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Abstract: Pandemics can result in large morbidity and mortality rates that can cause significant
adverse effects on the social and economic situations of communities. Monitoring and predicting
the spread of pandemics helps the concerned authorities manage the required resources, formulate
preventive measures, and control the spread effectively. In the specific case of COVID-19, the UAE
(United Arab Emirates) has undertaken many initiatives, such as surveillance and contact tracing
by introducing mobile apps such as Al Hosn, containment of spread by limiting the gathering of
people, online schooling and remote work, sanitation drives, and closure of public places. The aim
of this paper is to predict the trends occurring in pandemic outbreak, with COVID-19 in the UAE
being a specific case study to investigate. In this paper, a predictive modeling approach is proposed
to predict the future number of cases based on the recorded history, taking into consideration the
enforced policies and provided vaccinations. Machine learning models such as LASSO Regression
and Exponential Smoothing, and deep learning models such as LSTM, LSTM-AE, and bi-directional
LSTM-AE, are utilized. The dataset used is publicly available from the UAE government, Federal
Competitiveness and Statistics Centre (FCSC) and consists of several attributes, such as the numbers
of confirmed cases, recovered cases, deaths, tests, and vaccinations. An additional categorical
attribute is manually added to the dataset describing whether an event has taken place, such as a
national holiday or a sanitization drive, to study the effect of such events on the pandemic trends.
Experimental results showed that the Univariate LSTM model with an input of a five-day history
of Confirmed Cases achieved the best performance with an RMSE of 275.85, surpassing the current
state of the art related to the UAE by over 30%. It was also found that the bi-directional LSTMs
performed relatively well. The approach proposed in the paper can be applied to monitor similar
infectious disease outbreaks and thus contribute to strengthening the authorities’ preparedness for
future pandemics.
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1. Introduction

A pandemic is the rapid spread of newly emerging pathogens through human hosts
on a global scale. Over the years, the world has witnessed many such pandemics and
epidemics, namely SARS-CoV-2, HIV, and AIDS with the most recent being COVID-19 [1].
Coronavirus or COVID-19 is a severely infectious disease that was declared a global
pandemic in March 2020 [2]. Since then, the World Health Organization (WHO) has been
updating the world every day with the number of cases and has reported over 200 million
cases and over 4 million deaths [2]. The virus is said to spread through the air via respiratory
droplets and mainly spreads when a person has come in close contact (within six feet) of a
COVID-19-positive person when they cough, sneeze, breathe, or talk. The virus can also
spread when a person is exposed to small droplets in the air or on surfaces, as they remain
for a few minutes to several hours [3].
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A pandemic of this nature tends to vary in magnitude over time due to the inherent
nature of the virus that is constantly adapting, in addition to the non-negligible effects of
seasonal changes and various environmental factors. This general phenomenon is exempli-
fied in the case of the evolution of the initial strain of the novel Coronavirus into the rapidly
spreading and arguably more harmful Delta or Omicron variants [4]. As a consequence
of the multiple aspects influencing the contagion susceptibility of the Coronavirus and its
variant, the relationship between the contributing components and the virus itself tend
to be non-linear [5]. This necessitates the utilization of machine learning/deep learning
algorithms that can capture these underlying relationships effectively. Statistical techniques
make generalized assumptions about the intrinsic behavior of the data (i.e., the daily in-
stances of COVID-19 cases, vaccinations, etc.). These assumptions pertain, more specifically,
to the measures of central tendency associated with the periodic, fixed interval measure-
ments of the data samples of interest. For instance, linear correlations in this historical data
appear to be incapable of detecting non-spurious patterns of COVID-19-specific factors
due to its aforementioned non-linear and potentially complex nature [6]. Machine learning
has been proven to work effectively with chaotic, noisy data even without a priori domain
knowledge (although, this can impact its performance favorably if available) and hence
can be a solution for recognizing patterns of interest in a continuum of equally spaced
data measurements such as the daily case counts of COVID-19. To learn more about this
phenomenon, this paper focuses on the United Arab Emirates (UAE) as a case study.

The first case in the UAE was reported on 23 January 2020 and case numbers have been
rising ever since, with an average of 1000 cases daily during the pandemic days [6,7]. To
combat COVID-19, the UAE has taken many initiatives, which are: surveillance and contact
tracing, by introduction of apps such as Al Hosn; containment of spread, by limiting the
gathering of people; online schooling and remote work; closure of public places; sanitation
drives; more frequent testing and more accessibility to testing, by adding more government
testing centers and adding extra PCR-test requirements, such as the need to have a negative
test result 6 h before flight when traveling from high-risk countries; and fast and organized
vaccine drives for all people living in the UAE. Despite the effectiveness of these intensive
precautious measures, the country was far from having zero cases per day. To reduce the
spread of the disease, the available data must be analyzed in order to be used in forming
more accurate future policies and interventions. The UAE government provided such data
through the Federal Competitiveness and Statistics Centre (FCSC) which reports daily the
cumulative number of cases, deaths, recovered cases, tests, and vaccinations that were
recorded on that specific day.

Hence, the goal of this work is to build a model that can forecast and analyze the trend
of the spread of a pandemic or contagious disease. COVID-19 in the UAE was considered
as a case study. Thus, the main objectives of this paper are defined as follows:

1. Determine whether there is a relationship between the vaccinations and the trend in
number of positive cases.

2. Forecast the number of cases per day based on previous history of the number of
cases, deaths, and recoveries.

3. Forecast the number of cases per day using the added feature regarding events that
can have a major impact on the spread of the disease, such as national holidays,
airport closures, etc., to see the event’s effect on trends and compare with the actual
case trend.

4. Apply the objectives (1–3) considering the COVID-19 pandemic outbreak in the UAE
as a case study.

The contribution of this work lies in it being the only work found in the literature
that looks into vaccination and events as suitable attributes for finding the best model for
forecasting COVID-19.

The rest of the paper is organized as follows. Section 2 presents the literature review.
Section 3 discusses the materials and methods utilized in this work. The experimental
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results are presented in Section 4 and these results are discussed and interpreted in Section 5.
Section 6 concludes the paper.

2. Literature Review

There are several works in the literature that focused on monitoring, analyzing, and
forecasting the spread of the pandemic. These works use several methods such as statistical
techniques [8,9], agent-based techniques [10,11], and machine learning techniques. In
this section, we focus on previous work related to forecasting COVID-19 trends using
machine learning. This section is divided into two subsections depending on the methods
used. Section 2.1 discusses the works using the traditional machine learning methods and
Section 2.2 discusses the works using deep learning methods.

2.1. Forecasting of COVID-19 Cases Using Machine Learning

Several studies in the literature utilized machine learning techniques to forecast
COVID-19 trends. Rustam et al. [12] compared four ML models for forecasting of COVID-
19. The authors used these models to predict three numerical outputs, namely the number
of newly infected cases, the number of deaths, and the number of recoveries in the next
10 days. The authors used the Johns Hopkins University dataset. The four ML algorithms
used were Linear Regression, LASSO Regression, Support Vector Machine (SVM), and
Exponential Smoothing. It was found that Exponential Smoothing performed the best
given that the size of the dataset was very small. LASSO worked well only for predicting
death rates and confirmed cases. SVM proved to perform the worst of the four techniques.

