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Abstract: Texture describes the unique features of an image. Therefore, texture classification is a
crucial task in computer vision. Various CNN-based deep learning methods have been developed to
classify textures. During training, the deep-learning model undergoes an end-to-end procedure of
learning features from low to high levels. Most CNN architectures depend on high-level features
for the final classification. Hence, other low- and mid-level information was not prioritized for the
final classification. However, in the case of texture classification, it is essential to determine detailed
feature information within the pattern to classify textures as they have diversity and irregularity in
images within the same class. Therefore, the feature information at the low- and mid-levels can also
provide meaningful information to distinguish the classes. In this study, we introduce a CNN model
with a feature retention module (FRM) to utilize features from numerous levels. FRM maintains
the texture information extracted at each level and extracts feature information through filters of
various sizes. We used three texture datasets to evaluate the proposed model combined with the
FRM. The experimental results showed that learning using different levels of features together assists
in improving learning performance more than learning using high-level features.

Keywords: texture classification; feature information; numerous level; FRM

1. Introduction

Texture is an important image characteristic in various fields [1,2]. In particular,
texture provides meaningful cues for recognizing features in images [3,4]. To examine
these characteristics, general object-based and texture-based datasets are compared with
each other as follows: object-based datasets, such as ImageNet [5], CIFAR100 [6], and
CUB-200-2011 [7], have been used to train the general model. Figure 1a shows examples of
images from CUB-200-2011, in which images of 200 different objects were collected. For
example, the first and third rows can be distinguished because Bobolink and Florida Jay
have different characteristics. Similarly, during the training process, an object-based dataset
can be used to determine the distinguishing characteristics between various objects and
then classify those objects. However, in contrast to object-based datasets, texture-based
datasets consist of unique image patterns. The classes in these datasets contain images that
do not belong to the same objects. As shown in Figure 1b, which shows examples of images
in the describable textures dataset (DTD) [8], most images in each class are made of the
microparts of the objects, showing their material pattern.

Because CNN-based models exhibit high performance in the ImageNet competition,
various studies on deep learning have been conducted in computer vision. The typical
deep learning models include AlexNet [9], VGG [10], ResNet [11], DenseNet [12], and
EfficientNet [13]. These models commonly consist of a convolutional neural network (CNN)
to learn data characteristics while maintaining the input data characteristics and preventing
information loss during learning [14,15]. During the learning process, insufficient data
can affect the accuracy of the model. One solution to this problem is transfer learning [16].
Using transfer learning, models can be pretrained on publicly available large datasets,
such as ImageNet, which can be further trained on the target dataset with fewer data.
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Additionally, fine-tuning techniques can be used to adjust the structure of the pretrained
model to suit the current purpose. Because texture datasets lack the number of images
and classes, a model structure should be constructed to identify the features of the texture
dataset by fine-tuning. As CNN models suffer from the problem of vanishing gradients
with increasing layer depth, it is difficult to expect high-performance results when using a
typical model structure. Thus, CNN-based models that classify texture datasets commonly
use structures that retain the characteristics of transfer learning models. For example,
ref. [17] presented a FASON model with a module that combined features learned from
multiple-level information. To maintain the detailed characteristics of the texture, ref. [18]
presented a learnable encoding module (LEM) that combined the low-to-high-level features
of a CNN. The models proposed in [17,18] commonly applied additional module types that
preserved texture information using pretrained models to preserve different layer features
and minimize loss. These additional features result in an improvement in the classification
performance between classes.

Figure 1. (a,b) refer to examples of object- and texture-based datasets, respectively.

In contrast to object classification, texture classification is a method for identifying
unique patterns in materials in images. Various experiments have shown that it is advan-
tageous to extract the comprehensive characteristics of an image and use them together
to determine common regularities in the diversity of texture patterns. In addition, it has
been demonstrated that extracting and using detailed feature information from the output
of various levels results in performance improvement [3,18]. Therefore, in this study, we
propose a new Deep Feature Retention Module Network to classify texture datasets. First,
inspired by the structure proposed in [18], various level characteristics were utilized. The
aim was to determine the detailed features of the texture and improve the classification
performance between classes by maintaining texture information from low to high levels.
Second, a transfer learning method was used for training on small-scale texture datasets.
Third, a module using convolutional filters of various sizes was proposed to extract diverse
features using a pretrained model and to determine detailed features within the textures.
This module was inspired by GoogleNet [19].

