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Abstract: Cracks in tunnel lining surfaces directly threaten structural integrity; therefore, regular
inspection of cracks is essential. Lightweight convolutional neural networks (LCNNs) have recently
offered a promising alternative to conventional manual inspection. However, the effectiveness of
LCNNs is still adversely affected by the lack of sufficient crack images, which limits the potential
detection performance. In this paper, transfer learning was used to optimize deep convolutional
generative adversarial networks (DCGANs) for crack image synthesis to significantly improve
the accuracy of LCNNs. In addition, an improved LCNN model named ShuffleNetV2-1.0-SE was
proposed, incorporating the squeeze–excitation (SE) attention mechanism into ShuffleNetV2-1.0 and
realizing highly accurate classification results while maintaining lightness. The results show that the
DCGAN-based data enhancement method can significantly improve the classification accuracy of
ShuffleNetV2-1.0-SE for tunnel lining cracks. ShuffleNetV2-1.0-SE achieves an accuracy of 98.14% on
the enhanced dataset, which is superior to multiple advanced LCNN models.

Keywords: deep learning; lightweight convolutional neural network; deep convolutional generative
adversarial networks; tunnel lining; defect inspection; crack classification; shuffleNetV2

1. Introduction

Tunnels can improve the operational efficiency of transportation systems. However,
most tunnels operate in harsh environments, which lead to the inevitable cracking of the
tunnel lining surfaces [1]. As cracks in tunnel linings threaten structural integrity and
pose safety risks, timely crack inspection is essential for maintaining the structural safety
of tunnel linings [2]. However, conventional crack detection methods rely on manual
inspection, which is not only time-consuming and laborious, but its accuracy is also limited
by the subjective experience of the inspector [3]. In addition, the increasing number of
tunnels in operation requires more automated and reliable inspection methodologies. Image
recognition methodology has recently offered a promising alternative for structural crack
monitoring, as it can potentially replace manual inspection and automate the realization of
the crack detection process [4,5].

Image recognition methodology for crack detection can be categorized into model-
driven and data-driven technologies [6,7]. A model-driven method is represented by
traditional digital image methods, which design algorithms around a specific recognition
target object to extract features and separate the target object from the background in
the digital image. These methods typically involve smoothing the image with mean,
median or Gaussian filters, and algorithms based on Otsu thresholding segmentation
and edge detection enhancements are often used for crack detection [8–10]. However,
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the above methods may suffer from low accuracy and generalization in tunnel scenes
with interference backgrounds and variable illumination owing to the limitations of the
designer’s experiences.

Data-driven methods based on deep learning, especially convolutional neural net-
works (CNNs) [11–14], have outperformed model-driven methods in crack detection, as
demonstrated by numerous studies [5,15,16]. Zhang et al. used CNNs to classify road crack
image patches captured by smartphones, and the results revealed that CNNs’ detection
performance was better than the traditional manual feature extraction method [17]. Gao
et al. applied transfer learning with VGGNet to various structural damages, revealing
the potential of deep learning in structural damage detection [18]. Han et al. achieved a
classification accuracy of up to 98.26% on a small sample dataset using transfer learning
optimized AlexNet [19]. However, the above models require high computational power
in practical applications, which is challenging to apply on mobile devices with limited
computational resources.

Recently, researchers have made progress in developing lightweight convolutional
neural networks (LCNNs); various LCNNs have achieved high accuracy and low com-
putational cost in image classification. For example, Google proposed MobileNetV1 [20]
in 2017, incorporating depthwise separable convolution for feature extraction to reduce
computational resources. A subsequent study on MobileNetV2 [21] introduced an inverted
residual block, and further enhancements were made in MobileNetV3 [22] by utilizing
the hard-swish activation function and the squeeze–excitation (SE) attention mechanism.
Zhang et al. proposed ShuffleNetV1 [23], which employed a channel shuffle for additional
computational efficiency. Then, they proposed a lightweight network design guideline,
which was utilized for developing ShuffleNetV2 [24]. EfficientNet [25], another impressive
design by Tan et al., investigated the effects of image input resolution, network depth and
network width rationalization on the classification results. Thanks to the development
of LCNNs, they have emerged as promising alternatives for crack detection because of
their potential use in mobile devices [26]. Hou et al. proposed MobileCrack, an LCNN
model for pavement classification with only a quarter of the parameters of MobileNet [27].
Chen et al. combined MobileNetV3-large with the CBAM attention mechanism to achieve
highly accurate localization and classification of different crack images [28]. All of the
above research has fully demonstrated the potential of LCNNs in crack detection.