Similarly, the authors Bhadana et al. [13] compared six ML models for forecasting
COVID-19 in India. The authors selected the following features for their dataset: number
of cases, announced date of detection, age, detected city, detected district, regional state
of detection, gender, and current status. The models, Random Forest (RF), Decision Tree
Regression, and Polynomial Linear Regression (LR), were tested. The best performing
models were found to be Polynomial LASSO and Polynomial LR.

Gupta et al. [14] selected three features from [15], which are observation date, time, and
state/union territory for forecasting. They dropped two features, which were confirmed
Indian national and confirmed foreign nations, as these only mattered in the beginning of
the pandemic when people were travelling from abroad.

The authors Romadhon et al. [16] performed a comparison of Naïve Bayes method,
Logistic Regression, and K-Nearest Neighbors (KNN) model to predict the recovery of
COVID-19 in Indonesia. The authors also proposed future work by adding more variables
such as travel history and diet to their data for more accurate prediction.

Kumari et al. [17] used Multiple Regression Analysis to predict the number of deaths
due to COVID-19 in India. The authors used a dataset from [18] that consisted of state wise
number of cases recorded weekly. The input features for their model were the active cases
and the recovered cases. Decision Tree and Auto Regression were used. Their results were
in agreement with the ground truth.

Another use case of utilizing an exponential smoothing is of Petropoulos et al. [19].
The authors used the Johns Hopkins University dataset to perform a 10-step prediction
using a non-seasonal Multiplicative Error and Multiplicative Trend Exponential Smoothing
model (ETS(MMN)). It was observed that a large forecast error was found in certain areas
due to the global measures taken to control the spread and declines in certain countries,
which the model was unable to pick up due to the nature of the data. The signed error
does show whether a certain policy worked or not in the past. The authors also conducted
experiments country wise and found that they had higher percentage errors.

The authors Leon et al. [20] also evaluated multiple machine learning models to find
the best model for predicting COVID-19 infections and deaths in Bangladesh. The authors
compared Linear Regression, Polynomial Regression (PR), Support Vector Regression, Auto
Regressive Model, Moving Average Model, Holt’s Winter Additive model, Auto Regressive
Integrated Moving Average Model, and Facebook Prophet’s Model (FP).
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Table 1 provides a summary of some of the studies that used classical machine learning
approaches to predict COVID-19 and gives details on the best results.

Table 1. Summary of Literature Review for Classic Machine Learning approaches.

Reference Purpose Dataset Methods Best Results

Rustam et al. [12]

Predict number of
newly infected cases,
number of deaths,
number of recoveries
for a span of 10 days

Global totals from
Johns Hopkins
University dataset,
56 days were used

Exponential Smoothing,
Linear Regression,
LASSO Regression, and
SVM

Exponential Smoothing
with an R2 score of 0.98
and RMSE of 16,828.58.

Bhadana et al. [13]

Predict number of
newly infected cases,
number of deaths,
number of recoveries

COVID-19 tracking
website of India

LASSO, Random
Forest, Decision Tree
Regression, Linear
Regression, SVM, and
polynomial LASSO

LASSO Regression
with and average R2

score of 87.0 for
forecasting the future
values.

Gupta et al. [14]

Predict number of
newly infected cases,
number of deaths,
number of recoveries

Indian dataset [15]

Decision Tree, Random
Forest, Multinomial
Logistic Regression,
Neural network, and
SVM

Confirmed cases had
an accuracy of 83.54,
death cases had an
accuracy of 72.79, and
cured cases had an
accuracy of 81.27%.

Romadhon et al. [16] Predict number of
newly infected cases

Indonesian local
websites

Naïve Bayes, Logistic
Regression, and KNN

KNN had the highest
accuracy of 75%.

Kumari et al. [17] Predict number of
newly infected cases Indian dataset [18] Decision Tree and Auto

Regression

Was graphically
represented, very
similar to real trend.

Petropoulos et al. [19]
Predict number of
newly infected cases
and deaths

Johns Hopkins
University dataset (ETS(MMN))

Was not able to predict
properly as could not
pick up on effects of
policies implemented.

Leon et al. [20] Predict number of
newly infected cases

Data from Bangladesh
Center For Systems
Science and
Engineering, this
included holiday
events

Linear Regression,
Polynomial Regression
(PR), Support Vector
Regression, Auto
Regressive Model,
Moving Average
Model, Holt’s Winter
Additive model, Auto
Regressive Integrated
Moving Average
Model, and Facebook
Prophet’s Model (FP)

The FP model had the
lowest RMSE error of
518.0 for confirmed
cases and Holt’s had
the lowest RMSE error
of 13.0 for predicting
death cases.

2.2. Forecasting of COVID-19 Cases Using Deep Learning

Several works that use deep learning in forecasting COVID-19 were found in the
literature. The authors Zheng et al. [21] proposed an improved susceptible-infected (ISI)
model to analyze the development law of COVID-19 in China. Their method used the
ratio of the number of newly confirmed cases at a certain time to the cumulative number
of new cases over different time scales to calculate the infection rate for their epidemic
model. A LSTM network was used to estimate the rate deviation of the epidemic and
combine with ISI was used to estimate the number of infected cases. To include the effect
of events and government control measures, a pre-trained natural language processing
(NLP) model named BERT was used to extract features from relevant news articles of
various cities and combined with the LSTM network to correct the deviation of infection
rate and further predict a more accurate number of infected cases. The Centre of Disease
Control and Prevention (CDC) data was used for this paper. It was found that NLP features
provided extra information and guidance for more accurate prediction.
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Kumar et al. [22] also proposed the use of an LSTM to predict the spread of COVID-19
in New Zealand using data extracted over a period of 11 months from the Worldometer
website. The authors aimed to predict when the virus could be contained. To achieve
that aim, the authors calculated a range with an error rate of 1% from either side of the
date when it was first predicted as zero cases. To validate their model, they utilized the
data for New Zealand, which has already controlled the spread of the pandemic. The
model predicted that the curve depicting the number of new cases daily would flatten to
zero around 25 April 2020 before rising again and eventually flatlining on 15 May 2020,
whereas New Zealand got its first zero cases on 13 May although there were one or two
more cases a few days afterwards. For countries where the number of new cases was
decreasing, the authors used a time step of one day and predicted the number of cases for
the next day; where the number of cases was increasing, the authors used a two-phase
procedure where in the first phase, the log of the number of daily cases used a seven-point
moving-average filter to determine the peak, and after the peak, the same method of the
decreasing number of cases was applied. To avoid overfitting and improve generalization,
Bayesian optimization was applied to tune the hyper-parameters of the LSTM network.

