen, Q.; Zhang, F.; Su, L.;

Lin, B.; Chen, S.; Zhang, Y. State

Parameter Fusion Estimation for

Intelligent Vehicles Based on

IMM-MCCKF. Appl. Sci. 2024, 14,

4495. https://doi.org/10.3390/

app14114495

Academic Editor: Francesco

Liberato Cappiello

Received: 20 April 2024

Revised: 18 May 2024

Accepted: 21 May 2024

Published: 24 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

State Parameter Fusion Estimation for Intelligent Vehicles Based
on IMM-MCCKF
Qi Chen 1, Feng Zhang 1,* , Liang Su 2,*, Baoxing Lin 2, Sien Chen 3 and Yong Zhang 1

1 College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China;
22014080006@stu.hqu.edu.cn (Q.C.); zhangyong@hqu.edu.cn (Y.Z.)

2 King Long United Automotive Industry, Xiamen 361021, China; linbx@mail.king-long.com.cn
3 School of Navigation, Jimei University, Xiamen 361021, China; sienchen@jmu.edu.cn
* Correspondence: zhangfeng@hqu.edu.cn (F.Z.); sul@mail.king-long.com.cn (L.S.)

Abstract: The prerequisite for intelligent vehicles to achieve autonomous driving and active safety
functions is acquiring accurate vehicle state parameters. Traditional Kalman filters often under-
perform in non-Gaussian noise environments due to their reliance on Gaussian assumptions. This
paper presents the IMM-MCCKF filter, which integrates the interacting multiple model theory (IMM)
and the maximum correntropy cubature Kalman filter method (MCCKF), for estimating the state
parameters of intelligent vehicles. The IMM-MCCKF successfully suppresses non-Gaussian noise by
optimizing a nonlinear cost function using the maximum correntropy criteria, allowing it to capture
and analyze signal data outliers accurately. The filter designs various state and measurement noise
submodels to adapt to the environment dynamically, thus reducing the impact of unknown noise sta-
tistical properties. Accurately measuring the velocity of a vehicle and the angle at which its center of
mass drifts sideways is of utmost importance for its ability to maneuver, maintain stability, and ensure
safety. These parameters are critical for implementing advanced control systems in intelligent vehicles.
The study begins by constructing a nonlinear Dugoff tire model and a three-degrees-of-freedom
(3DOF) vehicle model. Subsequently, utilizing low-cost vehicle sensor signals, joint simulations
are conducted on the CarSim-Simulink platform to estimate vehicle state parameters. The results
demonstrate that in terms of estimation accuracy and robustness in non-Gaussian noise scenarios,
the proposed IMM-MCCKF filter consistently outperforms the MCCKF and CKF algorithms.

Keywords: vehicle state estimation; maximum correlation entropy cubature Kalman filter; interacting
multiple model algorithm; non-gaussian noise

1. Introduction

Accurately mastering intelligent vehicles’ relevant driving state parameters is neces-
sary for innovative vehicles to incorporate autonomous driving and active safety features.
Smart cars, which combine cutting-edge tech like AI, sensors, and the IoT/Internet of
Things have autonomous perception, planning, and decision-making capabilities [1,2].
This integration of technologies significantly improves vehicle safety, stability, comfort,
and convenience [3,4]. Appropriate driving judgments can be made using parameters
such as vehicle speed and centroid lateral angle, which provide crucial information about
the vehicle’s current motion condition [5]. These parameters underpin functions such as
stability control, motion planning, and road condition estimation in intelligent vehicles
and are now a focal point of current research [6]. Real-time acquisition of these parameters
requires costly high-precision sensors, which are highly susceptible to noise interference,
leading to measurement errors and uncertainties. Unreliable data can lead to discrete
errors in vehicle controllers, resulting in severe consequences [7]. These critical parameter
estimates are often based on signals from low-cost sensors [8]. Although low-cost sensors
reduce the overall system cost, their signal accuracy and stability are relatively poor. Given
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the vehicle’s actual working environment’s complexity and noise uncertainty, estimation
accuracy and issues such as divergence are reduced.

Estimating vehicle status parameters using the Kalman filter [9] and its improved
algorithm is standard practice. To estimate the parameters of an electric tram’s servo
control system, Wang X et al. [10] suggested an enhanced SAKF. The capacity to detect
uncertain disturbances is improved by incorporating adaptive fuzzy clustering technology.
Simulations have shown that it offers higher estimation accuracy and robustness than
traditional EKF. Wang Y et al. [11] developed a fault-tolerant EKF that can adapt to the
loss of sensor input and still estimate the vehicle’s status. Simulations have demonstrated
superior adaptability to sensor data loss and parameter disturbances under complex driving
conditions compared to the traditional EKF filter.

To overcome the limitations of EKF in handling nonlinear systems, scholars have
proposed the UKF arithmetic [12]. UKF avoids the Taylor expansion and linearization of
nonlinear functions by selecting Sigma points, eliminating the need to compute Jacobian
matrices and avoiding truncation errors. Selecting Sigma points helps capture the system’s
nonlinear relationships better, improving state estimation accuracy. Zhang Y et al. [13] pro-
posed an enhanced AUKF. It enhances the noise estimator by modifying the forgetting factor,
leading to a more precise estimation of vehicle state parameters. Katriniok A et al. [14]
proposed an EKF-based adaptive vehicle state estimator that uses a dynamic vehicle model
to calculate the yaw rate, longitudinal and lateral speeds, and other relevant parameters.
According to the experimental results, the proposed technique is effective under typical
and perturbed vehicle characteristics.

