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Abstract: Policy learning enables agents to learn how to map states to actions, thus enabling adaptive
and flexible behavioral generation in complex environments. Policy learning methods are funda-
mental to reinforcement learning techniques. However, as problem complexity and the requirement
for motion flexibility increase, traditional methods that rely on manual design have revealed their
limitations. Conversely, data-driven policy learning focuses on extracting strategies from biological
behavioral data and aims to replicate these behaviors in real-world environments. This approach
enhances the adaptability of agents to dynamic substrates. Furthermore, this approach has been
extensively applied in autonomous driving, robot control, and interpretation of biological behav-
ior. In this review, we survey developments in data-driven policy-learning algorithms over the
past decade. We categorized them into the following three types according to the purpose of the
method: (1) imitation learning (IL), (2) inverse reinforcement learning (IRL), and (3) causal policy
learning (CPL). We describe the classification principles, methodologies, progress, and applications
of each category in detail. In addition, we discuss the distinct features and practical applications of
these methods. Finally, we explore the challenges these methods face and prospective directions for
future research.

Keywords: policy learning; behavior strategy; imitation learning; inverse reinforcement learning;
causal inference

1. Introduction

Humans and animals can respond instantaneously when faced with complex and
unpredictable environments by developing different strategies to adapt to the needs of any
environment. Such behavioral strategies are not derived solely from responses to stimuli
received by the senses but combined with decisional control from the brain/nervous system,
enabling humans and animals to respond similarly to similar environments and stimuli [1].
The development of behavioral strategies is a process by which the brain continuously
organizes its actions in response to environmental changes. The behavioral strategies enable
them to maximize the use of their conditions and environmental resources to effectively
solve the difficulties they face in the current environment.

Understanding behavioral strategies is useful for taking full advantage of flexibility
and adaptability. Some examples include the development of autonomous driving systems
by studying drivers’ driving behavior habits [2], automatic robot navigation algorithms
based on pedestrian movement strategies in crowds [3], dexterous robot movement control
learned from animal locomotor behavior [4], and the design of virtual reality (VR) games
by studying human motor behavior [5]. Extracting behavioral strategies facilitates agent
training and further development in understanding animal behaviors. Therefore, under-
standing behavioral strategies from multiple perspectives in the biological behavior and
engineering domains is of significant importance.
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Previously, training agents to develop strategies for adapting to environments was
mainly achieved through defined behavioral rules, where the behavioral patterns are
summarized by human observations of behavior, e.g., motor coordination can be achieved
by artificially predefining phase relationships between gait legs. This approach has been
widely used owing to its simplicity and effectiveness. However, human judgments are
low-dimensional and subjective [1]. With the increasing environmental adaptability and
flexibility requirements, the limitations of relying on human-designed behavioral strategy
models have gradually emerged. This is because behavior is inherently complicated. Even
a single behavior is controlled by sophisticated neurological and motor systems [6], which
makes the representation and modeling of behavioral strategies challenging.

However, with the development of machine learning techniques, neural networks
with stronger representational capabilities make behavioral policy learning possible. rein-
forcement learning (RL) iteratively trains agents to learn strategies through pre-designed
reward functions. It can be used in relatively complex environments, but it requires human
experts with a very good understanding of the task to design hard-coded reward functions.
Thus, for relatively complex biological behaviors (i.e., running and swimming), it is difficult
to represent them intuitively in mathematical form. In addition, the data-driven policy-
learning approach learns policies through different methods. It attempts to reproduce
behaviors from quantitative behavioral data, emphasizing natural human or animal behav-
ior as the basis. This approach may have problems relying on the quality of behavioral data
and the ability to migrate tasks. However, it excludes behavioral strategies from artificial
definitions and attempts to understand the behavioral strategies and mechanisms behind
the data, which is expected to solve the problem of difficulty in designing reward functions
under complex behavioral tasks.

Artificially designing simple behavioral patterns or mathematical reward functions
may be impractical for representing relatively complex behaviors. In addition, for different
biological behaviors, it is also difficult to have access to human experts in related fields who
are familiar with behavioral strategies to assist in the design of reward functions. However,
data-driven strategy learning approaches can address this dilemma. They also promote
interdisciplinary research so that researchers in the engineering field can contribute to
the design, evaluation, and understanding of autonomous behavioral strategies. There-
fore, in this review, we focus on summarizing advanced computational approaches for
data-driven behavioral strategy identification. We provide a comprehensive integration
and analysis of the existing literature, categorizing and outlining the key theories, meth-
ods, and developments in this field. The recent developments and emerging trends are
investigated to contribute to the ongoing discussion and exploration of data-driven policy
learning methods.

This paper reviews computational methods that can be employed to identify potential
behavioral strategies. Depending on the purpose and technical approach of the algorithm,
we classify the current computational approaches into three categories: (1) imitative learn-
ing (IL), (2) inverse reinforcement learning (IRL), and (3) causal policy learning (CPL). The
first group of algorithms aims to learn the policy underlying behavioral strategies by direct
imitation. It is similar to the human learning process, where behavior is reproduced by
learning from and imitating an expert’s demonstration. The second group aims to recover
transferable reward functions for learning policy from behavioral data. It is the inverse
process of RL and can represent an expert’s behavioral strategy via a reward function. The
third group aims to combine causal models with other policy learning methods. Focusing
on the causal relationship between states and actions, it improves safety and reliability in
practical applications. The ultimate goal of these techniques is to learn behavioral strategies
from data. The remainder of this paper is organized as follows: Section 2 describes the
methods for obtaining relevant literature on behavioral strategy identification and mentions
the selection criteria in the literature. Sections 3–5 present the results of the literature review
for the IL, IRL, and CPL algorithms, respectively. Section 6 discusses different strategy
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learning methods regarding algorithmic features, applications, current challenges, and
future developments. Finally, Section 7 concludes the paper.

2. Methods
2.1. Literature Selection Standard

This review aims to provide an overview of policy learning methods for learning
strategies from biological behavior. The keywords “behavioral strategy/strategic learning”
cover the concept of policy learning while emphasizing the behavioral domain and accu-
rately reflect the core focus of this review. Therefore, using the main keywords “behavior
strategy/policy learning”, we searched three databases: Web of Science, IEEE Xplore,
and Scopus. The results were screened for relevant computational methods in the most
recent decade to ensure that the investigated techniques were updated. We systematically
screened the relevant literature, and the review process was conducted according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2022
Statement [7], as shown in Figure 1.

Records identified from:

Web of Science (n = 780)
IEEE (n = 295)
Scopus (n = 780)

Records removed before
screening: (n = 592)

 Non-English records (n = 34)
 Duplicate records (n = 558)

Records screened
(n = 1263)

Records excluded (n = 872)

 RL/Policy optimization (n = 259)
 Action prediction/Identification (n = 154)
 Algorithm optimization/Learning systems

(n = 125)
 Conference review (n = 60)
 Other non-related study (n = 274)

Reports sought for retrieval
(n = 391)

Reports not retrieved
(n = 12)

Reports assessed for eligibility
(n = 379)

Reports excluded (n = 302)

 Policy learning relied on predefined reward
functions

 Focus on time series prediction and neural
network parameters

 Focus on generalization and transferability
 Model predictive control
 Multi-agent imitation learning tasks, agent

identification tasks
 Active learning/Meta-learning/Lifelong

learning
 Duplicated contents

Studies included in review
(n = 73)
Reports of included studies
(n = 4)

Identification of studies via databases and registers

Figure 1. Literature screening process via the PRISMA statement.

The literature search was completed in January 2023, and 1855 records were obtained
from all databases. The search records were exported to the reference management soft-
ware, Zotero (version 6.0.18), for integration. We excluded 34 non-English literature items
and 558 duplicate items automatically detected by Zotero. The preliminary literature
identification resulted in 1263 records.
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In the literature screening phase, 872 results were removed based on titles and abstracts.
The main topics of these studies were RL, action recognition, and algorithm optimization,
which are not discussed in this review. Among these, 12 records could not be retrieved
and were therefore excluded. In the full-text eligibility assessment phase, we preferred
strategy learning approaches based on behavioral data-driven methods rather than man-
ually designed reward functions, neural network-based predictions, or model predictive
control. Additionally, this review focused on learning single-agent behavioral strategies
and did not discuss multi-agent interactive behavioral strategies. In addition, the topics
in this review did not engage in active learning, meta-learning, or lifelong learning; thus,
302 records were excluded. In total, 77 articles were used for the systematic evaluation. The
overall framework of this review is shown in Table 1. In addition to the literature under
review, some of the early classic works are also mentioned in the text.