Similarly, Chimmula et al. [23] used a LSTM network to forecast COVID-19 trans-
mission in Canada. The authors used the data from Johns Hopkins University and the
Canadian Health Authorities that included several features, namely the number of con-
firmed cases to 31 March 2020, the number of deaths, and the number of recoveries, along
with the dates. The authors also inversely trained their network and found that the start of
the outbreak in Canada was around early January 2020 but was not actually reported until
the last week of January.

Another useful case is from Helli et al. [24], who also proposed using a LSTM for short-
term forecasting of COVID-19 cases in Turkey. The authors used data from the Turkish
Ministry of Health that consisted of number of confirmed cases from 11 March 2020 to
8 May 2020. It was also found that using an exponential linear unit for activation function
worked better as compared to the common choice of hyperbolic tangent.

Ramchandani et al. [25] proposed a deep learning time series model to forecast the
range of increase in COVID-19 data in the future days using large numbers of heterogeneous
features. The features were grouped into three categories, those being constant feature
groups, time-dependent feature groups and cross-county time-dependent feature groups.
Each of these feature’s groups were then embedded so that it can be fed as input the deep
learning model. The authors used the DeepFM model with slight modifications. Their
model deemed to be effective in forecasting. It was hard to do a comparison with other
models due to the nature of their data. The authors also conducted feature importance
evaluation and feature interactions to get a clearer idea on what can be used to make
COVID-19 related policies.

The authors Kafieh et al. [26] compared five different models to find the most optimum
model for forecasting. The authors first trained their model using countrywide data from
Johns Hopkins hospital and then applied the best model to Iran. The models were evaluated
based on the recovered cases as an output. The five models, Random Forest (RF), Multilayer
Perception (MLP), LSTM, LSTM with regular features, LSTM with extended features, and
multivariate LSTM (M-LSTM) were judged and evaluated based on MAPE, RMSE, NRMSE,
and R2 metrics. The input to the models was the number of confirmed, deaths and recovered
cases. The authors also varied the lag to find the most optimal lag parameter, which was
found to be six days. To consider the effect of actions taken by the government, the authors
stopped the training in three different situations; for example, they stopped the training
for dates between 27 March and 4 April 2020, due to road closures between cities. This
was to demonstrate what would have happened if the above decisions were not taken by
the government.

The authors Zain et al. [27] proposed the use of a hybrid CNN-LSTM model to forecast
the COVID-19 pandemic. The thought was to combine the advantages of Convolutional
Neural Network (CNN) in filtering out noise from the input data and learning the time
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series representation using the LSTM model which is effective in identifying and modeling
short- and long-term temporal dependencies embedded within a data sequence. The
authors used the WHO COVID-19 dashboard data that contained countrywide information
such as number of confirmed dead, cumulative confirmed, and cumulative deaths. Their
hybrid model was compared against 17 other baseline models, which were divided into two
deep learning models, two statistical models, three linear models, five ensemble models,
and five machine learning models.

Ghany et al. [28] used a LSTM to predict COVID-19 in the Gulf Cooperation Council
(GCC) countries, which includes the UAE. The data were downloaded from the Johns
Hopkins dataset for seven months. The inputs were sampled into one-week windows for
a seven-time step input and a one-time step output. The data were then fed into a LSTM
to generate the output. From their experimentation, they were able to forecast that the
number of deaths in the UAE would be under control from the second half of March 2021.
For the UAE, the LSTM had a MARE for confirmed cases of 58.50 and a MARE for death
cases of 0.63.

Table 2 summarizes the studies that used the deep learning approaches to predict
COVID-19 and gives details on the best results.

Table 2. Summary of Literature Review for Deep Learning approaches.

Reference Purpose Dataset Methods Best Results

Zheng et al. [21]

Predict number of
newly infected cases
using additional event
attributes

Centre of Disease
Control and Prevention
(CDC)

LSTM + NLP

The MAPE was 0.52%
for the predictions in
Wuhan and 0.38% in
the predictions for
Beijing.

Kumar et al. [22] Predict containment of
the virus

11 months of data from
the Worldometer
website

LSTM
Their model achieved
an RMSE of 2 for the
New Zealand data.

Chimmula et al. [23]
Predict COVID
transmissions in
Canada

Johns Hopkins
University and the
Canadian Health
Authorities

LSTM
RMSE error of 34.83
with and accuracy of
93.4%.

Helli et al. [24] Predict number of
newly infected cases

Turkish Ministry of
Health LSTM MAPE of 0.70.

Ramchandani et al. [25] Predict number of
newly infected cases

Created 3 groups of
new features DeepFM Accuracy of 63.7%.

Kafieh et al. [26] Predict number of
newly infected cases

Johns Hopkins, applied
the best model to Iran

Random Forest (RF),
Multilayer Perception
(MLP), LSTM, LSTM
with regular features,
LSTM with extended
features and
Multivariate LSTM
(M-LSTM)

M-LSTM performed
best with an MAPE of
0.509%, RMSE of 458.12,
NRMSE of 0.001624,
and R2 score of 0.99997.

Zain et al. [27] Predict number of
newly infected cases

WHO COVID-19
dashboard hybrid CNN-LSTM

MAPE of 01.9, RMSE of
13,275.00, and RRMSE
of 5.30.

Ghany et al. [28]
Predict number of
newly infected cases
and deaths

UAE data from Johns
Hopkins dataset LSTM

MARE for confirmed
cases of 58.50 and
MARE for death cases
of 0.63.

From the literature review, it has been found that LSTM is the most common deep
learning model that is used for forecasting of COVID-19 cases and that it performs better
than the other machine learning models. Amongst the machine learning models, LASSO
Regression and Exponential Smoothing seem to have performed the best. Most of the
papers have extracted data for a specific country from the Johns Hopkins database [29],
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which is a public dataset that has accumulated all the data from over the world and uses
three common features, which are Confirmed Cases, Recovered Cases, and Deaths, and
future forecasts for the same.

We also see a lack of studies carried out on the consideration of the effect of the
number of vaccinated people on the trends in the spread of COVID-19. Furthermore, only
Zhang et al. [21] have used events as an extra feature in training the model for forecasting.

3. Methods and Datasets

This section describes the methodology used for forecasting COVID-19 cases. Sec-
tion 3.1 presents the machine learning models used for pandemic forecasting. Section 3.2
presents the evaluation metrics. Section 3.3 discusses the model selection. Sections 3.4
and 3.5 present a thorough description of the data used as a part of the case study on the
UAE and some preliminary data analysis, respectively. Figure 1 describes the workflow of
the study.
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3.1. Machine Learning Models

Several models were trained to predict the future values in this time series problem
based on different input conditions. These models were selected from the best performing
models in the literature review and were used in addition to the LSTM-AE and bidirectional
AE models that were not used by any of the works in the literature review.