Crack image classification is a fundamental task in image recognition and is the basis
for the subsequent implementation of crack target detection and semantic segmentation.
However, the evaluation of LCNNs for image classification of tunnel lining cracks is
still lacking. As a data-driven method, LCNNs based on deep learning depend on the
quantity and quality of training data, and limited samples can lead to overfitting or low
accuracy of LCNNs. Therefore, researchers have explored image augmentation methods.
Recently, unsupervised learning-based methods for generating virtual crack images have
been proven by several studies [29–31] to be a worthwhile method. For example, Pei et al.
proposed a method combining variational auto-encode (VAE) and deep convolutional
generative adversarial networks (DCGANs) to generate virtual pavement crack images,
which outperformed traditional data augmentation methods [32]. Jin et al. used DCGAN to
generate crack-labeled images and pixel-to-pixel models to generate corresponding virtual
crack images, providing a new way to reduce the cost of crack labeling [33]. Zhou et al.
proposed WGAN-RE model for generating images to address the problem of data scarcity
in tunnel lining crack detection. However, the studies above ignored the interference back-
ground of the tunnel [34], and the extension of crack image generation under interference
backgrounds remains underexplored.

Based on the literature review above, this paper aims to overcome the challenge in tun-
nel lining crack classification: the scarcity of datasets with tunnel lining crack images under
various interference backgrounds. Meanwhile, an LCNN model named ShuffleNetV2-1.0-
SE was proposed to classify tunnel lining cracks accurately.

The main contributions of this paper can be summarized as follows:



Appl. Sci. 2024, 14, 4142 3 of 17

(1) A novel dataset for classification was constructed by manually taking field pho-
tographs of tunnel lining cracks under various interference backgrounds.

(2) A publicly available concrete dataset with a small sample size was used to pretrain
DCGAN, resulting in higher quality synthetic images of tunnel lining cracks.

(3) The ShuffleNetV2-1.0 network was improved by incorporating a squeeze–excitation
(SE) attention module, which improved its crack feature extraction and balanced its
accuracy and speed.

The rest of this paper is organized as follows. Section 2 provides a method overview,
including the overall steps and the specific theory for each step. Section 3 shows the
experimental configuration and detail. Section 4 shows the results of our model and
compares them with other LCNNs. Section 5 outlines the conclusions and outlook.

2. Materials and Methods
2.1. Dataset Production
2.1.1. Basic Dataset Production

A total of 225 images with tunnel lining cracks of four road tunnels were collected, and
all images were 3648 × 2736 pixels. The collected images were cropped to 224 × 224 pixels.
The images were manually screened, and a classification dataset was obtained, including
2600 background and 2600 crack images. The above production process and typical images
are shown in Figure 1.
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Figure 1. Images in the homemade dataset.

The tunnel lining is made of concrete but may have paint and marks from manual
inspection or stains due to long-term water seepage, making image recognition more
difficult. The interference background considered in this paper consists of two main aspects.

On the one hand, we chose crack images under interference backgrounds for cracks—for
example, “manual painting”, “water seepage”, “shadows” and “polarized light”, as shown
in Figure 1. On the other hand, some background images similar to the “structural seams”,
“pipelines”, “surface peeling” and “stains”, as shown in Figure 1, were also used for training,
considering that in the actual tunnel scenario, it is possible to encounter these features.

2.1.2. Data Augmentation Using IDG Methods

Data augmentation was implemented using the image data generator (IDG) [3] method in
Keras to increase the diversity and size of our image dataset. Randomly rotated, flipped, shifted
and cropped images were used to generate new samples. The process is shown in Figure 2, and
after augmentation, 5200 images of cracks and backgrounds were obtained, respectively.