To overcome the limitations of UKF in processing high-dimensional nonlinear systems,
Arasaratnam I et al. [15] utilized the spherical-radial volume rule to implement a CKF. It
avoids issues that may arise with UKF in high-dimensional settings and demonstrates
superior performance in complex system state estimation. Wang Y et al. [16] proposed an
RCKF that improves vehicle estimation performance by enhancing the robustness of the
Kalman filter. Hamza Benzerrouk et al. [17] proposed a novel high-order CKF method and
applied it to state estimation in quadrotor UAVs. Simulation results show that the HDCKF
provides higher estimation accuracy while maintaining low computational complexity,
making it well suited for real-time state estimation in high-dimensional nonlinear systems.

In addition to traditional filtering algorithms, other researchers have explored integrat-
ing deep learning techniques to estimate vehicle state parameters efficiently. Kim J et al. [18]
suggested an adaptive filter that utilizes dual deep neural networks for vehicle state esti-
mation. This method utilizes deep learning capabilities to enhance the adaptive filtering
process, offering a more accurate and robust alternative in dynamic and complex envi-
ronments, thus demonstrating the potential application of deep learning in vehicle state
estimation. To enable intelligent vehicles to monitor and manage vehicle states more com-
prehensively, analyzing battery state parameters has become particularly important, in
addition to estimating dynamic parameters. Khalid et al. [19] introduced a technique using
exogenous functions to determine the parameters of vehicle batteries in V2G systems. This
approach integrates real-time estimation with actual measurement data, thus improving
the system’s robustness and accuracy.

Most current algorithms for vehicle state parameter estimation research assume that
noise follows a Gaussian distribution. However, in practical applications, sensors are
susceptible to external environmental interference, leading to anomalous data in mea-
surements. Noise near these anomalies exhibits heavy-tailed distribution characteristics,
reflecting non-Gaussian noise properties [20–22]. As a result, researchers have suggested
enhancing Kalman filtering’s estimation effectiveness in extreme conditions by combining
it with the MCC [23–27]. In non-Gaussian situations, the MCCKF is more appropriate for
state estimation of high-dimensional nonlinear systems because it combines the cubature
Kalman algorithm with the maximum correntropy criterion.

In practical applications, due to the variable road conditions faced by vehicles, relying
on a single model for state estimation often fails to accurately capture the operational state
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of the car under different working conditions [28]. To address this issue, scholars have
proposed the interacting multiple model (IMM) theory, which allows multiple models with
different characteristics to operate in parallel [29]. Location and status estimation systems
for vehicles have extensively used this technique [30], enabling state estimation filters to
adapt more flexibly to changes in the noise environment, thereby increasing the accuracy
and robustness of state estimation. Choi JW et al. [31] proposed an IMM-RUKF algorithm
for all-terrain off-road ground target tracking. This algorithm performs better in tracking
highly maneuverable targets across various scenarios than a single model.

Notably, the MCC is integrated within the KF framework. The CKF reduces com-
putational complexity and enhances estimation stability in high-dimensional nonlinear
systems compared to the UKF. Hence, this study selects CKF as the framework for de-
riving the MCCKF filtering algorithm. Considering the unknown statistical noise char-
acteristics in practical applications, this study introduces the IMM theory, combining
MCCKF with IMM to propose the IMM-MCCKF algorithm for high-accuracy estimation of
vehicle state parameters.

This paper makes the following contributions: (1) The MCCKF algorithm is derived
from MCC and CKF. Then, the IMM theory is introduced, leading to the derivation of
the IMM-MCCKF algorithm. A method for estimating vehicle state parameters using
IMM-MCCKF is developed for environments with non-Gaussian noise. (2) Under condi-
tions of double lane-change and sinusoidal steering, simulation studies were performed
to confirm the efficacy of the suggested strategy. The outcomes prove that the suggested
IMM-MCCKF approach can produce precise estimates of vehicle state parameters from
inexpensive sensor signals while effectively mitigating the effects of unknown statistical
properties of noise. When tested in environments with non-Gaussian noise, it outperforms
MCCKF and CKF in estimating accuracy and robustness.

This study is organized according to the following structure:
Section 2 completes the derivation and modeling of the vehicle and tire models.

Section 3 provides a detailed derivation of the IMM-MCCKF algorithm. Section 4 designs
the simulation experiments under two working scenarios and completes the co-simulation
based on CarSim-Simulink. Section 5 presents a quantitative analysis and discussion of the
simulation results. Section 6 summarizes the experimental results and the entire paper.

2. Vehicle Dynamics Modeling
2.1. Vehicle Model

Accurately acquiring dynamic state parameters during vehicle operation is fundamen-
tal for controlling vehicle dynamics. Nevertheless, while a vehicle is in motion, it behaves as
a highly complex system that is not linear. The conventional two-degrees-of-freedom model
(2-DOF), which assumes linearity, cannot adequately represent the vehicle’s nonlinear state.
This study proposes a nonlinear 3-DOF vehicle model. Figure 1 is the 3-DOF model and
makes the following assumptions:

(1) The vehicle’s center of gravity is located at the origin of the coordinate system and
possesses structural symmetry;

(2) The degrees of freedom in pitch, roll, and vertical directions are disregarded, along
with the influences of air resistance and slope resistance;

(3) The steering system’s impact is disregarded, with the front wheel angle selected as
the system’s input;

(4) The body is rigidly connected to the chassis, with the role of the vehicle suspension
neglected;

(5) The vehicle’s mass distribution is assumed to be uniform and constant without con-
sidering mass transfer during acceleration or deceleration.
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Figure 1. The 3-DOF model represents the dynamics of a vehicle.