The remainder of this paper is organized as follows: In Section 2, we review the
related studies. Section 3 provides a detailed description of the proposed model and
module. Section 4 presents the experiments and results for the texture datasets. Additional
experiments on the modified module are described in Section 5. Finally, Section 6 presents
the conclusions.
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2. Related Works
2.1. Model for Texture Classification

The texture shows the characteristics of the images. It is an essential element for
recognizing and classifying images in computer vision and is considered a significant
problem to be solved because it can be witnessed all over. Until CNN gained prominence
in image classification in 2012, local-based manual techniques, such as bag of words
(BoW) [20–22], scale invariant feature transform (SIFT) [23], and speed-up robust features
(SURF) [24], were predominant. CNN-based methods were first proposed in 2012. To
overcome the limitations of small datasets, transfer learning, which is a technique that uses
a model learned with large datasets, was used. In addition, fine-tuning, which modified
the structure of the model to suit the purpose of learning and adjusted the weights of the
transfer learning model, was applied. Using this technique, model structures for identifying
and maintaining fine features between textures were presented. Both ScatNet [25] and
PCANet [26] proposed similar structures that improved model performance by connecting
input images with feature vectors extracted from each convolutional layer using feature
pooling techniques. Moreover, it is difficult to distinguish the unique characteristics of
texture from minute differences between classes. Therefore, similar to global features,
local information contains essential information that can distinguish subtle differences
between classes. Ref. [18] presents MuLTER with a multilevel pooling structure that uses
all low-to-high-level features to maintain texture details and spatial information.

2.2. Multiple Structure to Obtain Features

The CNN structure extracts the feature information of classes from the input images
using convolutional layers during the learning process. However, owing to the struc-
tural nature of CNN, the final classification is affected by high-level feature information.
However, information other than that at high levels is meaningful for texture classifica-
tion. Therefore, various concepts have been presented to utilize the features of each level.
Ref. [18] suggested a method for connecting low-to high-level information to the proposed
module and using it for learning to maintain and utilize texture feature information and spa-
tial information. In [3], feature maps were extracted for each module using the inception-v3
structure, and the characteristics of all levels were utilized. They also presented a structure
that combined principle component analysis (PCA) [27] and linear discriminant analysis
(LDA) techniques to minimize the influence of less relevant factors.

2.3. Feature Module for CNN

In CNN models, depth and width are factors that improve performance; however,
the amount of computation and the number of parameters increases, resulting in the
problems of learning being time-consuming, a loss of information on input values, or
gradient vanishing on depth. Various structures have been proposed to address these
issues. In [11], the proposed residual block solved the gradient vanishing problem by
adding a skip connection, in which an input value was added to the output value of the
existing network structure. In addition, a structure using a residual block in a VGG-based
structure was proposed to learn features without losing information from previous layers,
even if the network was deepened. DenseBlock [12] used a concatenation method rather
than adding the feature map of the last layer to the input of the next layer. Consequently,
reusing the features with a structure that connected the layers of the entire model mitigated
the effects of the vanishing gradient problem. GoogleNet proposed an inception module to
address issues by constructing a deep neural network and extracting various features. In
the inception module, the input values are calculated using multiple-sized convolutional
filters (1 × 1, 3 × 3, and 5 × 5) and 3 × 3 max pooling in parallel and then connected,
comprehensively combined, and exported as output values. Furthermore, by connecting
these modules, they constructed a network with deep layers and used an auxiliary loss layer
in the middle of the model to solve the gradient vanishing problem caused by deeper layers.
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3. Proposed Method
3.1. Model Architecture

The structure of DenseNet is shown in Figure 2a. DenseNet has a DenseBlock compris-
ing several layers. The input value of the previous layer was closely linked to that of the
next layer using DenseBlock, allowing the feature information of the previous layer to be
reused. DenseNet is also a model developed to preserve different levels of information com-
pared to ResNet, which uses a skip connection technique to solve the gradient loss problem
as the network deepens. Because of these structural characteristics, DenseNet is believed
to be more helpful for extracting and utilizing detailed feature information about textures
than general models such as VGG. The structure shown in Figure 2b is proposed based
on the characteristics of DenseNet. The proposed model has a multiple-feature structure
that can consider all features, from low to high levels, in the learning process. The output
information generated for each DenseBlock is extracted using various features through
each feature retention module (FRM). The generated output features are concatenated and
used for the final classification. The values extracted and combined through the structure of
this model contain features identified at each level, and preserved information. In addition,
because these values are used through the structure proposed during learning, they can
help one classify patterns of texture datasets with regularity and irregularity.