Appl. Sci. 2024, 14, 4142 4 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 17 
 

shown in Figure 2, and after augmentation, 5200 images of cracks and backgrounds were 
obtained, respectively. 

 
Figure 2. Schematic of IDG. 

2.1.3. Data Augmentation Using DCGAN 
DCGAN [35] is a variant of Generating Adversarial Networks (GANs) [36]. As Figure 

3 shows, a generator and a discriminator form the structure of DCGAN. The generator 
transforms a random noise with a length of 100 into an image using a fully connected layer 
and a reshaping operation, followed by five transposed convolution layers and a Tanh 
activation function. The discriminator, whose architecture is similar to that of a CNN, 
downsamples the input image and extracts the features; then, it uses a fully connected 
layer to determine whether the image is an actual image of a crack. The generator updates 
the image until the discriminator cannot distinguish it from the images in the training 
dataset. 

 
(a) 

Figure 2. Schematic of IDG.

2.1.3. Data Augmentation Using DCGAN

DCGAN [35] is a variant of Generating Adversarial Networks (GANs) [36]. As Figure 3
shows, a generator and a discriminator form the structure of DCGAN. The generator
transforms a random noise with a length of 100 into an image using a fully connected
layer and a reshaping operation, followed by five transposed convolution layers and a
Tanh activation function. The discriminator, whose architecture is similar to that of a CNN,
downsamples the input image and extracts the features; then, it uses a fully connected layer
to determine whether the image is an actual image of a crack. The generator updates the
image until the discriminator cannot distinguish it from the images in the training dataset.
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2.1.4. Dataset Overview

Four different datasets were used to evaluate different data augmentation methods,
as summarized in Table 1. Dataset A was the original dataset. Datasets B1 and B2 were
augmented from Dataset A using two data augmentation techniques, IDG and DCGAN,
respectively. Dataset C was a larger dataset generated by DCGAN from Dataset A.

Table 1. Overview of the datasets.

Dataset
Numbers

Augmentation
Crack Background

A 2600 2600
B1 5200 5200 IDG
B2 5200 5200 DCGAN
C 7800 7800 DCGAN

2.2. ShuffleNetV2-1.0-SE Model
2.2.1. ShuffleNetV2 Architecture

ShuffleNetV2 [24] uses group convolution for feature extraction, similar to Shuf-
fleNetV1 [23]. Unlike depthwise separable convolution, which applies a depthwise convo-
lution followed by a 1 × 1 point convolution to stitch the results together, group convolution
performs only one convolution and concatenates the results of different groups. This further
reduces the computational complexity of the model and increase the semantic information
exchange between different groups, which can improve the feature extraction ability of the
network. In addition, ShuffeNetV2 employs a channel shuffle to enhance inter-channel
communication and prevent information loss, similar to ShuffleNetV1, as shown in Figure 4.

As shown in Figure 5, the ShuflleNetV2 architecture utilizes a new type of stacking
block, which contains two parts. The one shown in Figure 5a is the standard block, which
is stacked repeatedly to form the overall framework of the model. In contrast, the block
shown in Figure 5b is utilized for downsampling.
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2.2.2. SE Attention Mechanism

The SE attention mechanism [37] improved communication between the channel
dimensions and adjusted important feature channel weights. Figure 6 shows the structure
of the SE module. For an input feature map U ∈ H × W × C, where H, W and C are the
height, width and number of channels, respectively, the SE module applies global average
pooling (GAP) to reduce the channel dimension to Z ∈ 1 × 1 × C. Then, the excitation part
learns the feature weights of each channel through two fully connected layers and assigns
them to different channels accordingly.
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2.2.3. ShuffleNetV2-1.0-SE Architecture

The ShuffleNetV2-1.0-SE model proposed in this paper is realized by introducing the
SE attention mechanism to the ShuffleNetV2-1.0 architecture. As shown in Figure 7, we
introduce the SE attention mechanism into the main branches in the standard block of
ShuffleNetV2-1.0 and then realize the construction of the ShuffleNetV2-1.0-SE model via
stacking, as shown in Table 2.
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Table 2. ShuffleNetV2-1.0-SE model architecture [24].