Table 1. Overall framework of this review.

Category Sub-Category References

Imitation Learning (IL)
Behavior Cloning (BC) [4,8–20]

Generative Adversarial Imitation Learning (GAIL) [21,22]
Improved GAIL Algorithms [2,23–37]

Inverse Reinforcement Learning (IRL)

Maximum Margin Method [5,38]

Entropy Optimization Method [3,5,39–50]

Bayesian Optimization Method [51–63]
Adversarial Method [64–68]

Causal Policy Learning (CPL)
Traditional Structural Causal Model (SCM) Modeling [69–73]

Other SCM Modeling Methods [74–76]

2.2. Existing Reviews

During the literature review, four review papers related to this topic were published
in the last two years. Among them, two summarize algorithms of strategy learning. Arora
S. et al. systematically reviewed the IRL problem, including the methods, challenges,
and future directions [77]. Zheng B. et al. comprehensively reviewed the categories and
development processes of IL, with a focus on popular research topics [78]. Two other
papers review strategy learning for certain behaviors. Di X. et al. focused on the driving
behavior of human drivers and reviewed the learning methods for autonomous driving
strategies [79]. Gajjar P. et al. focused on reviewing the strategy learning for path planning
and obstacle avoidance behaviors of unmanned aerial vehicle systems [80].

The existing literature reviews focused on policy learning based on either a specific
aspect of the algorithm or application area. In contrast to existing reviews, our review
aims to examine computational approaches to extracting strategies from behaviors; it is not
limited to the progress of a specific policy-learning algorithm or behavior. Thus, from a
practical application perspective, it covers a more comprehensive range of policy learning
methods, including IL methods incorporating RL or causal inference. Furthermore, this
review does not focus on considering the development of policy learning in a particular
application area but reviews the policy learning methods while incorporating additional
application examples (e.g., autonomous driving, robot techniques, and biological behavior
understanding), and analyzing the performance of these approaches in different application
areas. In addition, this review summarizes the research progress on this topic over the past
decade and discusses future research directions.

3. Strategy Learning from Demonstration: Imitation Learning

By maximizing the cumulative rewards from the environment, RL learns strategies
to achieve specific goals [81]. It has been extensively employed to solve various control
problems involving the interactions between agents and environments. However, experts
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have designed reward functions used for strategy learning. Although they are feasible
for handling relatively well-defined tasks (e.g., Go games [82]); in more complicated
environments, it can be extremely difficult to artificially design a reasonable reward function
for animal or human behavior. However, IL can avoid this problem by directly learning
from the demonstration, that is, by imitating the object behavior in the given tasks.

IL takes the observed state and action sequences as decision data and trains the agent
to learn the mapping relationships between each set of decision data. Thus, we obtain
an optimal policy model to perform the task in the demonstration. IL does not rely on
designing explicit reward functions; it simplifies the process of teaching agents to learn by
providing demonstrations to them. Thus, it has several advantages in achieving complex
tasks with minimal expert knowledge [83]. Integrated with high-speed sensors that enable
instantaneous data collection, IL has great potential for applications in bio-inspired robots,
autonomous driving, and VR games.

In this section, we review policy-learning methods using IL. These IL methods include
behavior cloning (BC), generative adversarial imitation learning (GAIL), and improved
GAIL techniques. BC learns the mapping of behaviors from states to actions through a su-
pervised learning approach using labeled behavioral demonstration data as the training set,
which allows IL to be most simple. Unlike BC, GAIL trains policies and reward functions
by generating adversaries that can learn policies directly from demonstrations and has
stronger representational power in IL involving environmental interactions. However, the
improved GAIL methods improve learning and increase the efficiency of sample utilization
based on the original GAIL algorithm, making it adaptable to real-world problems.

3.1. Behavior Cloning

As a basic form of IL, simple BC can be viewed as a supervised learning method that
transforms the imitation problem into a learning process to map states to actions. While su-
pervised learning uses labeled training data, BC uses the training dataset {(s1, a1), · · · , (sn,
an)}, which consists of demonstration examples in the form of (state, action), where n rep-
resents the length of the demonstration trajectory. BC uses deep neural networks to train
the demonstration data and learns implicitly from it. Thus, obtaining realistic behavioral
strategies depends heavily on accurately mapping decision pairs in the dataset.

Most BC studies learn strategies and understand behaviors from human or animal
demonstrations. Here, the human or animal providing the behavioral demonstration is
defined as the “teacher”, and the computer or robot is defined as the “agent”. Learning
from observation (LfO) demonstration data can be categorized into (1) first-person and
(2) third-person views:

(1) In the first-person view LfO, the demonstrating teacher records the states and actions
during the activity through the worn sensors. The agent can directly imitate the
teacher’s decision from the first-person view without transforming the demonstration
data. This approach has been extensively used in humanoid robotics and autonomous
driving, such as imitation learning using the VR teleoperation approach [8], and
end-to-end autonomous driving BC [9,10]. The advantage of this approach is that
it does not require the remapping of demonstration data and can provide accurate
measurements. However, because of the size of the sensors and the customization
environment, collecting demonstration behaviors by mounting sensors on the teacher
cannot be used in all cases.

(2) The third-person view LfO collects demonstration data through external behavioral
observation, which requires the perspective transformation of the observed data, i.e.,
mapping the recorded data from the third perspective to the agent from the first
perspective [11,12]. It is primarily based on external cameras and thus can be applied
to robot manipulation without being limited to customized experimental environ-
ments [12,13]. Compared to the former method, the third-person view LfO is more
flexible regarding the applicable environments; however, the collected demonstration
data may not be sufficiently precise.
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Dataset aggregation (DAgger) improves the interaction between the algorithm and
the environment through data augmentation and aggregation based on simple BC [84].
DAgger is an online learning algorithm that continuously enables acquired strategies to
interact with the environment to generate new data. Subsequently, the newly acquired data
are aggregated to improve the dataset. It can learn expert behavioral strategies in complex
environments, such as autonomous driving tasks [14,15] and strategy learning in complex
3D game scenarios [16].

In the practical application of strategy learning, IL with a combination of RL is em-
ployed in addition to the above methods. This integrates the advantages of both algorithms.
This approach first performs IL with demonstration data as pre-training and then uses
RL in addition [4,17,18]. It is difficult for policies learned via IL to cope with situations
not encountered in demonstration data; however, this method compensates for this short-
coming by combining RL. In addition, pre-training through IL avoids the limitation of
manually designing reward functions for RL and significantly reduces the RL training
time. Therefore, a strategy learning method that combines IL and RL has become popular
and is a powerful alternative to RL. This enables robots to perform long-horizon tasks in
challenging simulated kitchen environments [18] and also mimics the agile locomotion
skills of animals [4].

3.2. Generative Adversarial Imitation Learning

The purpose of simple BC is to match the behavior of the demonstrating teacher,
and it has significant limitations in terms of environmental interactions. This defect was
improved by the emergence of GAIL [21]. GAIL is used to extract strategies directly from
expert demonstration data. It has the advantage of being a generative adversarial network
(GAN) [85], thus outperforming BC in complex applications and gradually becoming a
popular model-free IL framework.

First, the concept of GAN is introduced. GAN is a deep generative model that
generates generative samples for fitting training samples by transforming deep features
abstracted from random input noise to the underlying features, which can be regarded as
the inverse process of deep classification models. The deep generative model, which aims
to generate realistic samples, is called a “Generator”, and the deep classification model,
which aims to discriminate the source of the samples, is called a “Discriminator”. They are
trained adversarially by playing a game with each other such that the samples generated
by the Generator can fit the real training samples well.