Below are the equations for the 3-DOF vehicle dynamics:

m(
·
vx − vyr) = (Fx11 + Fx12) cos δ − (Fy11 + Fy12) sin δ + Fx21 + Fx22 (1)

m(
·
vy + vxr) = (Fx11 + Fx12) sin δ + (Fy11 + Fy12) cos δ + Fy21 + Fy22 (2)

Iz
·
r = [(Fx11 + Fx12) sin δ + (Fy11 + Fy12) cos δ]l f

+[(Fx11 + Fx12) cos δ + (Fy11 − Fy12) sin δ] tw1
2

+(Fx21 + Fx22)
tw2
2 − (Fy21 + Fy22)lr

(3)

where Fxij and Fyij indicate the longitudinal and lateral forces the tires exert, respectively
(ij = 11, 12, 21, 22). tw1, and tw2 represent the track width of the front and rear wheels,
respectively.Vx, Vy represent the longitudinal and lateral speeds at the center of mass of
the vehicle, respectively. m denotes the vehicle’s curb weight. l f and lr denote the front
and rear axle distances to the center of mass, respectively. δ denotes the steering angle
of the front wheels.

2.2. Tire Model

Instead of relying on theoretical frameworks, tire semi-empirical models incorporate
realistic data and provide advantages such as streamlined calculations, enhanced real-
time performance, and increased accuracy [32]. The Magic Formula and Dugoff tire
models are among the most commonly used. Given the need for real-time computation
and computational efficiency, this study utilizes the Dugoff tire model. The following
calculation formula is obtained by disregarding the camber angle and concentrating just on
the tire’s longitudinal and lateral forces:

Fxij = µF0
z · Cxij

λij

1 − λij
· f (U) (4)

Fyij = µF0
z · Cyij

tan(αij)

1 − λij
· f (U) (5)

f (U) =

{
U(2 − U), U < 1
1, U ≥ 1

(6)

L =
(1 − λij)

2
√

C2
xijλ

2
ij + C2

yij

(
tan
(
αij
)
)

2
(7)

where µ stands for the road adhesion coefficient. The boundary condition U is used
to determine the current state of each tire and vcij represents the wheel center veloc-
ity. Cx indicates the lateral stiffness of the tire. Cy indicates the longitudinal stiffness
of the tire. λij represents the longitudinal slip coefficient of the vehicle. αij determines
the tire slip angle.
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The formula for calculating the wheel center velocity for each wheel is as follows:

vc f l,c f r = (vx ∓
B f

2
r) · cos δ + (vy + ar) · sin δ (8)

vcrl,crr = vx ∓
Br

2
r (9)

where B f , Br respectively, represent the wheelbases of the front and rear wheels of the vehicle.
By replacing the calculated wheel center velocity for each wheel, it is possible to

determine the longitudinal slip ratio for each wheel.

λij =


vij−ωijRe

vij
, Braking

ωijRe−vij
vij

, Drive
(10)

The slip angle of the tires can be determined using the following formulas.

α f l, f r = δ − arctan

 vy + ar

vx ∓
B f
2 r

 (11)

αrl,rr = δ − arctan

(
vy − br

vx ∓ Br
2 r

)
(12)

3. Design of Vehicle State Estimator Based on IMM-MCCKF

The CKF assumes that noise follows a Gaussian distribution and demonstrates robust
estimation performance in environments with Gaussian noise. However, in practical
vehicular environments, noise frequently exhibits non-Gaussian characteristics, leading to
diminished performance of the CKF. The MCC is a statistical analysis and signal processing
strategy that is highly effective in dealing with noise that has non-Gaussian distributions.
Based on the concept of correntropy, it estimates signals by optimizing a nonlinear cost
function, thereby enhancing the capability to capture and process signals with heavy tails
or outliers. Consequently, integrating the MCC with the CKF enhances the latter’s ability to
suppress non-Gaussian noise. In a single MCCKF filter, the noise matrix remains constant,
hindering timely and accurate responses to changes in the system model, which can result in
estimation errors. The IMM theory facilitates the parallel operation of multiple submodels,
each with distinct noise characteristics, thereby mitigating the impact of statistical noise
uncertainty. Therefore, this study proposes the IMM-MCCKF algorithm.

3.1. Vehicle State-Space Model

Based on Equations (1)–(3), the vehicle’s longitudinal, lateral, and yaw dynamics are
formulated as recursive discrete state equations, as illustrated below:

x(k) = f (x(k − 1), u(k − 1) + v(k − 1))
z(k) = h(x(k), u(k)) + w(k)

(13)

where x(k) represents the state vector and z(k) represents the measurement vector. The
system noise v(k) is characterized by its covariance array Q. The measurement noise w(k)
is defined by its covariance array R.

The vehicle’s state and measurement models, derived from discretizing Equations (1)–(3)
with the first-order Euler method, are expressed as follows:
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 vx(k)
vy(k)
r(k)

 =



vx(k − 1) + [mr(k − 1)vy(k − 1) + (Fx11(k − 1) + Fx12(k − 1)) cos δ f (k − 1)
+Fx21(k − 1) + Fx22(k − 1)− (Fy11(k − 1) + Fy12(k − 1)) sin δ f (k − 1)]T/m;
vy(k − 1) + [−mr(k − 1)vx(k − 1) + (Fx11(k − 1) + Fx12(k − 1)) sin δ f (k − 1)
+(Fy11(k − 1) + Fy12(k − 1)) cos δ f (k − 1) + Fy21(k − 1) + Fy22(k − 1)]T/m;
r(k − 1) + [(Fx11(k − 1) + Fx12(k − 1))l f sin δ f (k − 1)
+(Fx12(k − 1)− Fx11(k − 1)) cos δ f (k − 1)tw1/2+
(Fx22(k − 1)− Fx21(k − 1))tw1/2 + (Fy11(k − 1) + Fy12(k − 1))l f cos δ f (k − 1)
+(Fy11(k − 1)− Fy12(k − 1)) sin δ f (k − 1)tw2/2 − (Fy21(k − 1) + Fy22(k − 1))lr]T/Iz