Layer Output Size KSize Stride Repeat Output
Channels

Image 224 × 224 3
Conv1

Maxpool
112 × 112

56 × 56
3 × 3
3 × 3

2
2 1 24

Stage2 28 × 28
28 × 28

2
1

1
3 116

Stage3 14 × 14
14 × 14

2
1

1
7 232

Stage4 7 × 7
7 × 7

2
1

1
3 464

Conv5 7 × 7 1 × 1 1 1 1024
GlobalPool 1 × 1 7 × 7

FC 2
Notes: KSize: Using the size of the convolutional kernel; Stride: The step size of the convolution operation. In
the “Stage” phase, the downsampled blocks are used for the first operation and the standard blocks are repeated
operation. Repeat: Number of times the operation is repeated at that stage.

2.3. Transfer Learning

Transfer learning was used to increase the accuracy of the networks when the number
of samples was limited. In this paper, the DCGAN and the ShuffleNetV2-1.0-SE model
were pretrained on the concrete dataset provided by Ref. [38], ensuring similarity between
the datasets and providing suitable pretraining weights. Figure 8 shows the typical images
of the concrete dataset from Ref. [38]. The dataset consists of 40,000 images of concrete
cracks and backgrounds, each with 20,000 images. For DCGAN training, we did not split
the dataset into training and validation sets. For LCNN training, the dataset was randomly
split into training (80% of the data) and validation (20% of the data) sets, and training was
performed for 200 epochs. The minimum loss value was used as the monitoring index. The
best weights obtained during pretraining were transferred to the lining crack dataset.
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3. Experiments and Configuration Detail
3.1. Experimental Environment for DCGAN Training

This paper used the DCGAN model to synthesize realistic tunnel crack images based
on the features learned from actual data. First, the model was pretrained on a concrete
dataset to obtain initial weights and then fine-tuned on a base dataset of tunnel crack
images. The experiments were conducted on a computer with an Intel I5-9600KF CPU
(Santa Clara, CA, USA), 16 GB of memory and an NVIDIA GeForce GTX3060 (12 GB) GPU
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(Santa Clara, CA, USA) with CUDA support. Python 3.7 and Pytorch 1.7.1 were used as
the programming environment and tools. The hyperparameters were set as follows: the
number of epochs was 300 [29]; the initial learning rate was 0.002 [30] with adaptive decay;
the batch size was 128 [32]; and the optimizer was Adam with a momentum of 0.9 [34].

3.2. Experimental Environment for LCNN Training

The cross-entropy loss function (LCE) was used to measure the discrepancy between
the predicted and actual labels, as defined in Equation (1). In this equation, y represents the
actual label value, and ŷ represents the predicted value.

LCE = −[y log(ŷ) + (1 − y) log(1 − ŷ)] (1)

The Adam optimizer trained the networks [39] with an initial learning rate of 0.001,
and the model with the lowest loss value was selected for testing. The He strategy initialized
the weights of the convolutional layers [40], and the number of epochs was set to 200 for
all models. The batch size was 32, and the images were sent to the networks with original
resolution except Efficienetb1 and Efficienetb2.

The ShuffleNetv2-1.0-SE was compared with MobielNetV1 [20], MobilNetV2 [21],
MobilNetV3 [22] and EfficieNet [25]. The alpha width factor was set to 1 for MobilNetv1,
MobilNetv2 and MobilNetv3. We used 240 × 240 and 260 × 260 resolution inputs for
Efficienetb1 and Efficienetb2, respectively. The experiments were run on a computer with
an Intel I5-9600KF CPU, 16 GB of memory and an NVIDIA GeForce GTX3060 (12 GB)
GPU with CUDA support. We used Python 3.7 and TensorFlow 2.4 as the programming
environment and tools.

3.3. Evaluation Metrics

The accuracy and the F1 score were used as the primary metrics to evaluate the
classification performance of the networks. These metrics are calculated based on the
confusion matrix, as shown in Table 3.