Similarly, GAIL adopts the idea of adversarial training. It utilizes two neural networks
to represent the strategy and reward function and continuously optimizes the parameters
of these two networks by adversarial training. In other words, the strategy that outputs
the action according to the input state is considered a Generator, and the reward function
that outputs the reward value according to the input generation samples is considered a
Discriminator. The learning process of the strategy and the solving process of the reward
function are the training processes of the Generator and the Discriminator, respectively.
The parameters are updated during the training process using a gradient

min
π

max
D

Eπ[log(D(s, a))] +EπE[log(1 − D(s, a))], (1)

where π is the policy to be learned, πE is the policy of the experts, and D(s, a) is the
probability determined by the Discriminator. The Generator aims to minimize the cross-
entropy loss of the generative samples, whereas the Discriminator aims to maximize the
cross-entropy loss of the discriminative model. In addition, the learning objective of GAIL
is to optimize the strategy directly instead of computing the reward function before solving
it; thus, it avoids the high complexity of the computation process in IRL (Section 4) and can
adapt to IL tasks with large-scale complex behaviors.

Based on the GAN framework, the strategy and reward function in GAIL can automat-
ically extract abstract features from training samples with higher representational capability,
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which alleviates the dependence of IL on large datasets. Moreover, GAIL significantly
reduces computational complexity by learning strategies directly from data and, thus, can
better adapt to the complexity of real applications. The method has exhibited excellent per-
formance in autonomous driving [22]. Nevertheless, GAIL also faces the problems of model
collapse [86] and low sample efficiency in terms of environmental interactions [23,87].

3.3. Improved GAIL Algorithms

The drawbacks of GAIL in practical applications limit its adaptation to applications
with high sample acquisition costs. The problem of model collapse originates from GAN,
e.g., the Generator finds a data type that easily deceives the Discriminator and thus contin-
ues to generate that type, that is, resulting in the Generator having a similar single type
of output, thus depriving the generated samples of diversity. Low sample efficiency for
environmental interactions relates to how the policy is learned. The stochastic policy of
GAIL causes the agent to randomly select behaviors (including undesirable ones) according
to the probability distribution, which may lead to low efficiency for the agent to search the
environment. In addition, GAIL learns policies directly through a model-free policy instead
of using environmental models. Hence, agents require many environmental interactions to
maximize the reward, and the expensive training process leads to low sample efficiency. To
improve the performance of imitation learning, many attempts have been made to solve
these problems in addition to GAIL.

The improvement in the GAIL model collapse caused by GAN is also inspired by an
improved approach to GAN. Extending imitation learning from a single-model assumption
to learning from multiple models can effectively avoid model collapse and satisfy the
requirements of practical applications. In the case of autonomous driving, for example,
an intelligent agent is expected to imitate not only the fast-driving model but also learn
multiple driving models, including safety.

• Conditional GAIL (cGAIL): Based on the idea of conditional GAN (cGAN) [88], i.e.,
when multiple model labels for imitation learning can be obtained directly from expert
samples, these model label data can be directly used as conditional constraints in the
process of policy and reward function construction. Hence, cGAIL [24,25], which can
perform imitation learning under multiple model conditional constraints, is proposed.

• GAIL with Auxiliary Classifier (AC-GAIL): AC-GAIL [26–28] was inspired by GAN
with auxiliary classifier (AC-GAN) [89], which introduced an auxiliary network model
for multiple model imitation learning. AC-GAIL does not use model label data directly
but uses an additional auxiliary network to train the model label data, which can
extract abstract deep features from the samples and efficiently use the model label data.

• Information Maximizing GAIL (InfoGAIL): Inspired by information maximizing GAN
(InfoGAN) [90], InfoGAIL [29,30] employs the idea of mutual information to judge
the correlation between samples and maximizes the mutual information from the
relationship between the generated samples and the randomly sampled hidden modal
data to interpret the meaningful implicit modal data in the expert samples. Thus, it
realizes unsupervised multimodal imitation learning and provides a certain degree of
interpretability.

• Variational Auto-Encoder GAIL (VAE-GAIL): Based on the principle of variational
auto-encoder GAN (VAE-GAN) [91], VAE-GAIL [31,32] replaces the generative model
in the original GAIL with a variational self-encoder to obtain meaningful modalities
in the sample by maximizing the mutual information between the expert samples
and the implicit modal data inferred by VAE. Because of the continuity of the implicit
modal data inferred by VAE, the strategies learned by VAE-GAIL have a higher level
of diversity.

• Wasserstein GAIL: Based on the improvement of GAN by Wasserstein distance [92],
Wasserstein GAIL is proposed [33]. It employs Wasserstein distance instead of KL
divergence or JS divergence to compute the distance between the generated distri-
bution and the true distribution, i.e., the loss function of the Generator. In contrast,
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the difference measured by Wasserstein distance is continuous; hence, the training is
smoother. Furthermore, no modal collapse was observed in the experiment [92].

Among the above methods, cGAIL and AC-GAIL based on supervised learning cannot
work without the modal labeled data. In contrast, InfoGAIL and VAE-GAIL, based on
unsupervised learning, can handle the condition against the modal labeled data hidden in
expert samples. Wasserstein GAIL improves the GAIL by obtaining smooth gradients to
smooth the training.

The problem of the low efficiency of sample environment interaction utilization can
be improved from the perspective of RL.

• Model-based GAIL (MGAIL): differing from the model-free policy learning approach
of GAIL, model-based GAIL (MGAIL) [34,35] effectively improves the utilization
efficiency of samples in the environment interaction process by modeling the dynamic
environment and random sampling process [93].

• Actor–Critic Policy Searching Based GAIL: Another improvement idea is to replace
the stochastic policy with the Actor–Critic policy searching method [94], where Actor
is a policy that executes actions based on state, and Critic is used to evaluate actions.
The learning process is similar to the generative adversarial learning process of GAIL.
GAIL based on Actor–Critic policy searching can improve the efficiency of sample
utilization and also achieve end-to-end gradient update from reward function to
policy [2,23,36,37].

These two approaches improve GAIL by introducing an environmental model and
improving the policy search methods. Compared to MGAIL, GAIL with an Actor–Critic-
based policy search method, avoids the complex recursive computation involved in using
a model.

Improved GAIL with multimodal learning capabilities performs well in policy learning
and has been corroborated to apply to complex real-world tasks. This method can perform
autonomous driving tasks, including learning the policy preferences of different taxi
drivers to find passengers in various areas [25], learning driving strategies to change lanes
based on traffic conditions [26], and imitating driving strategies [29]. In terms of motion
control, it can imitate human motion patterns [28] and complete high-dimensional robotic
simulation tasks [95]. Moreover, it can be extended to real-time strategy (RTS) game strategy
learning [26]. In addition, improved GAIL with increased sample utilization efficiency
has enabled large-scale applications in dense urban autonomous driving tasks [35] and
imitation learning involving multiple agents [96].

3.4. Section Summary

Through direct imitation, strategies can be learned from demonstrations using IL.
This section describes two specific methods by which behavior can be imitated directly
from demonstrations, namely BC and GAIL, and their improved methods. Supervised-
learning-based simple BC uses labeled demonstration data for learning. Depending on
the needs of the demonstration subject and the experimental environment, the BC can use
demonstration data not only from a first-person viewpoint but also from a third-person
viewpoint. The first-person-view BC is designed for occasions where the accuracy of the
measurement data is important, and the sensor can be easily mounted directly on the
expert. When customizing the experimental environment is costly, and it is difficult to fix
the sensor to the experimental subject, third-person-view BC based on video measurement
is easier to apply. BC is theoretically feasible as the simplest IL method. It performs
well in imitating demonstrative robotic manipulations in simple environments. However,
relying on the properties of supervised learning and the policy-learning process without
environmental interaction, it was found in early practice that simple BC often fails to mimic
expert behaviors in real-world high-dimensional environments. This is because of problems
such as covariate shifts and causal confusion [97]. To address the problem of environmental
interaction, DAgger employs the policy learned by the BC to interact with the environment
and generate new data, iterating online to augment the dataset. The algorithm considers
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the differences between demonstration and test results. Thus, it exhibits a generalization
performance superior to simple BC in complex environments. However, DAgger does
not inherently depart from the BC algorithm. Owing to its online learning mechanism,
it requires long hours of expert assistance to supplement the demonstration, which can
result in high workloads. Moreover, BC is often used for pre-training and is combined with
RL owing to its simplicity. This approach of combining IL and RL introduces a reward
obtained from the imitation of an expert into the RL framework, which can be used to
obtain an agent that exceeds that of a demonstration expert. It has been extensively applied
in robot motion control. By contrast, GAIL uses a generative adversarial approach to extract
abstract features from training samples, and its stronger representation ability alleviates the
dependence of the algorithm on large datasets. However, the original GAIL experiences
the problems of GAN modal collapse and inefficiency of stochastic policy search methods.
To solve the modal collapse problem, cGAIL and AC-GAIL constrain the explicit modal
labels. In contrast, through unsupervised learning, InfoGAIL and VAE-GAIL determine
the implicit modal labels in the presentation data. In addition, Wasserstein GAIL improves
the smoothness of the training process. MGAIL and Actor–Critic-based GAIL improve
the environment sample interaction utilization by introducing environment models and
changing the strategy search method, respectively. GAIL is widely employed in automatic
driving, motion control, robot manipulation in high-dimensional environments, and game
strategy learning. It has become a popular strategy learning algorithm in recent years.