(14)

 ax(k)
ay(k)
r(k)

 =

 [(Fx11(k) + Fx12(k)) cos δ f (k) + Fx21(k) + Fx22(k)− (Fy11(k) + Fy12(k)) sin δ f (k)]/m
[(Fx11(k) + Fx12(k)) sin δ f (k) + (Fy11(k) + Fy12(k)) cos δ f (k) + Fy21(k) + Fy22(k)]/m
r(k)

 (15)

3.2. Derivation of the Maximum Correntropy Criterion

Based on a specified joint distribution function Fpq(p, q), the correntropy criteria
quantify the degree of resemblance involving two independent variables P ∈ R and Q ∈ R.
The following is a mathematical definition of the idea of correntropy:

V(P, Q) = E[θ(P, Q)] =
∫

θ(P, Q)dFPQ(p, q) (16)

where θ refers to a translation-invariant kernel that satisfies Mercer’s theorem and E[·]
represents the expectation operator. The Gaussian kernel is a commonly selected kernel
function in correntropy applications.

θ(P, Q) = Hτ( f ) = exp
(
− f 2

2τ2

)
(17)

where τ > 0 represents the correntropy’s kernel bandwidth.
Due to the restricted size of samples used in real-world applications, the joint distri-

bution function FPQ(p, q) is typically unknown. Consequently, the associated entropy is
customarily approximated as follows:

V̂(P, Q) =
1
N

N

∑
i=1

Gτ( f (i)) (18)

where f (i) = p(i)− q(i), let {p(i), q(i)}N
i=1 be the N samples drawn from Fpq.

The Taylor series is used to enlarge the Gaussian kernel, as shown below:

V(P, Q) =
∞

∑
n=0

(−1)n

2nτ2nn!
E
[
(P − Q)2n

]
(19)

The related entropy is a calculated value determined by adding together all of the
even-order error variables, with the weighting of each variable being influenced by the
kernel bandwidth parameter.

With MCC, the goal function can be expressed in the following way when dealing
with inaccurate data { f (i)}Ni = 1:

JMCC =
1
N

N

∑
i=1

Gτ( f (i)) (20)
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3.3. Derivation of the Cubature Kalman Filter Algorithm

The CKF is particularly well suited for state estimation in high-dimensional systems.
The complete algorithm for the CKF is as follows [32]:

ξi =
√

n[1]i (21)

ωi =
1

2n
i = 1, 2, . . . , 2n (22)

3.3.1. Predict

X(i,k|k−1) = chol(P(k−1|k−1))ξi + x̂(k−1|k−1) (23)

where P(k−1|k−1) represents the state error covariance matrix, and chol{} represents the
Cholesky decomposition of the matrix.

Determine the cubature points following the propagation of the nonlinear state equation.

X∗
(i,k|k−1) = f

(
X(i,k|k−1), uk−1

)
(24)

The forecast state is calculated using Equation (25).

x̂(k−1|k−1) =
N

∑
i=1

ωiX∗
(i,k|k−1) (25)

Determine the predicted error covariance matrix using Equation (26).

P(k−1|k−1) =
N

∑
i=1

ωiX∗
(k|k−1)

(
X∗
(k|k−1)

)T
− x̂(k|k−1)x̂

T
(k|k−1) + Q(k−1) (26)

3.3.2. Update

The cubature points are calculated using Equation (27).

X(i,k|k−1) = chol
(

P(k|k−1)

)
ξi + x̂(k|k−1) (27)

The propagated cubature points of the nonlinear state equation are calculated using
Equation (28).

Z∗
(i,k|k−1) = h

(
X(i,k|k−1), uk

)
(28)

The measured state is estimated using Equation (29).

ẑ(k|k−1) =
N

∑
i=1

ωi Z∗
(i,k|k−1) (29)

The innovation error covariance matrix is estimated using Equation (30).

Pzz
(k|k−1) =

N

∑
i=1

ωi Z∗
(k|k−1)

(
Z∗
(k|k−1)

)T
− ẑ(k|k−1) ẑ

T
(k|k−1) + Rk (30)

The cross-covariance matrix is estimated using Equation (31).

Pxz
(k|k−1) =

N

∑
i=1

ωiX(i,k|k)

(
Z∗
(i,k|k−1)

)T
− x̂(k|k−1) ẑ

T
(k|k−1) (31)
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The Kalman gain, updated state, and the error covariance matrix are estimated using
Equations (32)–(34).

Kk = Pxz
(k|k−1)

(
Pzz
(k|k−1)

)−1
(32)

x̂(k|k) = x̂(k|k−1) + Kk

(
zk − ẑ(k|k−1)

)
(33)

P(k|k) = P(k|k−1) − KkPzz
(k|k−1)K

T
k (34)

3.4. Derivation of the MCCKF

Against non-Gaussian noise, correlation entropy performs very well as a suppressor.
Due to the noise-sensitive characteristics of the CKF filtering algorithm, combining MCC
and CKF facilitates the derivation of the MCCKF algorithm.

Regarding the nonlinear system represented by Equation (13), the nonlinear recursive
model is constructed in conjunction with Equation (25), as outlined below:[

x̂(k|k−1)
zk

]
=

[
xk

h(xk)

]
+ χk (35)

where

χk =

[
−
(

xk − x̂(k|k−1)

)
vk

]
(36)

The following is a representation of the covariance.