In addition, the complexity of the models was measured in terms of the “Parameters”,
“Complexity” and “Weights”. “Parameters” represents the total number of participants
in the model. “Complexity” represents the model’s computational complexity, commonly
expressed in GFLOPs. “Weight” represents the size of the file where the model’s weights
are stored.

Table 3. Confusion matrix.

Image
Prediction

Crack Background

Label
Crack TP FN

Background FP TN

In this equation, true positive (TP) denotes the number of correctly classified crack
images; false positive (FP) denotes the number of background images, which are misclas-
sified as crack images; false negative (FN) denotes the number of crack images, which
are misclassified as background images; and true negative (TN) denotes the number of
correctly classified background images.

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)
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F1-Score =
2 × Precision × Recall

Precision + Recall
(5)

4. Results and Discussion
4.1. Dataset Augmentation Using DCGAN

Figure 9 shows the images synthesized by DCGAN at different stages of training.
The initial images were influenced by the pretrained weights from the concrete dataset. It
exhibited some concrete crack features in the synthetic images. After 150 epochs, DCGAN
started to learn the interference features of lining cracks, but some images still lacked details
or had errors. After 300 epochs, most of the images could synthesize realistic crack images.
The images had high diversity and captured the main characteristics of the cracks, which
could effectively increase the sample.
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The loss curves of DCGAN under different training tactics are compared in Figure 10.
It can be seen that generative adversarial image generation is an unsupervised learning
technique. Suppose the transfer learning strategy is not used, the network will face a
significant challenge in extracting the crack contour features, increasing the rising loss of
the generator G and resulting in a continuous and significant fluctuation in the loss of the
discriminator D throughout the training process.
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4.2. LCNN Performance Comparison

Table 4 shows the results of different LCNNs in Dataset A with transfer learning.
When all the LCNNs were trained on Dataset A, all LCNNs had a lower true positive rate
for crack images (TP) than for background images, indicating that the crack features were
more challenging to learn than the background images (TN).

All the LCNNs achieved an accuracy above 90% in the validation set. ShufflenetV2-0.5
had the lowest accuracy (91.73%) and complexity among all the LCNNs, and ShufflenetV2-
1.5 had the highest accuracy (93.85%). However, ShuffleNetV2-1.0 only had 0.58% lower
accuracy than ShuffleNetV2-1.5 despite having half the “Parameters”, “Complexity” and
“Weights” of ShuffleNetV2-1.5.

At the same time, ShuffleNetV2-1.0-SE increased the accuracy of ShuffleNetV2-1.0 by
about 15% but still had a much lower complexity than ShuffleNetV2-1.5. ShuffleNetV2-
1.0-SE achieved the highest accuracy of 94.23% with transfer learning, which was 0.96%
higher than that achieved with ShuffleNetV2-1.0, suggesting that utilizing the SE attention
mechanism for information interaction between the channels will help improve the accuracy
of crack detection significantly.

Table 4. Performance validation results of different LCNNs trained on Dataset A.

Model Transfer
Learning

Parameters
(Millions)

Complexity
(GFLOPs)

Weight
(MB) Accuracy (%) TP (%) TN (%)

MobileNetV1 Yes 4.25 1.16 12.50 92.79 92.22 93.37
MobileNetV2 Yes 2.26 0.59 7.47 91.83 90.2 93.59

MobileNetV3-Small Yes 1.53 0.12 6.32 92.31 90.74 94.23
MobileNetV3-Large Yes 4.23 0.45 16.70 93.08 92.42 93.85

ShuffleNetV2-0.5 Yes 0.35 0.04 1.77 91.73 90.64 92.89
ShuffleNetV2-1.0 Yes 1.27 0.15 5.29 93.27 92.94 93.6

No 91.06 90.51 91.62
ShuffleNetV2-1.0-SE Yes 1.45 0.17 6.15 94.23 93.73 94.75

No 92.12 91.32 92.94
ShuffleNetV2-1.5 Yes 2.5 0.30 10.00 93.85 93.35 94.36
ShuffleNetV2-2.0 Yes 5.38 0.59 20.90 93.17 93.09 93.26

EfficieNet-b0 Yes 4.05 0.80 15.90 92.31 90.89 94.02
EfficieNet-b1 Yes 6.58 1.29 25.70 93.27 91.82 94.82
EfficieNet-b2 Yes 7.77 1.79 30.30 93.37 92.63 94.13

Notes: “Transfer learning” represents pretraining the LCNNs on public crack dataset [38].