Figure 2. (a) DenseNet structure. (b) shows the proposed model structure based on DenseNet as
the backbone.

The expected effects of the proposed model structure based on DenseNet are as follows:

• DenseNet has a structural characteristic that uses information from the input layer
connected to the output layer in the feed-forward process. Therefore, it can consider
the advantages of features and continually learn all feature information from low to
high levels.

• FRM was used for each DenseBlock to minimize the loss of information as the layers
of the backbone model deepened. This is expected to have an important influence on
the use of the detailed features of textures for learning.

• We aimed to use various detailed features of the texture dataset for learning. Therefore,
the structural characteristics of the model proposed in [18] were referred to. By
combining the FRM with the backbone, it is expected that the outputs through the
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FRM from low to high levels are aggregated and can help distinguish classes with
high probability.

3.2. Feature Retention Module

The structure of the proposed FRM is shown in Figure 3. The output value of each
block was divided into local and global parts to extract the features. In the case of the local
part, features were extracted and utilized through convolutions of various sizes. We used
these convolutions based on the structural characteristics of the inception module presented
in GoogleNet. Figure 4 shows two types of inception module structures. Figure 4a shows
the inception module of the basic structure, and Figure 4b shows the dimension reduction.
We refer to the structure presented in Figure 4b to obtain the calculation reduction effect
and extract the characteristics of various convolutions. Three different filters were used
as convolutional filters for extracting features 1 × 1, 3 × 3, and 5 × 5. In contrast to the
max pooling of 3 × 3 in the inception module in Figure 4b, the max pooling of 1 × 1 was
used to obtain more detailed information. Furthermore, each convolutional part had a
convolution structure, batch normalization, and a ReLU. In the case of the global part, conv
1 × 1 was used as the value from DenseBlock for the effect of channel reduction, similar
to the local part. A feature map was generated using average pooling to obtain the global
characteristics of the output value of the block. Finally, the two values from local and
global were concatenated to create a new output. The new output contained numerous
meaningful features extracted from an image. Therefore, it is expected that extracting
feature information through FRM for each output of DenseBlock can improve the model
classification performance.

Figure 3. The architecture of proposed feature retention module (FRM).
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Figure 4. (a) shows the basic structure of the inception module, and (b) shows the type of inception
module used for dimension reduction.

4. Experiment
4.1. Dataset

In this experiment, the DTD [8], Flickr Material Database (FMD) [28], and KTH-
TIPS2b [29], which are publicly available for texture classification, were used for training
and testing. The DTD has 47 classes, consisting of 120 images per class. It is a dataset
composed of images with perceptual properties of textures, such as grids, spider webs, and
spirals. The FMD is composed of 10 classes, consisting of 100 images per class. It consists
of images captured from various materials, such as fibers, glass, and water, from proximity
or general distance. The KTH-TIPS2b has 11 classes, with 432 images per class, and is
a dataset consisting of images captured closely with various poses, lighting, and scales.
Classes such as wood, wool, and cotton are included in the dataset. The characteristics of
each dataset are as follows: The FMD is a dataset composed of images of cropped parts
of objects. Irregularities were observed in the images, even within the same class. For
example, the same class of plastics in Figure 5b had different shapes in each image. The
KTH-TIPS2b is a dataset consisting of images in which all classes are patterns of objects
within a close range. Hence, regularity exists within the same class. Finally, the DTD is a
mixture of the FMD and the KTH-TIPS2b characteristics. Because each class consisted of
images captured from a close range or cropped images to focus on the material, regularity
or irregularity exists within the same class.

Figure 5. (a–c) are example images for the texture dataset, respectively.
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4.2. Implementation Setting

To evaluate the proposed model using the three datasets, a computer with RTX2080ti
(NVIDIA, Santa Clara, CA, USA) was used. DenseNet161 [12] was used as the backbone,
and the proposed model was implemented using the Pytorch framework. The Adam
optimizer was used with a learning rate of 0.0001. The batch size and number of epochs
were set to 50 and 500, respectively. RandomSizecrop and RandomHorizontalFlip were
used for data augmentation. The input images were applied differently based on the dataset,
considering the image size in the dataset. Because DTD and FMD consisted of images with
a size of 300 × 300 or more, the input image size was set to 224 × 224. However, because
KTH-TIPS2 is composed of images with a size of 200 × 200 or less, the input image size
was set to 64 × 64, considering the smallest image size. For the experiments, each dataset
was split into seven for training and three for testing. We adopted accuracy as the main
evaluation metric for the experiments.