E
[
χkχT

k
]
=

[
P(k|k−1) 0
0 Rk

]
= VkVT

k

=

[
V(p,k|k−1) 0
0 V(R,k)

][
V(p,k|k−1) 0
0 V(R,k)

]T (37)

Multiplying Equation (36) from the left yields the solution V−1
k to Equation (36).

yk = d(xk) + fk (38)

where yk = V−1
k

[
x̂(k|k−1)

zk

]
, d(xk) = V−1

k

[
xk

h(xk)

]
.

Subsequently, using MCC as a basis, define the cost function:

JMCC(xk) =
1
N

N

∑
i=1

Gτ

(
y(i,k) − di(xk)

)
(39)

where the jth row of d(xk) is represented by di(xk), and xk is the most effective solution
obtained by substituting the relevant variables into the equation.

∂JMCC(xk)

∂xk
= 0 (40)

Then, this results in the following equation:(
∂d(xk)

∂xk

)T
Wk( d(xk)− yk) = 0 (41)
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where the anticipated state error and the measurement error are quadratically weighted

using the covariance matrix Wk =

[
W(x,k) 0

0 W(x,z)

]
, W(x,k) and W(x,z) are defined as follows:

f(i,k) = y(i,k) − di(xk), w(x,k) = diag(Gτ( f1,k), · · · , Gτ( fn,k)),

W(z,k) = diag
(

Gτ

(
f(n+1,k)

)
, · · · , Gτ

(
f(n+p,k)

)) (42)

where the components of vector a are used to construct the diagonal matrix diag(a). Since
h(xk) is nonlinear, it can be further expanded at the current estimate x̂t−1

(k|k) as follows:

∂d
(

x̂t−1
(k|k)

)
∂x̂t−1

(k|k)

T

Wt−1
k

 d
(

x̂t−1
(k|k)

)
+

∂d
(

x̂t−1
(k|k)

)
∂x̂t−1

(k|k)

(
xk − x̂t−1

(k|k)

)
− yk

 = 0 (43)

where Wt−1
k and x̂t−1

(k|k) are variables corresponding to the fixed-point algorithm at t − 1.

Defining Dt−1
k = ∂d

(
x̂t−1
(k|k)

)
/∂x̂t−1

(k|k), the following results can be derived.

x̂t−1
(k|k) = x̂(k|k) + Kt−1

k

(
zk − h

(
x̂t−1
(k|k)

)
− Ht−1

k

(
x̂(k|k−1) − x̂t−1

(k|k)

))
(44)

By applying the matrix inversion theorem, Equation (44) can be rewritten as follows:

x̂t
(k|k) = x̂(k|k) + Kt−1

k

(
zk − h

(
x̂t−1
(k|k)

)
− Ht−1

k

(
x̂t
(k|k−1) − x̂t−1

(k|k)

))
(45)

where Ht−1
k = ∂h

(
x̂t−1
(k|k)

)
/∂x̂t−1

(k|k).
From which it can be derived that

Kt−1
k = Pt−1

(k|k)

(
Ht−1

k

)T
(

Ht−1
k Pt−1

(k|k)

(
Ht−1

k

)T
+ Rt−1

k

)−1
(46)

Pt−1
(k|k) = V(p,k|k−1)

(
Wt−1

(x,k)

)−1
VT
(p,k|k−1) (47)

Rt−1
k = V(R,k)

(
Wt−1

(z,k)

)−1
VT
(R,k) (48)

Wt−1
(x,k) = diag

(
Gτ

(
f t−1
(1,k)

)
, · · · , Gτ

(
et−1
(n,k)

))
(49)

Wt−1
(z,k) = diag

(
Gτ

(
f t−1
(n+1,k)

)
, · · · , Gτ

(
f t−1
(n+p,k)

))
(50)

f t−1
(i,k) = y(i,k) − di

(
x̂t−1
(k|k)

)
(51)

The covariance is represented by Equation (52).

Pt
(k|k) =

(
In − Kt−1

k Ht−1
k

)
P(k|k−1)

(
In − Kt−1

k Ht−1
k

)T
+ Kt−1

k Rk

(
Kt−1

k

)T
(52)

3.5. Derivation of the IMM-MCCKF Algorithm

The IMM algorithm features adaptive adjustments that enable real-time probability
modifications for each submodel. Using the probability transition matrix, the output in-
variably favors the submodel with the minimum error [33]. Although the MCCKF can
effectively suppress non-Gaussian heavy-tailed noise, a fixed-noise matrix reduces estima-
tion accuracy when the system model undergoes sudden noise changes. Consequently, this
paper integrates the IMM with MCCKF to develop the IMM-MCCKF algorithm, addressing
the decreased accuracy in MCCKF during sudden model noise fluctuations. Each submodel
employs identical state and measurement vectors, with the MCCKF employed to construct
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the filters, thereby minimizing the impact of uncertainty from prior noise statistical data.
The specific derivation process is outlined below:

p =

 p11 · · · p1r
· · · · · · · · ·
pr1 · · · prr

 (53)

where p represents the Markov probability transition matrix.
Figure 2 shows the iterative process of the IMM-MCCKF.
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3.5.1. Interaction Input

X̂(i,k−1|k−1) represents the state estimation results of each filter from the previous time
step. Similarly, µi

k−1 describes the model probabilities of each filter of the prior time step.
The state estimation value X̂(0j,k−1|k−1) and covariance P(0j,k−1|k−1) are calculated based on
X̂(i,k−1|k−1) and µi

k−1.
The obtained estimation values are set as the initial values for the IMM algorithm. The

computation method proceeds as detailed below [7]:

µ(ij,k−1|k−1) =

r
∑

i=1
pijµ(i,k−1)

cj
(54)

where cj =
r
∑

i=1
pijµ(i,k−1).