4. Explaining Behavior via Reward Function: Inverse Reinforcement Learning

The goal of RL is for agents to attempt to learn optimal behaviors through experience.
Reward functions are required for RL to determine policies during the interaction between
the agent and the environment. IRL, in contrast, is the reverse process of RL; that is,
the agent learns the corresponding reward function based on the observed behavior [98].
Although some studies have classified the IRL under the category of IL, in this review, IRL
is listed as an independent section. This is because, unlike IL methods, such as BC and
GAIL, which learn policies directly from demonstration data, IRL extracts reward functions
from behavioral data in a transferable manner. If the reward function is recovered, the
target strategy can be implemented efficiently using the reward function and RL. Compared
with the human-designed reward function approach, IRL automates the reward design,
and the learned reward function can handle complex and multimodal presentations. In
addition, by learning the reward functions, the behavioral preferences of experts can be
obtained, contributing to an understanding of biological behavior.

IRL assumes that the behavior is consistent with a Markov decision process (MDP)
and infers reward functions from behavioral data. MDP is a sequential decision process
that simulates an agent [99]. The Markov property simplifies the state dependencies in
real-world problems by ensuring that the action decision for the next state depends only on
the current state–action pair and is independent of the previous state, where the transition
from state to action π(at | st) is determined by the policy of the agent and the transition
from action to state P(st+1 | st, at) is determined by the environment. The long-term
reward based on MDP can be expressed as

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · = ∑
k=0

γkrt+k+1, (2)

which is the cumulative value after the current state is obtained by multiplying all reward
values by the corresponding discount rate γ. Value functions are used to quantify the
contribution of the current state to the end goal. The state value function vπ(st) and the
state–action value function qπ(st, at) are defined as follows:

vπ(s) = Eπ [Rt | st = s], (3)

qπ(s, a) = Eπ [Rt | st = s, at = a]. (4)
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They demonstrate an extension of MDP. On this basis, IRL inversely estimates the reward
function through a data-driven approach. IRL performs well in autonomous driving, path
planning, and human–computer interaction (HCI) applications. It has also been used in the
research of learning animal behavioral strategies.

In this section, we review policy-learning methods using IRL. The listed IRL methods
are divided into four main categories based on the optimization method: the maximum
margin algorithm, entropy optimization, Bayesian optimization, and adversarial methods.
The maximum margin IRL determines the ideal reward function for an expert trajectory
by maximizing the margin between optimal and suboptimal policies. This IRL algorithm
performs well in recovering expert behavioral trajectories. Entropy optimization and
Bayesian optimization IRL are based on probabilistic methods. They can find a strategy
that outperforms experts’ suboptimal behavior when the demonstrated behavior is not
optimal. In addition, IRL using adversarial methods builds on the entropy optimization
IRL to make reward learning efficient and robust in dynamic environments.

4.1. Maximum Margin Method

The original IRL algorithm assumes a problem consistent with MDP, where a policy can
decide an action for the next state using the current state-action pair. The reward function
must be estimated from a portion of the basis functions that represent the important features
of the states using a linear approximation. Subsequently, we generalize to more unknown
states as follows:

R(s) = α1ϕ1(s) + α2ϕ2(s) + · · ·+ αnϕn(s) = αϕ(s), (5)

where each basis function ϕi(s) maps the state s to a scalar value, and the coefficient α deter-
mines the contribution of each basis function to the state. According to Equations (2) and (5),
the value function vπ(st) can be expressed as

v(π) = E[
∞

∑
t=0

γt
n

∑
i=1

αiϕi(st) | π], (6)

and is further simplified to the following form:

v(π) =
n

∑
i=1

αiE[
∞

∑
t=0

γtϕi(st) | π] =
n

∑
i=1

αiµi(π) = αµ(π). (7)

It is worth mentioning that IRL is an ill-posed problem according to its definition. Multiple
optimal policies may exist under the same reward function, and multiple reward functions
may correspond to the same optimal policy.

When the optimal policy is unknown, the original IRL algorithm estimates it using
multiple expert demonstrations, also known as apprenticeship learning (AL) [100]:

µ̂(πE) =
1
n

n

∑
i=1

µ(πi). (8)

For the reward function to have only one corresponding optimal policy, AL solves the
ill-posed problem using the maximum margin method, that is, maximizing the difference
between the first and second optimal policies. The process of optimizing the reward
function can be represented as follows:

max{ti = min
j∈{0, 1, ..., i−1}

α(µ(πE)− µ(π j))}, (9)

where ti denotes the minimum value of the transition difference in the expected rewards
among all previous strategies up to step i − 1. By maximizing this term, a strategy sig-
nificantly better than any previous strategy is identified to make it as close as possible to
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the expert strategy, as shown in Figure 2A. The optimization process of this algorithm is
randomized, and thus, may not be sufficiently accurate in the face of expert behavior with
deterministic behavior.

Rather than returning to an optimal policy, AL uses the maximum margin method to
select a randomly returned alternative policy with performance approximately similar to
expert behavior. Thus, maximum margin planning (MMP) provides a learning method
that can directly reproduce expert behavior [101]. MMP avoids the ill-posed problem by
introducing a loss function L(π). The difference from AL is the margins in the MMP scale
with the loss function. maxπ′ denotes the maximum value of all strategies, except π. In
other words, L(π) penalizes strategies with a small margin between the expected value
and the expected value of the best strategy, thus selecting more robust strategies with
larger margins:

max
π

{vπ(s0)− min
s′

vπ(s′)}, (10)

L(π) = max
π′

[vπ(s0)− vπ′(s0)]. (11)

In the optimization process, MMP employs the qπ(s, a) function to estimate the expected
reward for each action in each state. It is continuously updated iteratively, such that the
action with the highest reward is selected to obtain an optimal policy. In subsequent
improvements, LEARCH was introduced and extended the learning of the reward function
to nonlinear using an exponential function gradient descent method for optimization [102],
as shown in Figure 2B.
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Figure 2. Direct illustrations of the maximum margin method. (A) An example of three iterations for
AL using the maximum margin method to approach expert policy (Redrawn from [100]). (B) MMP
methods with LEARCH searching (Redrawn from [102]).

For some complex tasks (e.g., autonomous helicopter aerobatic flight, which needs to
consider other factors such as dynamics in addition to the target trajectory), the sample tra-
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jectories are difficult to describe directly, so supervised learning-based simple BC methods
are no longer applicable. However, the core of the maximum margin method-based IRL is
to extract desirable trajectories from demonstrations that robots can follow, which can be
used to solve such problems. Although AL still exhibits problems such as sensitivity to
demonstration data and stochastic optimization strategies that may lead to inaccuracies,
it has achieved good results in fields such as aerobatic helicopter flight [103] and game
simulation [5,38]. Compared with AL, which selects the reward function using linear
programming, the optimization process of MMP is more flexible and can reproduce the
expert trajectory. It exhibits better performance in robot navigation on rough terrain [104].
However, this approach relies on a complete sequence to achieve optimization, which has
limited scalability and is computationally expensive for high-complexity tasks.