4.3. Experiment Method and Result

The output values of each DenseBlock were concatenated into four combinations
to analyze the impact of multiple levels in various settings, as shown in Figure 6. As
shown in Figure 6a, the output values of each DenseBlock are concatenated, and the
feature information of all levels is used for learning. Subsequently, from Figure 6b–d, the
structure of the model is constructed and learned by sequentially excluding the DenseBlock.
Figure 6d shows a structure in which only high-level features were used. Additionally,
each method commonly included the last DenseBlock, which outputted high-level features
that significantly influenced classification performance. The learning results of the model
learned in the four combinations are listed in Table 1, and the four combinations are
sequentially listed in Table 1 as Blocks 14, 24, 34, and 4. The results from Blocks 14 to 4
showed that the structure of Block 14, used by combining all levels of output values, was
more effective for learning than Block 4, which used only high-level output values. In other
words, when using the proposed structure with the FRM, it was confirmed that the datasets
with regularity and irregularity in the image were effectively classified. In addition, the
proposed method on the KTH-TIPS2b dataset with regularity within classes was effective
in terms of performance.

Table 1. Evaluation results on texture datasets. Bold denotes best accuracy.

Method Backbone DTD FMD KTH-TIP2b

BP-CNN [30] VGG19 69.6 77.8 75.1
FV-CNN [31] VGG19 72.3 79.8 75.4

LFV [32] VGG19 73.8 82.1 82.6
FASON [17] VGG19 72.9 82.1 76.5

DeepTEN [33] ResNet50 69.6 80.2 82.0
LSCNet [34] VGG16 71.1 82.4 76.9

CLASSNet [4] ResNet18 71.5 82.5 85.4
CLASSNet [4] ResNet50 74.0 86.2 87.7

Block 14 (Ours) DenseNet161 74.53 82.76 92.97
Block 24 (Ours) DenseNet161 74.52 82.07 91.55
Block 34 (Ours) DenseNet161 74.35 81.72 91.83
Block 4 (Ours) DenseNet161 74.35 81.72 91.76

The analysis of the experimental results for each dataset is as follows: In the DTD
results, the proposed methods showed higher accuracy than the results of the previously
proposed methods. In particular, in the case of Block 14, using all the feature information
from low to high levels, the highest result was 74.53%. This is a +4.93% increase compared
to BP-CNN (69.6%) and a +0.18% increase compared to Block 4, which used only high-level
features. It was identified that images with irregular shapes between classes were efficiently
classified when different features were used together rather than using only high levels.
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The results of the FMD showed that the accuracy of Block 14 using different levels of
features was higher than that of the previous cases, except for CLASSNet. In addition,
among the proposed methods, Block 14 showed an increase of +1.04% compared to Block
4 (81.72%). Similar to the results of DTD, the combination of different levels of features
when classifying images with irregular forms is effective at extracting detailed information
within the image. In the dataset KTH-TIPS2b, the accuracy of Block 14 was higher than the
others. Compared with the results of Block 4, Block 14 showed better accuracy. The results
proved that, similar to other datasets, it is advantageous to use various levels rather than
only high levels to analyze datasets. However, exceptionally, the result of Block 24 showed
some performance reduction. Block 24 has a structure that does not additionally combine
features for DenseBlock 1. In Table 1, the performance of Block 24 is slightly lower, but
Block 14 combined with all blocks improves performance again. If there are many holes
in the bread, such as in the case of white bread in Figure 5c, more detailed information is
needed to distinguish bread. In other words, when the low level is used, it is determined
that information of the DenseBlock1 is also necessary.