The first model used in this work is Least Absolute Shrinkage and Selection Operator
(LASSO) Regression. It is a variation of the general linear regression algorithm which tries
to express the output as a linear combination of attributes with pre-determined weights [30].
It generates a linear equation by summing the product between attributes and their weights,
as seen in Equation (1).

y = w0 + w1a1 + w2a2 + · · ·+ wkak, (1)

where wk stands for the weight to be applied on attribute ak and y stands for the output
variable to be predicted using the linear equation. The advantage of this model is that
it is suitable for multicollinear data [31]. Unlike multivariate regression, where all the
attributes are used in the regression, the LASSO algorithm adds the attributes one at a time,
and if the new feature does not improve the fit enough to outweigh the penalty term by
including the feature, then it cannot be added. This helps make the model sparse with few
coefficients [12].

The second model trained is the Exponential Smoothing model. This model is com-
monly used in all the work related to the forecasting of COVID-19 using classical machine
learning techniques as it is well known to work well with lesser amount of data [32].
Exponential Smoothing is a powerful forecasting model, especially for univariate data.
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Univariate data is a type of data that consists of observations only on a single attribute.
In this model, the influence of past data observations decays exponentially as it becomes
older. Hence, the weight assigned to different lag values is reduced [12]. Equation (2) is
used to forecast for current time yt.

yt = αxt−1 + (1 − α)yt−1, (2)

where α is the smoothing cost that is 0 <= α <= 1, xt−1 is the actual value of the previous
history in the time series and yt−1 is the predicted value of the previous forecast [8]. The
smoothing cost is similar to the weights used in deep learning models.

Another model used is a classic LSTM. LSTM is a deep learning model that is com-
monly used for forecasting in time series. LSTM networks works with memory blocks that
were created to solve vanishing gradients by memorizing network parameters for long
durations [23]. A vanishing gradient simply means that the model is unable to change the
weights applied to the nodes. The memory blocks are like the differential storage systems
of a digital systems gate. The information is processed within these gates with the help of
an activation sigmoid function and gives an output of 0 or 1. Sigmoid is used, as we require
that only positive values to be passed on [23]. They are generally built with three gates
being input gate, forget gate, and output gate. The input gate gives information that needs
to be stored in the cell state. The forget gate throws information based on the forget-gate
activation equation, and finally, the output gate combines information from the cell state
and forget state at a certain time step t to generate the output. The gradients and weights
are shared throughout for long durations and, by adjusting them, we can adjust the time
scale to detect the dynamically changing parameters [33] and hence avoid the vanishing
gradient factor. The following equations [33] illustrate the three gates.

Jt = sigmoid
(
wJ [ht−1, kt] + bJ

)
, (3)

Gt = sigmoid(wG[ht−1, kt] + bG), (4)

Pt = sigmoid(wP[ht−1, kt] + bP). (5)

Here, Jt is the function for the input gate, Gt is the function for the forget gate, and Pt
is the function for the output gate. wx is the coefficient of neurons at gate (x) and bx is the
bias of the neurons at gate (x). Finally, kt is the input to the current function at time step t
and ht−1 the result from the previous time step.

LSTMs are advantageous for the COVID-19 dataset as they can capture the non-
linearity nature of the data and can result in state-of-the-art results on time-series-related
data [13]. The actual architecture of the network used for this work follows the architecture
of [28]. This is illustrated in the following Figure 2.
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Finally, different variations of the LSTM Autoencoder are used. An LSTM Autoencoder,
or LSTM-AE, merges the use of LSTM layers with a traditional Autoencoder architecture.
This type of architecture is trained to copy the input to the output. The architecture is
divided into two sections, an encoder and decoder. The encoder encodes the data into a
lower dimension latent encoding while the decoder decodes the latent representation back
into the original context [34].

A bi-directional LSTM adds to this concept by changing the LSTM layers to bi-
directional LSTM layers. Bi-directional LSTM layers address the limitation of the standard
unidirectional LSTM architectures in terms of being restricted by the previous context
only [35]. This architecture is able to process data in both forward and backward directions,
consequently focusing on both the sequence as well as the breakdown of the sequence. The
forward layer consists of T cells that are denoted by h f

t while the backward layer consists
of the same T cells that are denoted by hb

t . The forward layer processes the inputs in the
manner of [t0, t1, . . . tT ], while the backward layer processes in the opposite direction
[tT , tT−1, . . . t0 ]. The result of combining the outputs of both layers results in a vector
which is computed by the following Equation (6):

h f
t = tan h

(
W f

xhxt + W f
hhht−1 + b f

h

)
,

hb
t = tan h

(
Wb

xhxt + Wb
hhht+1 + bb

h

)
yt =

(
W f

hyh f
t + Wb

hyhb
t + by

)
.

, (6)

This theory is applied onto the architecture for this work and is illustrated in the
following architecture diagrams seen in Figure 3.
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3.2. Evaluation Metrics

Different evaluation metrics were used to evaluate the performance of the machine
learning models applied in this work. The metrics used in this work are the coefficient of
determination (R2) score, mean squared error (MSE), and root mean squared error (RMSE).

R2 score is a statistical performance metric that can be used to determine the proportion
of variance in an output variable that can be explained or predicted by an input variable in
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a regression model. It can be used to measure how well a regression model predicts the
output variable. The following equation formulates the R2 score [36].

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi −

_
yi)

2 , (7)

where ŷi represents the predicted value, yi is the actual value, and yi is the mean of all the
actual values. An R2 value ranges between 0 and 1; where 0 means that the model explains
or predicts 0% of the relationship between the output and input variables, a value of 1
indicates that the model predicts 100% of the relationship, a value of 0.5 indicates that the
model predicts 50% of the relationship, and so on.

MSE is a commonly used metric to measure the error of a model. The objective of the
training process in numerical predictions is to minimize the MSE, as the smaller the MSE,
the lower the error; therefore, the better the model. It is calculated using the following
equation [37].

MSE =
1
n
∗ ∑(yi − ŷi), (8)

where ŷi represents the predicted values while yi are the actual values.
RMSE is calculated using the following equation, where ŷi represents the predicted

values and yi are actual values. It is a good measure to estimate the standard deviation of
an observed value from the actual value, thereby allowing insights into the efficacy of the
model being evaluated.

RMSE =

√
∑n

i=1
(ŷi − yi)

2

n
. (9)

3.3. Model Tuning and Selection

This section provides details on how the data used for training the models was split,
the usage of hyperparameter tuning to get the most performant LSTM model, and the use
of feature normalization.

For the purpose of training and testing the models, the data was split into 80% training
and 20% testing. For the LSTM models, out of the 80% kept aside for training, 20% was
used for validation to tune weights via the loss functions. Another important parameter
is the time window over past history, also known as the lag time, which is used for both
training and testing the model. The optimal time window was found by doing trial and
error experimentation. Four different values of lag were tested with window sizes of 1,
5, 7, and 14. The results of this analysis are shown and elaborated on in Section 4. The
reason 5 was selected is because the number of working days in the week is 5 and, even
with an overlap of the lag window, at least more than 1 day of the working week will be
covered. Next, 7 and 14 were chosen to cover the full week including the weekend days
and 2 consecutive weeks.