4.2. Entropy Optimization Method

Although MMP has enabled the replication of expert trajectories, this maximum
margin method-based approach suffers from labeling bias in practical applications. The
estimated reward function will be biased towards actions or trajectories consistent with
the expert’s demonstrated behavior while ignoring other potentially desirable alterna-
tives [105]. The over-preference for expert behavior when learning reward functions
from demonstrations makes diverse strategy exploration challenging. Hence, a series of
IRL methods employ entropy optimization. The policy with the highest reward derived
by MMP is not necessarily the policy with the highest probability among the entropy
optimization methods.

To reduce this label bias, the maximum entropy IRL (MaxEnt-IRL) [106] learns the
reward function using a probabilistic method to solve the ill-posed problem of IRL. MaxEnt-
IRL uses the maximum entropy principle [107] to solve this uncertainty, which allows
for estimating the minimum deviation from the given information when only partial
information is available. The probability of an observed expert trajectory is weighted by
the estimated reward:

Pr(τ | w) =
1
Z

eαE(τ, w), (12)

where τ represents the trajectory, w is the weight vector, and Z is the normalizing constant.
α indicates the confidence level at which the expert selects an action with a high reward
value. Thus, the optimal weight vector w is derived by maximizing the likelihood of the
observed trajectory using the maximum-entropy approach:

w∗ = arg max
w ∑

τ∈D
log Pr(τ | w), (13)

where D represents the demonstration. MaxEnt-IRL uses the maximum entropy approach
to select the reward function based on the premise that the calculated strategy reward
is comparable to the expert strategy reward. Despite the superiority of the probabilistic
approach, MaxEnt-IRL remains limited to the representational capacity of linear reward
functions. On this basis, the maximum entropy deep IRL (MEDIRL) [39] extends the
representation of the reward function to nonlinearity. MEDIRL employs the same basic
algorithm as MaxEnt-IRL; however, it represents the reward function through a flexible
neural network, and the features in the reward function do not need to be set manually.

However, MaxEnt-IRL does not adequately consider stochastic transformation models.
Thus, the maximum causal entropy IRL (MCE-IRL) extends the maximum entropy principle
to side information [40,41,108]. It focuses on inferring an agent’s preferences from observed
behaviors and further understanding the causality between actions and outcomes. MCE-
IRL allows stochastic transformation models. Hence, it considers the causality between
actions and outcomes while estimating the reward function.

IRL algorithms based on the maximum entropy framework are model-based. In
contrast, relative entropy IRL (RE-IRL) is a model-free algorithm [5,42,109]. It overcomes
the computational cost problem by minimizing the KL scatter between the learned and real
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trajectories to determine the optimal policy. Therefore, it is more suitable for IRL tasks that
use large datasets.

These probability-based maximum entropy methods enable experts to demonstrate
strategies as suboptimal and, therefore, learn potentially optimal models that are more flexi-
ble in practical applications without the concern of less-than-perfect demonstration samples.
For autonomous driving problems, the MaxEnt-IRL can learn the reward
function [43,44] from driving data, including the vehicle speed, distance from the front
vehicle, and relative speed. It has also been used to learn pedestrian navigation [3,45],
animal behavior [46–48], and human preference [49], which provided new inspirations for
HCI developments and the understanding of behavior mechanisms. On this basis, MEDIRL
can handle large datasets [50]. Moreover, as a model-free algorithm, RE-IRL is capable of
learning different strategy styles [5]. It can also be used as a highly scalable method for
the inverse reinforcement learning of large samples [42] and achieves good results with a
relatively lower computational cost.

4.3. Bayesian Optimization Method

Bayesian IRL (BIRL) [51,52,110] uses a probability distribution approach to address
uncertainty when estimating the reward function for inverse reinforcement learning. BIRL
uses a Bayesian framework and prior knowledge to determine the posterior distribution
preferred in expert behavior, producing alternative strategies that may outperform the
suboptimal strategy demonstrated by the expert. The probability of demonstrating the
entire trajectory to an expert is expressed as Pr(τ | R). Thus, the posterior probability
Pr(R | τ) of the reward function R can be derived:

Pr(τ | R) =
1
Z

eαE(τ, R), (14)

Pr(R | τ) =
1

Z · P(τ)
eαE(τ, R)P(R). (15)

Bayesian ideas can also be embodied in Gaussian process IRL (GP-IRL) and maximum
likelihood IRL (ML-IRL). The GP-IRL models the reward function as a Gaussian process
and treats the distribution of the reward function as a posterior distribution, computed by
Bayesian updating [111]. It employs a Gaussian process to learn the nonlinear reward func-
tion. The uncertainty is addressed by determining the posterior distribution. Unlike BIRL,
the ML-IRL directly uses the likelihood function to perform the estimation. Boltzmann
exploration makes the likelihoods differentiable, thus inferring a reward function [53].

As IRL methods based on the probabilistic approach, BIRL and GP-IRL impose a
prior on the relevant parameters to learn the degree of suboptimality in expert demonstra-
tions explicitly and provide a posterior distribution. In contrast, the ML-IRL is based on
maximum likelihood estimation, which cannot incorporate prior knowledge and handle
uncertainty. IRL with the Bayesian optimization method has been used to learn driving
strategies [54], mobile robot navigation [55,56], and robot demonstrative learning [57] with
good performance. Hierarchical BIRL extended on the original basis outperforms MaxEnt-
IRL in cab driver route selection based on maps and GPS data [58]. This method is also
used to learn the behavior of animals [59,60], the behavior of pedestrians [61], user behavior
modeling [62], and market trading strategies [63]. Nevertheless, IRL based on the Bayesian
framework or Gaussian process significantly increases the computational difficulty and
remains difficult to extend to applications in large environments before solving complex
computational volumes. The ML-IRL, in contrast, could be computationally simpler but
lacks robustness to uncertainty.

4.4. Adversarial Method

Compared to GAIL, an efficient algorithm that allows for direct strategy imitation, IRL
methods are often criticized for their high computational costs. Nevertheless, the GAIL
framework cannot estimate transferable reward functions. On some occasions, learning the
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reward function may be more useful than directly imitating the behavior. This is because
the reward function is transferable to new environments and agents and can represent the
agent’s behavioral preference to some extent. Therefore, IRL could be a better choice when
the reward function needs to be recovered.

The adversarial IRL (AIRL) is an IRL algorithm based on adversarial learning. This is
based on the maximum entropy principle of the IRL method (see Section 4. B). Similar to
the generative adversarial concept mentioned in Section 3. B, AIRL treats the process of
updating the Discriminator as an update of the reward function, which is shown as follows:

D(s, a, s′) =
e f (s, a, s′)

e f (s, a, s′) + π(a | s)
, (16)

where f denotes the learning function. In the absence of a priori knowledge of dynamic
information, IRL can only learn rewards from ideal agent demonstrations, which cannot
guarantee robustness against dynamic environmental changes. Considering this problem,
AIRL recovers a policy-invariant reward r̂(s, a, s′) by studying the policy invariance in the
two MDPs (M, M′). Thus, AIRL can avoid an entangled reward-learning process and make
the learned reward dynamically robust to the environment.

AIRL is a practical, efficient, and robust IRL algorithm. This was validated in simulated
environments for locomotion control [64,65] and robotic manipulation [66,67]. It has also
been applied to cognitive studies of collective animal behavior [68].