Figure 6. (a–d) are combination examples of the proposed model for evaluating datasets. (a–d) are
referred to as Block 14, Block 24, Block 34, and Block 4, respectively.
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A comprehensive review of the experimental results is as follows: The dataset used in
the experiment consisted of images cropped to specific patterns for each class. The images
exhibited regularities and irregularities within the same class. For example, Figure 5b refers
to the FMD dataset, and the images have different shapes for each class. That is, since each
image has irregular features, it means that the similarity of feature information of the same
class is low. On the other hand, the KTH-TIP2b dataset in Figure 5c shows that each class
has similar images. It also shows that the similarity of texture feature information between
images is high because each image has regular features. And we used a structural model
that utilized features at multiple levels to maximize the features of the pattern in the image.
Because of the structural features combined with FRM, it is of use to extract detailed feature
information for irregular and regular images. In particular, feature information on regular
images from KTH-TIP2b is useful for improving performance as it has high similarity and
thus can be used to distinguish between classes. Thus, the experiments demonstrated
that using all the characteristics of low to high levels together was effective for classifying
datasets. In other words, the experimental results showed that the proposed model was
effective at classifying meaningful patterns in the texture dataset.

4.4. Dataset Analysis

We analyzed a confusion matrix for the FMD based on the results in Section 4.3. The
results of the confusion matrix are shown in Figure 7. Figure 7 shows the results for Blocks
14, 24, 34, and 4 in the order of a to d. The overall true positive (TP), which predicts that
the actual true value is true, is organized. However, there are classes that correspond to
false negatives (FN) that falsely predict the actual true values. Among them, we selected
the images of classes not commonly classified in Figure 7 from a to d. Figure 8 shows
examples of the four classes corresponding to the FN. The actual class in Figure 8a was
glass; however, it was incorrectly predicted to be water. Figure 8b,c show metal and stone,
respectively; however, they were predicted to be wood, and Figure 8d was predicted to be
metal even though the actual class was wood. Figure 9 shows examples of images from
the FMD dataset. A comparative analysis of the images in each class was performed as
follows: Compared to the images of water in Figure 9a, the images of glass in Figure 8a
have similarities in terms of shape and reflection. Figure 8b,c represent wood. They have
characteristics very similar to those of wood in terms of pattern, reflection shape, and
texture (Figure 9c). In addition, the images in Figure 8d are classified as metal. They have
related features such as patterns and textures, as shown in Figures 8b and 9b. In conclusion,
the FN results of the actual and predicted classes were fairly similar. Some images have
similarities that are difficult to distinguish with the naked eye.

Figure 7. (a–d) show the confusion matrix of Blocks 14, 24, 34, and 4 on FMD, respectively. In the
confusion matrix, the y-axis and x-axis denote actual class and predicted class, respectively.
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Figure 8. Examples of images in FMD for a class selected according to the result of the confusion
matrix. (a–d) mean class glass, metal, stone, and wood examples, respectively. The black letter below
the image indicates actual class, and the red letter indicates predicted class by the proposed model.

Figure 9. Examples of class images in FMD. (a–c) are class water, metal, and wood examples,
respectively.

4.5. Ablation Study

We conducted an ablation study to verify the effectiveness of FRM. We compared the
performance of DenseNet161, which was used as the backbone, and the model presented in
this study to confirm its effectiveness. Table 2 lists the experimental results for the texture
datasets. Block 14 is shown in Figure 6a. Its structural characteristic is the form that FRM
combines with each DenseBlock. It has all the feature information from low to high level.
Comparing the accuracy results to the backbone, Block 14 showed +3.96%, 3.09%, and
+11.08% accuracy for DTD, FMD, and KTH-TIPS2b, respectively. The results proved that the
combination of the FRM with the backbone model is effective for classification performance.
FRM consists of a combination of local parts using convolutions of different sizes and
global parts using average values, which can help the model determine the properties of
the unique patterns of images in the dataset. That is, it was confirmed that FRM is useful in
improving performance for datasets showing regularity and irregularity characteristics. In
particular, it showed that it is effective at finding characteristics in images for KTH-TIP2b
that have regularity.

Table 2. Comparison of the results of the backbone and proposed model on datasets.

Method DTD FMD KTH-TIP2b

DenseNet161 (Backbone) 70.57 79.67 81.89

Block 14 (Ours) 74.53 82.76 92.97
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The backbone has a structure that minimizes the information loss as the model deep-
ens. However, this was limited to classifying the detailed patterns of texture images and
improving their performance. Therefore, the experimental results of structures that com-
bine FRM with the backbone, such as Block 14, showed improved performance. Moreover,
it showed that the FRM assisted in identifying and classifying image patterns of DTD, FMD,
and KTH-TIP2b in terms of effectiveness.