To find the most optimal LSTM model, hyperparameter tuning was used to select the
values of certain parameters such as learning rate, number of layers within the model, and
loss functions. Table 3 summarizes the specifications that were found to result in the most
optimal model.

Table 3. Hyperparameter specifications.

Hyperparameter Value

Learning Rate 1 × 10−3

Optimizer Adam
Loss Function MAE
No. of Epochs 1 × 103
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Normalization is generally a vital step, for almost all algorithms, as it can lead to faster
convergence towards the minima, because the feature values are on a similar scale. In this
work, Min-Max scaling is applied to the values such that the resulting range of values lies
between 0 and 1 as follows:

x′ = (x − xmin)/(xmax − xmin), (10)

where x′ is the normalized value, x is the original value of the attribute, xmax is the biggest
value in the column of the attribute, and xmin is the smallest.

3.4. The UAE COVID-19 Dataset

The UAE is home to approximately 9.28 million people and is divided into 7 Emirates,
namely, Abu Dhabi, Ajman, Dubai, Fujairah, Ras Al Khaimah, Sharjah and Umm Al
Quwain. Abu Dhabi is the largest emirate while Dubai is the most populated. The dataset
used in this paper consists of data in time series format. The dataset is updated every day
by the FCSC and provided through the official UAE COVID-19 updates website [7]. The
data reported represent all values across the UAE and are not divided by Emirate. The
dataset was taken over a duration of round 27 months, between 1 of February 2020 and 29
April 2022, resulting in 791 records (1 record per day). Each record consists of 10 attributes
as follows:

• Day: an index of number of days since the first record of the virus.
• Date: the date of when the data were recorded and added to the dataset.
• Confirmed Cases: the number of positive cases recorded on the specified date.
• Recovered Cases: the number of recovered cases recorded on the specified date.
• Confirmed Deaths: the number of deaths caused by the virus, recorded on the speci-

fied date.
• Tests: the number of PCR tests conducted on the specified date.
• Active Cases: a case is considered active if there is a possibility of the virus being

active in the person’s body. For instance, an active case can happen when a person
shows symptoms but gets a negative PCR test, or when a person comes into contact
with another person who has been diagnosed with COVID-19.

• Vaccine Doses: the number of vaccine doses administered on the specific date. This
number does not differentiate between people who are having their first, second, or
third dose.

• One Dose: the percentage of the population of the UAE that has had at least one single
dose of any of the available vaccines. This record is cumulative, as each day adds to
the previous day.

• Fully Vaccinated: the percentage of the population of the UAE that has had both doses
of the vaccine. This record is cumulative, as each day adds to the previous day.

3.5. Dataset Preprocessing

The dataset was inspected and several data-preprocessing techniques were applied
prior to the analysis. For example, it was noticed that the Date and Day attributes both
indicate the same thing, with the only difference being that the former is an absolute value
while the latter is a relative value. To avoid redundant information in the dataset, the
Date attribute was excluded from the analysis. Additionally, the attributes One Dose and
Fully Vaccinated were dropped because they are just cumulative percentages that show
an overall picture of the vaccination drive conducted in the UAE but do not show daily
information that could affect the trends directly.

For the event-based prediction, three additional features are manually added to the
dataset, namely Outdoor Events, Policies, and National Holidays. These three attributes
are of type categorical Boolean, with a value of 1 when there was an event e.g., when it was
a national holiday, when a new policy was put in place, when a major outdoor event was
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held involving crowds, etc., and a value of 0 when nothing happened on the specified date.
This data was manually retrieved by traversing through the nation calendar of the UAE.

It was found that the attributes Confirmed Cases, Recovered Cases, and Confirmed
Deaths had a Minimum of 0. The zero value recorded as the number of cases is irrelevant
as it was recorded in the beginning of February in 2020, when there were only 1 or 2 cases
per day and the virus was still only contained within China. It was also noticed that the
attributes related to the vaccinations had some missing values in the beginning of the
pandemic because there was no vaccination present at that time. Thus, these missing values
were replaced with 0.

Figure 4 shows a graphical representation of the time series dataset used in this paper.
The graphs are generated for the period from the 1 of February 2020 to the 29 of April 2022.
From these graphs we can see that the Recoveries and Confirmed Cases are almost similar
in magnitude but vary in the number of peaks and falls. The similarity in magnitude is
expected as within the UAE, the recovery rate is extremely higher than the death rate,
implying that majority of the people have recovered. We can see in the initial stages of
the virus, although the number of Confirmed Cases was low, the number of Recovered
Cases was high. This can signify that the Recovered Cases were most likely the initial
cases where the effect of the virus was stronger on people due to lack of knowledge and
precautionary measures.
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Additionally, we can see that the number of tests conducted are gradually increasing
except for the sudden spike in between of October 2021 and January 2022. This can be
accounted for by the introduction of the Al Hosn green-pass mobile application, which
required people to take a PCR test every 14 days to maintain their green status. There is
also an interesting phenomenon where the number of vaccine doses were initially very high
but then started to downfall and have swindled down to zero doses given per day. This
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can be seen as the UAE has a very high vaccination rate where over 99% of the population
are already fully vaccinated [38].

3.6. Data Exploration

Before the data can be fed into the machine learning models, certain analysis needs
to be done so as to understand the behavior of the time series. Time series data can have
trends only if a certain pattern in the data repeats itself on regular intervals of time due to
any external factors and is not random; therefore, we need to test the quality of the given
dataset such that it consists of a trend in which we can analyze. For this, autocorrelation
plots are derived to determine whether the elements of the time series are random or not.
Autocorrelation determines the similarity between a certain data point and its past within
a time interval called lag. As seen in Figure 5, the horizontal axis shows the lag between
two elements, so, for example, a lag of 2 means values observed two time periods earlier
than the current observation. The vertical axis shows the results of the autocorrelation
function and ranges from −1 to 1, where a value from −1 to 0 is a negative correlation and
a value from 0 to 1 is a positive relation [39]. Any value closer to 1/−1 means a higher
level of correlation. Figure 5 shows the autocorrelation plots for each of the attributes. The
autocorrelation with lag 0 will always be 1 as it is the autocorrelation between itself and can
be ignored. As all the spikes are above zero, they are statistically significant which means
that all the values are highly correlated and signifies that when the values of the trend are
rising, it will continue to rise with time and when the values of the trend are falling, they
will continue to fall. Hence, the time series can be considered as not random but following
a significant trend.
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Time series are divided into two types, stationary and non-stationary. Stationary series
are those series that do not depend on time components such as seasonality effects and
trend, while non-stationary series are series that change trend with respect to time and
seasonality effects. Although, from domain knowledge, it is well-known that a pandemic
such as COVID-19 changes with time and external environment, and hence will be a
non-stationary series, it is still important to verify this hypothesis. For this purpose, the
Augmented Dickey Fuller test [40] was conducted. It is also important to check as statistical
models can only use stationary series and, hence, if the series is non-stationary, it is better
to use machine learning models. If the p-value obtained is between 5 and 1%, the null
hypothesis is rejected and does not have a unit root and is hence a stationary series. If the
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p-value obtained is greater than 5% or 0.05, the input data has a unit root and is regarded
as a non-stationary series [23].