4.5. Section Summary

By recovering the reward function from behavioral data, IRL-based policy learning
achieves better generalization performance and avoids some problems exhibited in BC. In
this section, we introduced four methods for IRL: the maximum margin algorithm, entropy
optimization, Bayesian optimization, and the adversarial method. Assuming that expert
demonstration is the optimal strategy, the AL uses the maximum margin algorithm to
maximize the reward difference between the optimal and suboptimal strategies. It exhibits
excellent performance in learning high-dimensional complex behavioral trajectories (e.g.,
helicopter flying). However, the reward function derived by AL is only a close alternative
to the expert’s behavior. MMP improves AL and can reproduce an expert’s behavioral
trajectory. However, when the expert demonstration is suboptimal, probability-based
entropy optimization and Bayesian optimization methods can obtain a policy that exceeds
that of the expert demonstration. For entropy optimization IRL, MaxEnt-IRL uses the
principle of maximum entropy to find the optimal policy, which is widely applied in au-
tonomous driving, navigation, human–computer interaction, and understanding biological
behavior. Accordingly, MEDIRL generalizes the estimation of the reward function to be
nonlinear by combining the advantages of neural networks. MCE-IRL further considers
the causal relationship between actions and outcomes. In contrast, the RE-IRL changes the
model-based algorithm and uses a model-free approach for optimization. This reduces
the computational cost and enables the algorithm to apply to real-world scenarios with
large-scale data. However, for Bayesian optimization IRL, BIRL determines the posterior
distribution of expert behavioral preferences through prior knowledge. Similarly, GP-
IRL and ML-IRL employ this idea to learn the reward functions. IRL based on Bayesian
optimization has a higher computational cost than entropy optimization methods, thus
limiting its application in large-scale scenarios. Furthermore, because IRL learns behavioral
strategies by recovering the reward function, it is computationally intensive compared to IL,
which directly imitates behavior. Considering this problem, AIRL takes advantage of the
algorithmic advantages of GAIL based on MaxEnt-IRL and uses an adversarial approach
to update the reward function. Robust rewards can be learned without prior knowledge of
the dynamic environment.
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5. Learning Based on Interpretability and Safety: Causal Policy Learning

As mentioned in Section 3. A, supervised learning-based BC methods suffer from
causal confusion [97] as they ignore the causal consequences of expert–environment in-
teractions. Although GAIL improves the interaction between the agent and environment,
according to the architecture and complexity of its generative models, more complex and
powerful models create black-box models that lack interpretability. Deep learning-based
neural networks can output strategies or reward functions from data inputs; however,
they cannot provide an intrinsic causal relationship between the behavior and the reward
behind them [112]. This means that while uninterpretable strategies may be valid, there is
no guarantee that such uninterpretable strategies are free from errors [112,113]. This lack of
transparency and interpretability limits the further application of models in the industry
because users cannot fully trust them. If targeted interventions can be made to determine
the correct causal relationship in the model design, this will help provide interpretability to
the algorithm.

Causal inference is the process of determining causality based on the causes that lead
to the occurrence of an outcome [114]. However, it is sometimes difficult to draw direct
causal relationships from observations. To explain with a simple example, even if the
collected data exhibit a simultaneous increase in the number of people eating ice cream
and the number of people drowning, it does not show that there is a causal relationship
between the two, ice cream eating and drowning. This is because the summer temperature
increase might be the cause. That is, “correlation” is not “causation”. Determining causality
is an important and challenging task in policy learning because the relationship between
two different actions is often difficult to determine.

In this section, we reviewed the policy-learning approach using a causal inference
framework. The basic concepts of the causal inference framework and policy learning
methods using causal relationships between variables were introduced. The listed methods
for constructing the structural causal model (SCM) include the basic method based on
the directed acyclic graph (DAG) and the extended method based on Bayesian networks
and neural network difference equations. After determining the causal effects between
the variables, the policy can be optimized using the GAIL or IRL algorithms. The advan-
tages of CPL are its robustness and interpretability. Therefore, it has a good scope for
industrial applications.

5.1. Causal Model

Many frameworks have been proposed to explore the causal relationships between
different actions observed. The most commonly used models include the SCM [115] and the
potential outcome framework [116]. The SCM, also known as the DAG model, understands
the causal structure between observed actions by representing the dependencies between
variables. DAG uses nodes to represent the variables of interest and directed edges to
represent the causal relationships between the variables, as shown in Figure 3. SCM
can be represented by the tuple M: {U, V, F, P(u)}, where U, V, and F are the sets of
exogenous variables, endogenous variables, and structural equations, respectively, and
P(u) is the exogenous distribution. The potential outcome framework, also known as the
counterfactual model, considers the potential outcome of applied or unapplied treatment
to analyze the causal effects of treatment. Both models aim to understand and analyze
the causal relationships of observed actions: SCM focuses on presenting causal outcomes,
and the potential outcome framework focuses on the inference and estimation of potential
outcomes.
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X: The velocity of the driving car
Z: The velocity of the front car
L: The velocity of the left-side car
W: A braking action observed from the left-

side car
Y: Reward signal

Figure 3. Example of a highway driving causal diagram, where X and Y represent the action (shaded
red) and reward (shaded blue), respectively. Input covariates are shaded in light red (CC BY 4.0
image credit: [69]).

5.2. Causal Policy Learning

The IL and IRL mentioned in Sections 3 and 4, respectively, exhibit excellent perfor-
mance in behavioral strategy learning methods by learning from the demonstration and
learning the reward function of behavior. In these machine learning-based policy-learning
methods, although more input data can make the model estimate more accurately, it is
difficult to ensure that the estimation result is unbiased [114]. This is because IL and IRL
follow the assumption that the observations demonstrated by the expert and those available
to the agent match when implementing policy learning. However, in the real world, it is
difficult to satisfy this assumption fully; that is, the expert may not observe all covariates.
Under such conditions, it is difficult for IL and IRL to perform as desired. A causal inference
framework improves the accuracy and interpretability of machine learning.

CPL incorporates causal learning frameworks. It aims to learn causal relationships and
strategies from the observed data by estimating the causal effects of actions on potential
future states and considering potential confounders in the data. The common approach in
CPL is to use SCMs to represent the causal relationships between variables. These models
allow agents to perform counterfactuals on the variables of interest and estimate their
causal effects. An agent can thereby use this causal knowledge to guide the process of
adaptive and flexible behavioral generation.

The traditional CPL framework for SCM [69–73] first defines the SCM M as
{U, V, F, P(u)} to capture the causal relationship between the variables of interest. It
divides the endogenous variable V into observed variables O and latent variables L, where
O ⊆ V and L = V \ O. Thus, SCM M can be implemented to model the unobserved nature
of endogenous variables. The expected reward and reward of the expert demonstrated
are denoted by E[Y | do(π)] and E[Y] = 1, respectively, where π denotes the policy. The
function do() represents the intervention or action being performed in causal inference. In
policy learning tasks, the expected reward E[Y | do(π)] cannot be determined directly from
the observed data or DAG because the reward Y is typically latent. Additionally, there are
cases in which confounders or other variables exist. For example, for ordered variables
(X, Y) in a DAG, exploring the causal effects between X → Y can be difficult if there are
variables that point to or influence X that are difficult to measure in the experiment. The
backdoor criterion is used to address this problem [70]. It states that the set of variables Z
satisfies the backdoor criterion for ordered variables (X, Y) when no element of the set Z is
a successor node of X and Z blocks all paths between X and Y that towards X. In subse-
quent refinements, the backdoor criterion applicable to single-stage decision problems is
extended to the sequential backdoor criterion by considering the time dependence between
variables; that is, X affects Y at different points in time and can be viewed as a recursive
form of the single-stage backdoor criterion [70]. If Z satisfies the ordered backdoor criterion
for ordered variables (X, Y), then the causal effect between X → Y can be deduced.

P(Y | do(X)) = ∑
z

P(Y | X, Z)P(Z) (17)
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Strategy learning is then guided by the collected observed data and estimated causal effects.
Policies can be obtained by solving the equation P(s | do(π)) = P(s), where s belongs to a
subset S of the observed variables [69]:

π(x0) =
P(s1)− P(s1 | do(x0))

P(s1 | do(x1))− P(s1 | do(x0))
, (18)

π(x1) =
P(s1 | do(x1))− P(s1)

P(s1 | do(x1))− P(s1 | do(x0))
. (19)

However, the computation becomes challenging when the observed variable O is high-
dimensional. Considering that expert demonstrations are sometimes not optimal strategies,
CPL frameworks are often combined with the GAIL or IRL optimization methods.

In addition to the DAG-based causal representation of SCM mentioned above, SCM can
also be represented using Bayesian networks [74,75] or continuous-time neural networks
based on differential equations [76]. The construction of SCMs through Bayesian networks
requires consideration of prior knowledge to quantify the probabilistic dependencies
between each variable in the causal model. This probabilistic modeling framework allows
uncertainty quantification and probabilistic inference compared to the traditional DAG-
based SCM. Another approach that uses the probabilistic assignment of constraints between
variables is maximum causal entropy, as mentioned in Section 4. B. Unlike the conditions
explored in this section, the causal structure defined by the maximum causal entropy is
based on the fact that experts and agents can receive the same observed data and will not
be further discussed here. By contrast, the SCM construction method based on continuous-
time neural networks was implemented using neural networks to construct differential
equations that conformed to the causal model. Its advantage is the stronger representation
of the causal structure in a complex time series.