X̂(0j,k−1|k−1) =
r

∑
i=1

X̂(i,k−1|k−1)µ(ij,k−1|k−1) (55)

P(0j,k−1|k−1) =
r
∑

i=1
µ(ij,k−1|k−1)

{
P(i,k−1|k−1)+[

X̂(i,k−1|k−1) − X̂(0j,k−1|k−1)

]
·
[

X̂(i,k−1|k−1) − X̂(0j,k−1|k−1)

]T
} (56)

3.5.2. Model Filtering

Based on the MCCKF iteration process, x̂(0j,k−1|k−1) and covariance P(0j,k−1|k−1) from
the interaction is substituted into the jth model, resulting in the estimation value x̂(j,k|k),
covariance matrix P(j,k|k), measurement output ẑ(j,k−1|k−1), and corresponding covariance
matrix Pzz

(j,k|k−1) after model filtering.
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1. Update of the probability model.

The probability distribution function of the jth model:

Λk =
1

(2π)n/2
∣∣∣S(j,k)

∣∣∣1/2 exp
{
−1

2
vT

j (S(j,k))
−1vj

}
(57)

v(j,k) = zk − ẑ(j,k−1|k−1) (58)

S(j,k) = Pzz
(j,k|k−1) (59)

Model j’s probability:
µ(j,k) = Λ(j,k)cj/c (60)

c =
r

∑
j=1

Λ(j,k)cj (61)

2. Output interaction:

x̂(k|k) =
r

∑
j=1

x̂(j,k|k)µ(j,k) (62)

P(k|k) =
r

∑
j=1

µ(j,k)

{
P(j,k|k) +

[
x̂(j,k|k) − x̂(k|k)

]
·
[
x̂(j,k|k) − x̂(k|k)

]T
}

(63)

The derivation of the IMM-MCCKF is completed as outlined above, with the pseu-
docode for the IMM-MCCKF presented in Algorithm 1.

Algorithm 1: IMM-MCCKF Pseudocode.

For i = 1: N
1 Input: x̂(i,k−1|k−1), P(i,k−1|k−1), Q(k−1), Rk, zk, pij, τ, ε

2 Interaction
Using Equation (54) to calculate µ(ij,k−1|k−1)
Using Equations (55) and (56) to initialize x̂(0j,k−1|k−1) and P(0j,k−1|k−1)

3 Model Filtering
Using Equations (25) and (26) to calculate x̂(k−1|k−1)and P(k|k−1)
Using Equations (29) and (31) to calculate ẑ(k|k−1)and Pxz

(k|k−1)
Using Cholesky decomposition to calculate V(p,k|k−1) and V(R,k)
Let t = 1, x̂0

(k|k) = x̂(k|k−1) and repeat

Using Equations (49) and (50) to calculate Wt−1
(x,k) and Wt−1

(z,k)
Using Equations (45)–(48) to calculate x̂t

(k|k)
if
∥∥∥x̂t

(k|k) − x̂t−1
(k|k)

∥∥∥/
∥∥∥x̂t−1

(k|k)

∥∥∥ ≥ ε, Update t,t = t + 1

Using Equation (52) to calculate Pt
(k|k)

4 Model Probability Update
Using Equations (57)–(59) to calculate Λk
Using Equations (60) and (61) to calculate µ(j,k)
Using Equations (62) and (63) to calculate x̂(k|k) and Pk|k

5 Output: x̂(k|k) and Pk|k
end

4. Simulation Verification
4.1. Configuration of Simulation Experiment Environment

A collaborative simulation was conducted using MATLAB/Simulink and the vehi-
cle simulation program CarSim to assess the efficacy and accuracy of the IMM-MCCKF
technique in estimating vehicle state parameters. Starting with a C-class car model from
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CarSim, building an electric vehicle model with distributed drive. Additionally, a drive mo-
tor model was constructed using MATLAB/Simulink. The simulation sampling time was
configured to 0.001 s, which allowed for the input of sensor signals necessary for estimating
the vehicle’s state in Simulink. Furthermore, non-Gaussian noise was introduced into the
sensor input signals to assess the algorithm’s estimation performance under non-Gaussian
noise conditions. Table 1 contains the whole set of parameters for the C-class vehicle model,
and Figure 3 shows the procedure of the estimate algorithm.

Table 1. The simulation parameter table for a C-class vehicle in CarSim.

Abbreviation Parameter Name Value

a The distance from the front axle to the center 1.015 m
m Mass of vehicle of gravity 1270 kg
w Track width 1.675 m

b Distance from the front to the rear to the chassis’s
midpoint 1.895 m

hcog Height of the center of gravity 0.54 m
R Effective radius 0.325 m
Iz Yaw moment of inertia 1536.7 kg·m2Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 22 
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An IMM-MCCKF vehicle state parameter estimator was developed in MATLAB/Simulink
and designed to test two vehicle operating scenarios: double lane-change and sinusoidal
steering. While maintaining consistent input parameters, the MCCKF and CKF algorithms
were compared in simulation experiments.

The Markov transition matrix in this paper is configured according to Equation (64):

p =

0.98 0.01 0.01
0.01 0.98 0.01
0.01 0.01 0.98

 (64)
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During the actual operation of the vehicle, sensor measurements can be affected by
outliers, rendering sensor noise typically non-Gaussian. This paper models the sensor
signals that occur during the operation of a vehicle. The system’s process and measurement
noise assumes a non-Gaussian distribution with heavy tails. The model adheres to the
specified covariance matrix criteria.