Table 4 shows the p-values for each of the time series. It is noticed that all attributes
except Confirmed Deaths show much higher p-values than the threshold. The statistical
significance for Confirmed Deaths is on the edge of the hypothesis threshold, which is why
it is still considered as a potential confounding variable and introduced into the studies.
Although there is a change in the values of the attribute based on external factors, the
magnitude of the relation change is less. This explains why the death rate in the UAE with
regard to COVID-19 is very low.

Table 4. p-values of each of the time series and Pearson Correlation between Confirmed Cases and
other attributes.

Attributes p-Value Pearson Correlation Coefficient(r)
with Attribute Confirmed Cases

Confirmed Cases 4.20 × 10−1 1.00 × 100

Recovered 3.60 × 10−1 9.20 × 10−1

Confirmed Deaths 5.00 × 10−2 6.70 × 10−1

Tests 6.70 × 10−1 7.50 × 10−1

Active Cases 1.10 × 10−1 6.90 × 10−1

Vaccine Doses 1.20 × 10−1 6.20 × 10−1

Moreover, Pearson correlation [41] was conducted to explore correlations between the
dataset attributes. The Pearson product-moment correlation coefficient (r) measures the
strength of a linear association between two variables. The value of r ranges from −1 to +1,
with values towards +1 having stronger correlation, values of 0 having no correlation at all,
and values towards −1 showing a strong negative correlation, i.e., if one variable increases
the other decreases [42]. Table 4 explores the correlations between the attribute Confirmed
Cases and other attributes in the dataset.

Figure 6 shows the heat map derived using the correlations between all the attributes
in the dataset. A heat map is a two-dimensional representation of data where the values
are represented in color. As seen in the color scale, as the values go towards darker green,
that means that r is moving towards 1. The diagonal in the heat map can be ignored as the
correlation between a variable against itself will always be 1. We can additionally see that
most of the attributes are correlated with the Confirmed Cases and Recovered Cases having
the highest correlation. A priori, we know that the greater number of tests conducted
means that there is a higher chance of finding positive cases, and this is proved by the high
correlation between number of Confirmed Cases and Tests. The coefficient values between
0 and 0.5 or 0 and –0.5 indicate weak correlation, diminishing to mean almost no direct
correlation at 0. Table 4 also shows the actual Pearson value for correlation between the
number of Confirmed Cases and the other attributes.
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4. Results

First, to understand the data and the nature of the series, the LSTM model from the
work by [28] was recreated, since the authors used the same dataset. It is also known a
priori that all the countries were affected at different levels at different times with the virus,
and hence would have different training methods and results. At the time of publishing, the
authors were limited to barely one year of data, from 14 January 2020 to 9 February 2021. To
keep all the characteristics the same and enable the same grounds of comparison, the data
was limited to this time period. Following the paper, a single attribute Confirmed Cases
was used, keeping the consistent lag period of seven, after which the value of the same
variable is forecasted/predicted. This baseline is initially considered for this period only,
with the primary intention of ensuring that the findings are indeed similar. The subsequent
experiments extend this baseline by means of additional predictor variables (the earlier
works uses only Confirmed Cases), in addition to the consideration of a much longer time
frame, i.e., 791 days (ours) versus 333 (theirs). Table 5 reports the results, followed by
Figure 7, which shows a visual representation of the testing.

Table 5. Results for the Baseline Model.

Metric [28] Training Testing

RMSE 4.46 × 102 1.50 × 102 4.95 × 102

MRAE 5.85 × 101 12.39 × 107 1.38 × 101

MSE Not reported 22.57 × 103 24.47 × 104

R2 Not reported 7.80 × 10−1 6.60 × 10−1
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Regarding the terminology in Figure 8, it is worth mentioning that we do not use the
expressions “predicted” and “forecast” interchangeably, despite their very similar semantic
connotations. The Keyword “predicted” is used for new number of Confirmed Cases
predicted for windows of time from the testing set while the expression “forecast” is used
for new number of Confirmed Cases using the “predicted” number of Confirmed Cases.

Observing further, it appears that the model tends to systematically underestimate
the actual values, and a potential reason may be the confounding effect of trend, i.e., the
average level of a series. This trend is likely being caused by the presence of a variable that
we have not factored in or unknown to us, such as public policy, or the most obvious reason:
insufficiency of data. With the relatively high parameterization of deep learning networks
with low amounts of data, the true patterns are not detected effectively. As seen in (c), the
model forecasts a decline in COVID-19 cases and then starts to flatline and continue at
this single value (500). This green line is produced using only newly forecasted data, in
simpler terms, it is data that the model has never seen before. Hence, we can say that the
model is unable to account for any patterns of seasonality and hence converges the values
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and predicts a flatline value, which is just the previous value as it stops considering all
the values before the immediately last time step due to insufficient data. Here, seasonality
refers to the periodic (cyclical) patterns that occur in the curve as described in Section 1
previously. This “last ” time-step, somewhere ~110th day outputs a prediction of 500,
and this is propagated to the next step, and so on such that only 500 is predicted by the
collapsed learning behavior of the model.
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Table 6 shows the extensive results of the experiments conducted with various combi-
nations of attributes. The combinations are mainly grouped into four cases, them being
as follows:

• Case 1: The input is the previous history of Confirmed Cases while the output is the
prediction of the number of Confirmed Cases for the next day.

• Case 2: Attributes Recovered Cases and Death are additionally added to the input list
while the output remains the same.

• Case 3: The attribute Vaccinations is added to the input list of Case 2 while the output
remains the same.

• Case 4: The attributes related to the Event feature as explained in Section 3 are added
to the input list of Case 2 and the output remains the same.

Exponential Smoothing has a major limitation, which is that the model can only be
used for univariate series. This means that the series should depend only on a single
variable. Although it was known that the model would not work well, it was selected
to establish a baseline performance, and while we expect LSTMs to fare better based on
previous research, a point of comparison is needed with standard models. To test this
model, we followed the authors of [28] and selected Confirmed Cases as the only input
for the model. The output is the number of Confirmed Cases predicted for the next day.
Alpha was varied with values of 0.8, 0.2, and 0.5. Alpha, in Exponential Smoothing, defines
the weighting level of the smoothness factor. In Figure 8, we can see that the smoothing
does not greatly affect the predictions and that all three models overfit at first before
tending to flatline at a singular value. This result is expected as Exponential Smoothing
is mostly used for data that do not depend highly on trends and seasonality, whereas
COVID-19 high depends on the environment and surroundings and, hence, depends on
trends and seasonality.

LASSO Regression was tested on all the cases, as it works on both univariate and
multivariate series. For this model, the time lag was set to seven days, following the logic
of the previous works discussed in the literature review that seven days would cover the
data accurately as it would most likely include weekdays as well as weekends.
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Table 6. Results of all the experimentation conducted.