CPL performed well on several synthetic datasets, including highway-driving vehicle
trajectories (Figure 3), MNIST digits [69,73], and visual navigation tasks [76]. They also
exhibit promising applications in autonomous driving and industrial automation. This is
because the safety and robustness of automated decision algorithms are currently being em-
phasized in the industry. CPL based on causal inference is more robust than unexplainable
black box model systems.

5.3. Section Summary

CPL introduces causal models into strategy learning algorithms. In this section, we
introduced preliminary knowledge of causal inference and the CPL framework. Causal
inference investigates the causal relationships between variables of interest by defining the
SCM. The unobserved properties between variables can be modeled using three methods:
DAG, Bayesian networks, and continuous-time neural networks. The DAG uses nodes
and directed sides to represent causal relationships between variables. In contrast, SCM
constructed using Bayesian networks can quantify the probabilistic dependencies between
variables. In addition, SCM based on neural networks has a stronger ability to characterize
causal structures. For IL and IRL algorithms that lack interpretability, there is no guarantee
that their definitions of the relationships between variables are correct. However, CPL
frameworks can avoid causal confusion by introducing causal reasoning. Therefore, CPL
can learn strategies safely, even if there is a difference between the observed behavior of the
expert and the agent. Nonetheless, updating the causal structure might be very necessary
when encountering a new environment or task, which could become a limitation of CPL.
The computational cost depends on whether CPL employs model-free or model-based
approaches. The high causal inference will also cause high computational costs according
to tasks. In industrial environments (e.g., autonomous driving and navigation), where
increasing emphasis is placed on algorithmic interpretability and safety, policy learning
methods with causal inference intervention will have broader applications.
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6. Discussion
6.1. Algorithmic Property Analysis

Policy learning enables the generation of expert behavior when the reward function
is unknown or difficult to specify. This review examined three approaches based on data-
driven policy-learning algorithms. The features of the algorithms reviewed in this paper
are summarized in Table 2. Based on the literature review results, combined with their
respective recent improvements, we selected relatively popular algorithms among the
three groups of approaches: BC, MaxEnt-IRL, DAgger, GAIL, and AIRL. Furthermore, we
discuss the approaches based on task requirements, data availability, and computational
cost. The robustness in high-dimensional spaces, dataset quality, and dynamic systems is
also discussed.

Table 2. Comparison of properties for reviewed policy learning algorithms.

Category Sub-Category Algorithm Task Requirements Data Availability Computational Cost

IL

BC

Simple BC
Simple tasks with clear, static goals
and easily accessible expert
demonstrations

The quality, quantity, and diversity of
data sets are important Low computational cost

DAgger Challenging tasks involved in
environmental interaction

Experts need to continuously
supplement demonstration data
during the iteration process

Computational costs can be high
owing to the iterative process of
collecting data and refining the
model

BC as RL
pre-training

High-dimensional tasks where the
reward function is hard to determine,
suitable for complex and dynamic
environments

The quality and quantity of data can
significantly affect the effectiveness
of pre-training

Lower computational cost than RL,
can speed up training

GAIL

GAIL Complex and high-dimensional tasks
with single-model assumption

Less dependent on large-scale
datasets because of the adversarial
framework

Relatively small computational cost

cGAIL Tasks that require learning diverse
behaviors

Compared with GAIL, explicit modal
labels are required for diverse
behavior learning

Similar to GAIL but the
computational cost depends on
conditional information

AC-GAIL Tasks that require learning diverse
behaviors

Compared with GAIL, explicit modal
labels are required for diverse
behavior learning

Relatively higher computational cost
than GAIL due to auxiliary classifiers

InfoGAIL
Tasks where diverse and
information-rich behavior need to be
captured

Similar to GAIL, multimodal labels
are not required for diverse behavior
learning

Depending on the mutual
information estimation, the
computational cost may be higher
than GAIL

VAE-GAIL
Tasks that require diverse behavior
learning and more effective
representation

Similar to GAIL, multimodal labels
are not required for diverse behavior
learning

Higher computational cost than
GAIL due to the variational
autoencoder

Wasserstein
GAIL

Tasks that require stable and robust
imitation learning Similar to GAIL

Depending on the efficiency of
calculating the Wasserstein distance,
the computational cost may be
higher than GAIL

MGAIL
Complex and high-dimensional tasks
that emphasize environment
interaction

Similar to GAIL
Higher computational cost than
GAIL owing to the introduction of
the environmental model

Actor–Critic
Policy

Searching
Based GAIL

Tasks that require efficient
exploration and exploitation

Compared with GAIL, it improves
sample efficiency and stability in
policy learning

Relatively higher computational cost
than GAIL due to the training of
Actor–Critic networks

IRL

Maximum
Margin
Method

AL

High dimensional tasks where the
reward function is required and hard
to determine, suitable for complex
and dynamic environments

Can learn an alternative policy of the
expert policy, the robustness of
suboptimal demonstration is poor

High computational cost owing to
model-based algorithm and reward
function searching

MMP Compared with AL, it can learn more
complicated expert trajectories

Can reproduce the expert policy, the
robustness of suboptimal
demonstration is poor

High computational cost owing to
model-based algorithm and reward
function searching

Entropy
Optimization

Method

MaxEnt-IRL Tasks that emphasize uncertainty
capture in expert behavior

Can learn optimal policies that
outperform expert suboptimal
policies

High computational cost similar to
other IRL methods

MCE-IRL
Compared with MaxEnt-IRL, it
emphasizes the causal relationship in
expert behavior

Based on MaxEnt-IRL, it considers
maximizing causal entropy,
involving the causal impact of
actions on the environment and
subsequent rewards

Relatively higher computational cost
than MaxEnt-IRL owing to
maximum causal entropy
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Table 2. Cont.

Category Sub-Category Algorithm Task Requirements Data Availability Computational Cost

RE-IRL

Compared with other IRL methods,
it is suitable for tasks with large-scale
datasets because of less
computational cost

Can learn optimal policies that
outperform expert suboptimal
policies

Lower computational cost than other
IRL methods because of the
model-free algorithm

Bayesian
Optimization

Method

BIRL Tasks that emphasize the uncertainty
in reward function estimation

Prior knowledge is required to
determine the posterior distribution,
suitable for datasets with limited
quantity

Compared with other IRL methods,
Bayesian framework greatly
increases computational cost

GP-IRL

Tasks where the reward function has
a smooth structure and the
uncertainty of the reward function
needs to be modeled explicitly

Kernel function may be needed to
define the covariance structure of the
Gaussian process when modeling
reward functions

Compared with other IRL methods,
Gaussian processes greatly increase
computational cost

ML-IRL

Tasks where the point estimate of the
reward function is sufficient and
uncertainty does not need to be
modeled explicitly

Similar to other IRL methods
The computation cost is lower than
BIRL and ML-IRL but lacks
robustness to uncertainty

Adversarial
Method AIRL

Complex and high-dimensional tasks
that require defining a reward
function efficiently and robustly

Compared with other IRL methods,
less dependent on the quantity of
dataset because of the adversarial
framework

Lower computational cost than
MaxEnt-IRL

CPL Complex and high-dimensional tasks
that emphasize causality and safety

It requires access to data that
captures causal relationships
between actions and outcomes

The computational cost depends on
whether it is a model-free or
model-based approach