4.3. Comparison of Different Augmentation Methods

All LCNNs were trained on Datasets B1 (IGD-Augmentation) and B2 (DCGAN-
Augmentation) simultaneously and evaluated the results, which are shown in Figure 11.
Combining Table 4 and Figure 11, we can see that both augmentation methods improved
the accuracy of all LCNNs. We can see that only the ShuffleNetV2 series models achieved
higher accuracy after training on Dataset B2; therefore, we could not conclude that one
enhancement method gave universally better results. However, we can confirm that data
augmentation using DCGAN is as effective as IGD method.
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4.4. Experimental Results of DCGAN Augmentation
4.4.1. Performance Comparison of Different LCNNs

The results of the experiments using Dataset C are shown in Table 5. Compared to
the accuracy improvement obtained by transferring the LCNNs from Dataset A to Dataset
B2, it can be seen that the accuracy improvement obtained by transferring the LCNNs
from Dataset B2 to Dataset C decreased. Furthermore, we can see that only MobileNetV1,
MobileNetV2 and ShuffleNetV2-1.5 had a slightly smaller correct classification rate (TP) for
crack images than for background images (TN), indicating that the DCGAN augmentation
made the crack image features more evident in the dataset. Thus, the extraction of crack
features was significantly improved for most LCNNs.

The experimental results show that the migration learning method based on small-
scale datasets applies equally to all LCNNs trained on Dataset C. However, the effectiveness
of enhancement through transfer learning diminishes as the number of crack samples
increases. In addition, the SE module still improves the performance of ShuffleNetV2-1.0.
ShuffleNetV2-1.0-SE achieves the highest maximum accuracy of 98.14% on Dataset C. At
the same time, its “Parameters”, “Complexity” and “Weights” are smaller than those of
various LCNNs, which achieve similar accuracy. Its ability to correctly classify cracks is
second only to EfficieNet_b2, while its ability to correctly classify backgrounds is the best.

Table 5. Performance validation results of different LCNNs trained on Dataset C.

Model Transfer
Learning

Parameters
(Millions)

Complexity
(GFLOPs)

Weight
(MB) Accuracy (%) TP (%) TN

(%)

MobileNetV1 Yes 4.25 1.16 12.50 97.66 97.45 97.88
MobileNetV2 Yes 2.26 0.59 7.47 97.44 97.31 97.56

MobileNetV3_Small Yes 1.53 0.12 6.32 97.44 97.50 97.38
MobileNetV3_Large Yes 4.23 0.45 16.70 97.47 97.50 97.44

ShuffleNetV2_0.5 Yes 0.35 0.04 1.77 95.45 96.52 94.29
ShuffleNetV2_1.0 Yes 1.27 0.15 5.29 96.70 97.46 95.96

No 95.61 97.21 94.11
ShuffleNetV2_1.0-SE Yes 1.45 0.17 6.15 98.14 98.02 97.95

No 97.24 97.49 97.00
ShuffleNetV2_1.5 Yes 2.5 0.30 10.00 97.85 97.76 97.94
ShuffleNetV2_2.0 Yes 5.38 0.59 20.90 97.95 98.01 97.51

EfficieNet_b0 Yes 4.05 0.80 15.90 96.79 97.22 96.38
EfficieNet_b1 Yes 6.58 1.29 25.70 97.79 97.82 97.76
EfficieNet_b2 Yes 7.77 1.79 30.30 97.98 98.07 97.89

Notes: “Transfer learning” represents pretraining the LCNNs on public crack dataset [38].
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4.4.2. Comparison of Loss Curves for Different Datasets and Different Conditions