Model Exponential
Smoothing LASSO LSTM LSTM-AE Bi-Directional

LSTM

Univariate
(Confirmed Cases

as input)

Train
R2 - - 9.10 × 10−1 5.00 × 10−2 7.10 × 10−1

RMSE - - 2.68 × 102 8.82 × 102 4.84 × 102

Test
R2 7.00 × 10−2 - 9.10 × 10−1 4.50 × 10−1 8.60 × 10−1

RMSE - - 2.76 × 102 6.80 × 102 3.33 × 102

Multivariate
(Added Recovered
Cases and Death

to input)

Train
R2 - - 9.10 × 10−1 2.00 × 10−2 6.50 × 10−1

RMSE - - 2.65 × 102 9.00 × 102 5.31 × 102

Test
R2 - 9.80 × 10−1 8.80 × 10−1 3.50 × 10−1 5.70 × 10−1

RMSE - - 3.15 × 102 7.40 × 102 5.99 × 102

Multivariate
(Added

Vaccination
Attribute to input)

Train
R2 - - 9.10 × 10−1 3.00 × 10−2 6.80 × 10−1

RMSE - - 2.61 × 102 8.92 × 102 5.11 × 102

Test
R2 - 9.80 × 10−1 8.60 × 10−1 6.00 × 10−2 1.73 × 100

RMSE - - 3.43 × 102 9.44 × 102 1.52 × 103

Multivariate
(Added Events to

the input)

Train
R2 - - 9.10 × 10−1 2.00 × 10−2 7.10 × 10−1

RMSE - - 2.70 × 102 9.01 × 102 4.89 × 102

Test
R2 - 9.80 × 10−1 8.50 × 10−1 1.73 × 100 6.10 × 10−1

RMSE - - 3.47 × 102 1.52 × 103 5.71 × 102

In Figure 9, similar to the previous model, the model has a tendency to overfit. We
also see that there is not a discernible improvement with the addition of the extra variables.
LASSO Regression works by adding an attribute only if it is useful to the model. More
specifically, the L1 regularization component of LASSO confers a coefficient of zero to
features that were completely neglected by the model to make predictions. From this, we
can deduce that the addition of the vaccination, policies, and outdoor events might not be
providing any additional information to the trends, at least in the case of the UAE, and
hence may likely be unnecessary for the forecasting of COVID-19.
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Table 7 shows the MSE and R2 Score resulting from testing the LSTM using the different
lag periods, as mentioned in Section 3. From this, a lag of five days was chosen. Although
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Day 1 has a better score, with just one day of history, it can easily overfit the model and,
hence, the next best value of a lag of five days was selected.

Table 7. Results for the Baseline Model.

Lag Period MSE R2 Score

1 day 1.53 × 104 9.80 × 10−1

5 days 7.81 × 104 9.00 × 10−1

7 days 1.30 × 105 8.40 × 10−1

14 days 4.27 × 105 5.10 × 10−1

We can already see a huge improvement on the model using the univariate trend as
compared to [28]. This is illustrated in Figure 10. We can also see that the prediction line
has started to not flatline and to forecast some values. This shows that the original model
was not trained with enough data. Although this model is not perfect either, we can see
that more data do help improve it drastically, and in the future, the model may be perfected.
This also proves that LSTMs highly depend on trends and seasonality and enough of these
factors should be captured in the training set.
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The following Figure 11 illustrates the way the LSTM worked on the other variations
of the dataset. From this, we could infer that the model works moderately well with the
addition of the Confirmed Cases, Deaths, and Recoveries attributes, except for a few areas
marked on the Figure where the model gets the values slightly wrong (b), although one
would think that the addition of the Recovered Cases and Deaths attributes should help
improve the model as they correlated to each other, as seen in Figure 3. This could be
because in the UAE dataset, deaths are almost constant, and this might cause a confusion
to the trend. With the addition of the Vaccination attribute, the effect of the Recovered
Cases and Deaths attributes on the final prediction is reduced but is still not as good
as the univariate case (d). This can show that there might be a slight relation between
the Vaccination attribute and the others, but the actual values may not be truly helpful.
Finally, the case with the additional event-related variables is tested. Unlike the previous
Vaccinations case, the model is slightly more stable with an R2 score of 0.85, as seen in
Table 7. This proves that the additional variables help the model learn the trend. Although
it does work well, there is still room for improvement. This could be because the variables
are simply 1 or 0 for whether an event was there or not on the day. Not enough information
about the effect of the events is transferable through these simple variables.
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The final models tested were the LSTM-AE and the Bidirectional LSTM-AE. Like with
the LSTM, first the lag period was tested, and the lag window of 5 performed the best. In
the case of the Univariate trends, we can see that the bidirectional LSTM-AE outperforms
the classic LSTM-AE, yet the classic LSTM performs the best. This could be because the
data is very simple and small and hence does not require a heavy and complex architecture
for the prediction. It can be further observed through the training data predictions that the
model gets stuck in a local optimum after a while and does not learn very well. However,
we see that the bidirectional model does perform better than the unidirectional, as expected,
because of the focus on both sequence and breakdown of the sequence.

Overall, we notice that the bidirectional LSTM-AE works better than the classic LSTM-
AE. Figure 12 shows the training curve and testing curve for the remaining cases. From this
figure we deduce that, unlike with classic LSTMs, there is a huge drop in performance with
the addition of the Death and Recovered Cases attributes. When the Vaccination attribute
is added, we notice a major problem; the model can predict the training set, but when it
comes to an un unseen range, it starts to flatline, as observed previously. Here, too, it led
to the model stopping predictions at around the value of 2000 cases when predicting the
testing cases. With the complexity of the models, the trends were not being captured.

One of the hypotheses we had was that, as the Vaccine values were very high as
compared to the other attributes, we thought that could be overpowering the model and
creating a bias. However, the simple LSTM did not have this issue at all. However, to test
this assertion, we employed normalization for LSTM-AE, as discussed in Section 3, but we
observed early overfitting and learning termination due to the zero-mean feature values
and subpar prediction/forecasting behavior. Upon training, we found the model to be
extremely overfit. This can also be seen in the case of the LASSO Regression caused by the
inbuilt normalization of the algorithm.
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Similar to with the previous models, we see that, with the inclusion of the Events
attributes, there is a slight improvement, but the new variables do not provide sufficient
information to the seasonality for the model. Here, too, the model gets stuck in a local
optimum after a while and does not learn very well. We can also observe that, due to the
model stopping itself at around the value of 2000 cases, when predicting the testing cases,
the model does not peak beyond this value.

5. Discussion

As shown in the previous section, multiple models with various combinations of
attributes were studied to future forecast COVID-19 in the UAE. Table 8 summarizes the
results of the models developed in this paper. It can be seen that four of the models have
competitively outperformed the original UAE paper [28], with an improvement of over
30%. A more recent work published in 2024 [43] also tests multiple deep learning models
for forecasting COVID-19 in the UAE and Malaysia. The authors reported an MAE of 0.046
and an R2 score of 0.004 for their Univariate LSTM model. Our proposed model achieved
an R2 score of 0.91, which shows that the model learned the behavior better.