Q ∼ 0.20, vk ∼ 0.8N(0, 0.001) + 0.2N(0, 1)
Q ∼ 0.20, wk ∼ 0.8N(0, 0.001) + 0.2N(0, 1)

(65)

Considering the uncertainty in process and measurement noise during actual ve-
hicle operation, different noise levels are empirically assigned to the submodels of the
IMM-MCCKF algorithm as follows:

Q1 = diag([0.208, 0.208, 0.208])
R1 = diag([0.208, 0.208, 0.208])
Q2 = 10Q1, R2 = 10R1
Q3 = 100Q2, R3 = 100R2

(66)

where 1, 2, and 3 represent submodel 1, submodel 2, and submodel 3, respectively.
Both submodels have process and measurement noise that is ten and a hundred times

higher than the original model. This paper compares the MCCKF and CKF algorithms
using noise parameters that align with submodel 1 of the IMM-MCCKF. The system state
and measurement equations are also consistent with the IMM-MCCKF.

4.2. Experimental Results and Analysis

This study presents the results of simulation investigations using sinusoidal steering
and double-lane-changing scenarios. Under these scenarios, the system’s driving state
undergoes significant changes, thus effectively demonstrating the effectiveness of the
method proposed in this paper.

RMSE =

√√√√ 1
M

M

∑
k=1

(x̂k − xk)
2 (67)

4.2.1. Double-Lane-Change Scenario

Using the corresponding covariance matrix from Equation (66) and the road adhesion
coefficient of 0.85, assuming that the measurement noise and process are non-normally
distributed. x0 = [40/3.6, 0, 0], P0 = 0.01 × diag([1, 1, 1]) are the system’s initial state
parameters. Figure 4 shows the input signals. Figure 5 shows the simulation results.

Figure 5 displays the outcomes of the vehicle’s simulated double-lane-change scenario.
It can be observed from Figure 5a that both IMM-MCCKF and MCCKF maintain high
accuracy in longitudinal speed estimation, and their performance is superior to that of
CKF. However, compared to MCCKF, the estimates from IMM-MCCKF are more accurate,
reducing the impact of individual outlier errors.

According to Figure 5b,c, the IMM-MCCKF algorithm also ensures high accuracy un-
der extreme conditions, with smoother estimation curves demonstrating better robustness.
Due to the limited ability of MCCKF and CKF to resist noise variations, their estimation
curves show some fluctuations, with CKF’s results exhibiting significant oscillations and
divergence trends. According to the Dugoff tire model, the tires enter a nonlinear operating
zone when the vehicle’s steering angle approaches extreme conditions, increasing tire forces.
Additionally, the increase in outlier data from onboard sensors enhances the non-Gaussian
nature of the noise, resulting in more significant estimation errors in CKF.
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4.2.2. Sinusoidal Steering Scenario

The sinusoidal steering scenario was set for further validation to verify the algorithm’s
effectiveness under extreme high-speed conditions. The system’s initial state parameters
are specified as x0 = [80/3.6, 0, 0], P0 = 0.01 × diag([1, 1, 1]). Currently, the road adhesion
coefficient is kept at 0.85, and the vehicle is set to maintain a constant speed of 80 km/h.
Figure 6 presents the driving trajectory of the estimator, along with the input and obser-
vation signals. Figure 7 compares simulation results between the IMM-MCCKF and the
MCCKF and CKF algorithms.
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Figure 7 presents the simulation outcomes for the vehicle’s sinusoidal steering scenario,
with Figure 7a–c displaying longitudinal speed, lateral speed, and the centroid sideslip
angle, respectively. As illustrated in Figure 7a, both IMM-MCCKF and MCCKF accurately
track the actual value in longitudinal speed estimation, while CKF exhibits significant
fluctuations and deviations in its estimates. All three algorithms exhibit estimation errors
when the vehicle enters a nonlinear zone while cornering at high speeds, as illustrated in
Figure 7b,c. This difference is due to the lateral force being calculated slightly differently
from the actual value.

Due to the vehicle’s pronounced nonlinear characteristics during high-speed contin-
uous cornering and the susceptibility of sensor data to outliers, the non-Gaussian nature
of the noise is enhanced, resulting in more significant estimation errors at peak points.
Consequently, CKF produces inaccurate estimates when non-Gaussian noise is present,
and its performance drops dramatically. Although MCCKF has good noise suppression
capabilities, its ability to resist noise variations is weak, resulting in decreased estima-
tion performance. Conversely, IMM-MCCKF can quickly adjust model probabilities and
maintain model outputs with more minor errors, thereby ensuring high estimation ac-
curacy and superior tracking performance. In summary, the IMM-MCCKF algorithm
continuously monitors the model with a minor mistake through a Markov probability
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transition matrix by adjusting model probabilities in real time based on each submodel
process and observation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 6. Input signals for the sinusoidal steering scenario: (a) the vehicle trajectory, (b) the angle 
of the front wheels, (c) the longitudinal acceleration, and (d) the vertical acceleration. 

 
Figure 7. Simulation results for the sinusoidal steering scenario: (a) longitudinal velocity, (b) lat-
eral velocity, and (c) centroid sideslip angle. 

Figure 7 presents the simulation outcomes for the vehicle’s sinusoidal steering sce-
nario, with Figure 7a–c displaying longitudinal speed, lateral speed, and the centroid 
sideslip angle, respectively. As illustrated in Figure 7a, both IMM-MCCKF and MCCKF 
accurately track the actual value in longitudinal speed estimation, while CKF exhibits 
significant fluctuations and deviations in its estimates. All three algorithms exhibit esti-

Figure 7. Simulation results for the sinusoidal steering scenario: (a) longitudinal velocity, (b) lateral
velocity, and (c) centroid sideslip angle.