Simple BC employs expert presentation datasets for supervised state-action mapping.
BC is suitable for tasks where the presentation data are easily accessible and can completely
cover the state-action space. Although computationally efficient, it is highly dependent on
the quality and diversity of large datasets. Subtle inaccuracies can eventually lead to poor
prediction results, known as covariate shifts and causal confusion. Hence, it is limited in
dynamic environments and suboptimal dataset performance. When the task focuses more
on the dynamics of the environment, IRL methods can recover the reward function from
the presentation data that explains the behavior, helping the agent to make predictions in a
dynamic system. In contrast, MaxEnt-IRL exploits the maximum entropy principle and
learns strategies outperforming suboptimal expert demonstrations. MaxEnt-IRL has a high
generalization ability to avoid many problems in BC. However, MaxEnt-IRL inevitably
incurs high computational costs because the function search is ill-posed. This limits the
computational efficiency in high-dimensional scenarios. Extending this method to large-
scale datasets and environments remains challenging for the current IRL research. IRL is
fundamentally about learning a cost function to explain expert behavior rather than telling
the agent how to act. For cases that need to mimic behavior directly, imitating the demon-
strated behavior through policy optimization can avoid high computational expenses. By
iterating online to refine the policy based on BC, DAgger compensates for BC’s shortcom-
ings and enables interaction with the environment. It is also used for pre-training with RL.
However, iterative iterations involve a high demand for supplementary presentation data,
and the online learning approach cannot apply to specific presentation experts. Depending
on the number of iterations, DAgger can be computationally demanding. In contrast,
GAIL learns policies through generative adversarial training and is thus less dependent
on large-scale datasets. Hence, it can be used to learn complex, high-dimensional spatial
tasks and is robust to the distribution changes. To avoid redundant computation, GAIL is
more computationally efficient. Other IL methods that utilize adversarial structures are
mainly derived from GAIL and inherit its advantages, avoiding expert interactions during
training. Similarly, for complex behavioral policy learning that requires recovery of the
reward function, AIRL utilizes an adversarial approach to update the reward function
based on MaxEnt-IRL, which improves computational efficiency while obtaining a robust
reward function in dynamic environments.

These algorithms are widely used and accepted in policy learning. Each algorithm
has its advantages and disadvantages. Depending on the specific requirements of different
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tasks, data availability, and computational resources, users and researchers can select
appropriate algorithms according to their corresponding needs.

6.2. Application Scenario Analysis

For the reviewed policy learning approaches, their applications in autonomous driv-
ing, robot control, and biological behavior understanding were analyzed. In this section,
we highlight how the diverse characteristics of these algorithms lead to varied applica-
tions across these domains, summarizing the relevant policy learning methods for each
application scenario.

(1) Autonomous driving: Autonomous driving tasks often involve autonomous driving
systems and driver behavior in various traffic situations. Considering the visual
information input, drivers’ style modeling, and system safety of the autonomous
driving system, policy learning methods such as DAgger, IRL, GAIL, and CPL are
often used for autonomous driving. In contrast, DAgger is often used for automatic
driving strategy planning from visual information [14,15] and can be used for simple
lane-keeping tasks [19]. However, modeling drivers based on their gender, age, and
driving style is a difficult task. IRL and GAIL model drivers’ driving preferences from
driver data, which enables optimal driving strategies in different driving situations
(e.g., car following, lane changing, and overtaking) [2,35,43,44]. In addition, safety is
also an important factor, as CPL improves the safety of autonomous driving strategies
by modeling the causal relationship between variables such as speed and distance to
the vehicle in front [69,73].

(2) Robot control: Robot control applications, including robot manipulation, motion con-
trol, and navigation, are discussed. According to different test conditions, BC and IRL
can be used in robot manipulation with trajectory reproduction. For applications that
require high environmental interaction conditions, BC combined with RL methods,
IRL, and GAIL are often used to implement motion control and navigation tasks.
Robot manipulation requires an agent to learn the presentation trajectories of humans.
BC is an effective and simple method for low-dimensional robot manipulation without
interactions [20]. However, for complex and high-dimensional robot manipulation
trajectories, IRL performs significantly better than the BC [57,66,67]. For dexterous
robot motion control, we found that using BC or DAgger as pre-training and combin-
ing it with RL’s policy learning method can flexibly mimic animal motion and learn
the ideal motion strategy, which is more practical [4]. Both IRL and GAIL were used
for robot navigation tasks. The former focuses on reproducing human navigation
trajectories [45,55,56], whereas the latter focuses on autonomous robot navigation in
dynamic environments [33].

(3) Biological behavior understanding: Reward functions reproduced through behavioral
data can explain behavioral preferences; therefore, with the biological behavior data
input, IRL can thus be used to help understand biological behaviors. The study of
behavioral strategies has been widely discussed as a fundamental topic in neuro-
science and behavior [1]. IRL has been used to study foraging strategies in worms [60],
olfactory searching of silk moths [46], migratory routes of migratory birds [47], and
the behavior of group animals [59,68]. The recognition of behavior preferences is
fundamental to understanding the mechanisms of animal behavior and analyzing the
control activities of the nervous system [1,117,118]. It is not limited to animal behavior
but also includes human behavior. IRL has also been used to learn user preferences
from user data to help relevant organizations adjust user strategies to maximize their
benefits [42,49,62].

In addition to the three typical examples mentioned above, these policy-learning
methods are also used in strategy learning for game agents, HCI, and helicopter aerobatics.
Practitioners and researchers can select appropriate strategy learning methods depending
on the requirements of different application contexts.
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6.3. Existing Challenges and Development Trends

In general, we believe that the current trend is to combine different techniques to
bridge the barriers between algorithms. The latest IL approaches focus on achieving
generalization capabilities across different domains with meta-learning. IRL techniques
focus on combining algorithms with adversarial frameworks. Causal structure invariance or
invariant causal features can help improve the generalization ability of CPL across various
tasks by meta-learning or domain transfer. In addition, we analyze the challenges, their
corresponding solutions, and future work methods in existing policy learning approaches
from demonstration samples, diversification strategies, and computational costs.

• Data availability: Many studies face difficulties in accessing demonstration data when
using data-driven policy learning, including obtaining large amounts of high-quality
demonstration data, and the accessibility or interactivity of demonstration experts.
Therefore, it is important to be able to take advantage of datasets to the maximum, i.e.,
learning through a limited amount of non-perfect demonstration data. Combining
generative adversarial methods [64], self-supervision, meta-learning, transfer learning,
or domain adaptation [119] is a new trend in the development of policy learning
methods to solve the problems of difficulty in collecting expert data and reducing the
dependence on large datasets.

• Learning diverse behaviors: Limited by algorithms, many methods currently can only
learn a single behavioral strategy from expert demonstrations. Learning multimodal
behaviors from data is still a challenge in current research. As mentioned in Section 3. C,
some improved GAIL methods can effectively learn multimodal behavioral strategies.
Besides, other algorithms are also considering learning diverse behaviors by combin-
ing VAE (e.g., BC with VAE [120–122]) or dividing multiple subtasks (i.e., multi-task
learning) [123,124].

• High computational cost: Although the development of GPUs has eased the pressure
of high computational cost, for most IRLs developed in model-based environments,
DAgger involving multiple iterations, and certain GAIL algorithms using models,
the high computational costs might limit their application in large-scale datasets.
There have been proposed approaches that consider improving function search meth-
ods [64] or using model-free algorithms [23] to improve computational efficiency.
Further computational cost reduction is also a priority that needs to be addressed in
future work.

• Transition to real-world applications: Most algorithms are based on the following ideal
assumptions: (1) the agent can access complete information about the environment;
(2) the information observed by the expert and the agent is consistent. These are diffi-
cult to realize in practice. Simple BC can apply low-dimensional tasks to reality, while
most policy learning methods are still tested in simulated environments. Reducing
the gap between the simulated and real environments requires the generalization
ability of the algorithm. Moreover, tasks involving HCI place more importance on
algorithmic security. Therefore, using partially observable MDPs (POMDPs) [32,119],
causal modeling of variables [69], and sim-to-real transfer techniques [125] will be key
to extending policy learning to real-world problem solutions.

7. Conclusions

This review investigates the computational approaches used to learn strategies from
behavior. This includes research findings from the past decade. The policy-learning ap-
proaches reviewed in the literature are divided into three categories based on their focus:
IL, IRL, and CPL. This review provides a comprehensive review of the development, char-
acteristics, and applications of these three algorithms. It also compares and discusses policy
learning methods in terms of their properties and applications, with the analysis of existing
challenges and future development directions. Data-driven behavioral learning-based algo-
rithms change the adaptive and flexible behavioral generation method for manually defined
rewards such that agents can maximize the use of expert experience and the environment
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to achieve desirable behaviors with maximum rewards. They contribute to developing
robot dexterity control, HCI algorithms, and even biological behavior understanding.
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