Table 8. Comparison of recent works for forecasting COVID-19 cases in UAE.

Source Data Size Model RMSE

Proposed work 791 Univariate LSTM 2.76 × 102

Proposed work 791 Multivariate LSTM 3.15 × 102

Proposed work 791 Multivariate LSTM + Vaccinations 3.43 × 102

Proposed work 791 Multivariate LSTM + Events 3.47 × 102

K. K. A. Ghany et al. [28] 333 Univariate LSTM 4.46 × 102
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The models developed in this work were compared to other UAE works only due
to the fact that different countries were affected by different magnitudes of COVID-19
outbreak, as can be noticed from the literature review. Therefore, it is not fair to compare
the results of this work to the works of other countries. Furthermore, the proposed work is
the only one that used vaccination data as an attribute.

From these results, we can infer that LSTM works better with more data. It can also
be gleaned that, due to the simplicity of the nature of the data, a relatively simple LSTM
architecture is sufficient to forecast the number of cases. From prior knowledge, one would
think that vaccinations, policies, and events would play a part in the spread of COVID-19.
This can be seen partially here, with the improvement of predictions when those attributes
were added, but the performance is still not the best due to the limited information provided
to the model due to the nature of the data. It is suspected that, after the initial drives and
efforts to curb the rapid contagion of COVID-19, public health measures and other similar
policies remained roughly the same for many months during these periods without major
changes. Thus, it could be said that concordance with public health measures such as mass
vaccinations, booster drives, and quarantines helped flatten the curve only during the most
infectious incubation period. Another factor is that the breakdown of cases by COVID-19
variant (original, Omicron, Delta, etc.) is not available, which means there is no “impurity”
in the data, and no additional information that can be leveraged. This falls under the virus
characteristics, where the mutation rate changes based on the different variants of the virus
that are simultaneously rampant among the population. Since the active cases, the rate of
infection, and even the mortality rate were different across different strata of the population
(labor camps, social workers, essential staff, students, medical professionals, etc.), it would
have been useful to have the average susceptibility of each demographic per day or per
month to offer more modelling power.

Stricter protocols, such as fines imposed by the governments [44] to dissuade public
gatherings, were not unanimously followed by all individuals in the UAE. This is also stated
in a recent publication in the year 2022 by Chandra et al. [45], where the authors used LSTMs
to predict the number of COVID-19 cases in India. The authors stated that, although the
models work well, there is still uncertainty present due to limitations of COVID-19 related
datasets. This uncertainty arises from the inherent flaw in the consolidation of information.
Not everyone with the disease was detected and accounted for, their contacts were not
logged, and the infection rate at gatherings organized at private residences could not be
catalogued. Despite these general limitations, the UAE authorities were able to contain
the spread and achieve high levels of immunization among the residents and citizens.
Hence, we can assume that, since the data used are reported by the UAE Government, they
provide the best estimate of the condition and any inherited/reporting error induced can
be ignored [46].

Through this study, we see that there is a future for deep learning models to help
forecast the number of cases based on different situations in the country, but there is still
room for improvement in terms of data collection and its application on the models.

6. Conclusions

In this paper, we have applied machine learning and deep learning to analyze the
trends in forecasting of COVID-19 cases in the UAE. We have used different combinations
of the input attributes such as Vaccinations in addition to event-related attributes, with
univariate and multivariate analysis. The dataset was initially analyzed and preprocessed,
then the models were trained and compared. The dataset used was taken from the Federal
Competitiveness and Statistics Centre website and is updated daily. Five different models
were experimented on, including Exponential Smoothing, LASSO Regression, and LSTM,
which were selected as they were the most commonly used models, along LSTM-AE and
Bidirectional LSTM-AE. Upon evaluation, it was found that univariate LSTM performed
the best with an RMSE of 275.85, which was an improvement of more than 30% from
the current state of the art related to the UAE [28]. This model had the lowest RMSE,
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which proves its feasibility as a model for predicting the COVID-19 trends in the UAE. The
model was able to learn the trend and the seasonality of the data. It was also seen that the
bidirectional LSTM was also very promising.

Although, the Vaccination attribute and the Event attributes did not perform as we
expected, which was that the attributes would show a direct effect on the trend. However,
there was only approximately a 10% decrease in RMSE as compared to the best model. This
can be attributed to the amount of information these attributes are providing to the model
in terms of trend and seasonality. From this we learned that the attributes are useful but
require some additional attributes/biases to help them.

Through further research and the incorporation of granular informative attributes,
more efficient models can be implemented. This can facilitate the simulation of various
situations by the government and help policy making in terms of reducing the burden of
pandemics on the nation.

Limitations and Future Work

Overall, we see that the simple univariate LSTM performs the best, with some addi-
tional information learned through the new added event related variables. We can also see
that some variations of the bidirectional LSTM are very promising.

The major limitation to this work is the nature of the data. The data are purely
numerical and statistical and lack depth in regard to the contextual severity of the effects
of COVID-19 in the UAE. Another limitation is that the data are represented as a whole
for the UAE and are not divided into districts. By dividing the data into districts, the
model could be more accurate, as Emirates such as Abu Dhabi had more restrictions which
would have slowed the spread there, whereas Emirates such as Sharjah that have a higher
population would have caused an increase in spread. As these data were not provided by
the government, studying the spread of COVID-19 by city of district was not addressed in
this work; however, this observation can be taken into consideration during data reporting
for future pandemics.

There is an additional limitation in regard to the Vaccination attribute, as it is just
a number representing the number of doses administered per day and it does not con-
sider which dose it is or whether a person who was vaccinated contracted COVID or not.
Similarly, there is a challenge in regard to the number of cases, as we do not have any
information on whether all are new cases or if a person has contracted the virus repeatedly.
For future work, further variable selection and analysis can be applied, especially on the
weakly trained LSTM-AE, to see if the performance of the model increases or decreases by
using sets of meaningful and uncorrelated regressors.

Another major challenge is the difficulty of manually creating and updating the event
variables. The information is difficult to find online and this is a very tedious job. There is
also room for human error. A solution for this would be to follow [21] and build and train
a Natural Language Processing (NLP) model that can scrap English and Arabic news sites
and tweets to record important information related to the happening of a particular day.

Another idea to try in the future is inspired by a recent survey published by authors
Elsheikh et al. [45], who concluded that a simple singular model might not be efficient for
predicting the trends in COVID-19 and that we might have to venture into hybrid and
ensemble models to play with the advantages of various different models and accurately
learn the seasonality of the trends.

However, we consider this work to be of some importance to the research community,
as it quantitatively shows the performance of the base LSTM model for modelling a novel
and rapidly mutating contagion like the COVID-19 virus within the United Arab Emirates.
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