5. Comparative Analysis and Discussion

Equation (67) defines RMSE, used in a quantitative analysis to compare the three algo-
rithms’ estimation performance under two conditions. The results are as shown in Table 2.

Table 2. Analyzing RMSE values in two different simulation scenarios.

Simulation
Scenario Parameters IMM

MCCKF MCCKF CKF

Double-lane-
change scenario

Centroid sideslip angle 0.0007 0.0020 0.0127
Longitudinal velocity 0.0061 0.0072 0.0194

Lateral velocity 0.0073 0.0221 0.1406

Sinusoidal
steering scenario

Centroid sideslip angle 0.0294 0.0433 0.1701
Longitudinal velocity 0.0569 0.0681 0.5474

Lateral velocity 0.6534 0.9625 3.7297

Table 2 shows that compared to the MCCKF and CKF algorithms the IMM-MCCKF
algorithm has significantly lower RMSE values in the double-lane-change and sinusoidal
steering scenarios. The IMM-MCCKF algorithm integrates IMM and MCCKF, allowing
it to adapt to different noise environments dynamically and more effectively suppress
non-Gaussian noise.

In the double-lane-change scenario, the IMM-MCCKF algorithm reduces the RMSE in
longitudinal speed by approximately 15.3% compared to MCCKF and 68.6% compared to
CKF. The reduction in RMSE for lateral speed is even more significant, with decreases of
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67.0% and 94.8%, respectively. The IMM-MCCKF algorithm makes real-time adjustments
to the model’s probabilities, aligning the output with the model with the fewest errors. In
contrast, the CKF algorithm exhibits significant fluctuations and divergence.

The IMM-MCCKF algorithm also demonstrates excellent estimation performance in
the sinusoidal steering scenario. It reduces the RMSE in longitudinal speed by 16.5% com-
pared to MCCKF and by 89.6% compared to CKF. The RMSE is reduced by 32.1% and 82.5%
for lateral speed, respectively.

In summary, CKF performs well in Gaussian noise environments but poorly under
non-Gaussian noise conditions, resulting in significant estimation errors. MCCKF, which
combines the MCC with CKF, better handles non-Gaussian noise; however, a single MCCKF
filter has limitations in dynamically adapting to noise variations, leading to decreased
estimation accuracy when noise changes suddenly. By incorporating IMM theory into
MCCKF, the IMM-MCCKF algorithm overcomes the limitations of CKF and MCCKF.
IMM-MCCKF can dynamically adapt to noise variations by integrating multiple submodels
with different characteristics, maintaining estimation accuracy and stability under non-
Gaussian noise conditions.

6. Conclusions

This study proposes an IMM-MCCKF filter for vehicle state parameter estimation
and compares the performance of the IMM-MCCKF, MCCKF, and CKF filters. Simulation
experiments were conducted under low-speed double lane-change and high-speed sinu-
soidal steering scenarios. In the double-lane-change condition, CKF showed significantly
decreased estimation performance, whereas IMM-MCCKF and MCCKF maintained high
accuracy. According to Table 2, the IMM-MCCKF algorithm reduced errors in longitudinal
and lateral speed estimation by 15.3% and 67.0%, respectively, compared to MCCKF. Under
the sinusoidal steering scenario, the CKF algorithm exhibited significant estimation fluctua-
tions and a diverging trend. Both IMM-MCCKF and MCCKF maintained high accuracy
and stability in their estimates.

The IMM-MCCKF uses the MCC to optimize a nonlinear cost function, effectively
suppressing non-Gaussian noise and capturing and processing outlier data in signals. Fur-
thermore, it incorporates various state and measurement noise submodels that dynamically
adapt to environmental changes, thereby mitigating the impact of unknown noise statistical
properties. The study conducted simulation tests under two different driving scenarios:
double lane-change and sinusoidal steering. The obtained results were contrasted and
analyzed quantitatively using RMSE. The results demonstrate that the IMM-MCCKF filter,
as proposed in this study, delivers superior estimation performance under heavy-tailed
non-Gaussian noise conditions compared to the MCCKF and CKF algorithms. Additionally,
under extreme conditions, IMM-MCCKF effectively counters the interference of noise
variations, maintaining minimal fluctuations in the estimation results, thereby providing
accurate vehicle state parameters essential for implementing autonomous driving systems
and active safety in intelligent vehicles.

In future work, more sophisticated vehicle models will be applied to parameter
estimation modeling, and the algorithms detailed in this study will be validated using
public datasets.
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Abbreviations

CKF Cubature Kalman filter
EKF Extended Kalman filter
MCC Maximum correntropy criterion
MCCKF Maximum correntropy criterion Kalman filter
UKF Unscented Kalman filter
Fxij Tire longitudinal force
Fyij Tire lateral force
tw Track width
m Curb weight
Vx Longitudinal speeds
Vy Lateral speeds
λij Longitudinal slip ratio
δ Front wheel angle
µ Road adhesion coefficient
vcij Wheel center velocity
C Tire stiffness
αij Tire slip angle
B f ,r Wheelbase
x(k) The state vector
z(k) The measurement vector
V(P, Q) Correntropy
θ(P, Q) Kernel function
ωi Weight factor
Q(k−1) Process noise covariance matrix
Rk Measurement noise covariance matrix
χk Error term
Wk Weight matrix
Hk Observation matrix
Gτ Kernel function
cj Normalization factor
pij Transition probability
ε Threshold
τ kernel bandwidth
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