The training loss curves of ShuffleNetV2-1.0 with and without transfer learning and
with and without the SE module were compared, as shown in Figure 12. Without transfer
learning (red line), the final loss value was higher, and the fluctuations during training were
more severe than with transfer learning (green line). ShuffleNetV2-1.0-SE had lower loss
values than ShuffleNetV2-1.0 on both datasets with transfer learning, indicating a better fit
and higher classification accuracy.
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4.4.3. Analysis of the Impact of SE Modules and Transfer Learning on Network Performance

The effect of transfer learning and the SE module on the performance of ShufflenetV2-
1.0 on Dataset C was analyzed, as shown in Figure 13. Without transfer learning, the net-
work’s crack image accuracy decreased, making it more prone to misclassifying background
images as crack images. This shows that transfer learning was crucial for ShufflenetV2-1.0
to learn crack features. When the SE attention mechanism was introduced, compared
to that of the background image, the accuracy for crack images improved significantly,
demonstrating that the SE attention mechanism could effectively enhance the network’s
ability to extract crack features.
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4.5. Visualization of Augmentation Using DCGAN with Transfer Learning
4.5.1. Effect of DCGAN Augmentation on Network Performance

Some of the test results achieved with ShuffleNetV2-1.0-SE trained on Datasets A
and C are shown in Figure 14. The images included interference backgrounds (a)–(e) and
various types of cracks (f)–(j). When using Dataset A, ShuffleNetV2-1.0-SE misclassified the
background images with surface peeling (a) and black areas as cracks. It also misclassified
the crack images with dark light (f), pits (g) and water seepage (i) backgrounds. When using
Dataset C, ShufflenetV2-1.0-SE correctly classified all background images. The accuracy
of most of the crack images also improved following training with Dataset C. The only
exception was the crack images with a background of water seepage. This suggested that
future dataset generation should include more images of this type to enhance the network’s
ability to handle water seepage interference cases.
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4.5.2. Generalization Performance Study

The generalization performance of ShuffleNetV2-1.0-SE trained with data augmen-
tation using transfer learning and DCGAN was evaluated on a publicly available dataset
containing tunnel lining cracks [3]. Figure 15 shows some test results for different types of
cracks (disconnected, high luminance, interference background and edge cracks), where
(a)–(d) show the test results achieved after training ShuffleNetV2-1.0-SE on Dataset C,
while (e)–(h) show the results obtained after training the network on Dataset A. The results
obtained after training on Dataset A, which contains DCGAN-augmented samples, are
consistently correct, while those obtained after training on Dataset C are not. The results of
ShuffleNetV2-1.0-SE trained on Dataset C, which correctly classifies crack images misclassi-
fied as backgrounds, demonstrate that DCGAN can effectively enhance the generalization
ability of ShuffleNetV2-1.0-SE for crack detection.
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5. Conclusions

In this paper, a method combining transfer learning and DCGAN to optimize ShuffleNetv2-
1.0-SE for tunnel lining crack detection is presented. In addition, we apply transfer learning
on a publicly available small-scale concrete dataset and compare data augmentation using
DCGAN and conventional techniques. At last, an LCNN named ShuffleNetV2-1.0-SE is pro-
posed, incorporating the SE attention mechanism into ShuffleNetV2-1.0. Our main findings are
given below:

(1) Transfer learning on a small-scale dataset enhances the image generation quality of
DCGAN, the classification accuracy of LCNN for crack images and the detection
performance of LCNN for true positive crack images.

(2) The SE attention mechanism improves the crack feature extraction of ShuffleNetV2-1.0.
An accuracy improvement from 94.23% to 98.14% was achieved with 1.45 million
parameters and 017G floating-point computation using transfer learning and DCGAN
data augmentation.

(3) ShuffleNetV2-1.0-SE shows better generalization on the public dataset after being
trained with the DCGAN-augmented dataset, demonstrating the effectiveness of the
proposed data augmentation method, which combines transfer learning and DCGAN.

Most LCNNs struggle to accurately classify crack images in a seepage background
with or without data augmentation; therefore, we plan to further increase the number
of images with a interference background in future work. In addition, quantization is
required to detect cracks; therefore, the classification studied in this paper has limitations
for practical applications. In the future, we will explore semantic segmentation models for
crack images, which are simultaneously highly accurate and lightweight.
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