5. Extended Study

In this section, we introduce additional studies to identify improved modules suitable
for models that combine various features from low to high levels. The model structure
shown in Figure 6 was maintained, and an FRM with some changes in the internal structure
was used. We evaluated whether the changed FRM affected suitability and performance
when combined with the model structures shown in Figure 6.

5.1. Overview of Modified Module

Figure 10 shows the two modified versions of the proposed module. The conditions
for using filters of different sizes were the same as those used for the proposed modules, as
shown in Figure 3. However, there are structural differences. As shown in Figure 10a, it
is a structure in which some conv 1 × 1 is removed from the proposed FRM in Figure 3,
inspired by the inception module structure with the basic structure presented in Figure 4a.
Figure 10b shows a method of using the output value directly instead of a structure in
which the output value from DenseBlock is divided into local and global values separately.
Moreover, this method did not use a max-pooling layer.

Figure 10. (a,b) show the structure of the changed module.

5.2. Experiment Result

We compared the performance of the FRM with that of the changed modules, as shown
in Figure 10. Table 3 lists the results of the three methods for the texture datasets. Method 1
denotes the case in which the proposed FRM is used, as shown in Figure 3. Methods 2 and
3 refer to the combination of the modified modules proposed in Figure 10a and Figure 10b,
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respectively. The blocks mentioned in each method refer to the structural forms shown
in Figure 6. Method 1 was demonstrated to be effective using the proposed method with
the FRM, as described in Section 4.3. Method 2 exhibited high performance when using
high-level features across the entire dataset. Method 3 performed well when several levels
were used in DTD and FMD, whereas it performed better only at high levels in KTH-TIPS2b.
A comparison of the performance results for all methods is shown in Figure 11. Overall, the
results for the DTD showed the highest performance of 75.50% when Block 24 in Method 3
was used. In the FMD results, Block 14 in Method 3 was the highest at 83.79%. Block 14 in
Method 1 for KTH-TIP2b exhibited a performance of 92.97%. In addition, improvements of
0.85% and 0.57% were observed for Block 4 in Methods 2 and 3, respectively.

Table 3. Experimental results on texture datasets. Bold denotes best accuracy within each mod-
ule method from Blocks 14 to 4. Method 1 refers to models that combine the proposed modules.
Methods 2 and 3 refer to models using the modules mentioned in Figure 10a and 10b, respectively.

Method Backbone DTD FMD KTH-TIP2b

Method 1

Block 14 DenseNet161 74.53 82.76 92.97
Block 24 DenseNet161 74.52 82.07 91.55
Block 34 DenseNet161 74.35 81.72 91.83
Block 4 DenseNet161 74.35 81.72 91.76

Method 2

Block 14 DenseNet161 74.83 82.76 91.19
Block 24 DenseNet161 74.47 82.07 91.48
Block 34 DenseNet161 74.89 82.41 91.76
Block 4 DenseNet161 74.71 83.45 92.12

Method 3

Block 14 DenseNet161 75.26 83.79 91.62
Block 24 DenseNet161 75.50 81.03 91.97
Block 34 DenseNet161 75.14 81.72 92.26
Block 4 DenseNet161 74.77 82.41 92.40

In this section, the experiments demonstrated that the modified modules performed
better than the proposed modules on the datasets except for KTH-TIP2b. Furthermore,
based on these experimental results, the performance improvement factors of the changed
module are as follows. The feature of DenseBlock is used immediately without using the
conv 1 × 1 filter used for dimension reduction in the proposed module. And the features
are used for convolutional filters of various sizes. This is a common structural feature of
Figure 10a,b. In addition, there is also a simplified structural form of the module shown in
Figure 10b. Thus, in the future, we should develop modules based on these performance
enhancement factors and conduct research to find other enhancement factors. Moreover,
further studies should be conducted to overcome the performance limitations of FRM.

Figure 11. The graph of evaluation results for each dataset.
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6. Conclusions

In contrast to object-based datasets, texture datasets consist of images that are closely
or partially cropped around the unique pattern of a particular material. To analyze and
evaluate datasets with these features, we proposed a model that comprehensively used
low-to-high-level features to distinguish subtle pattern differences in each class. In addition,
an FRM was combined with DenseBlock in the model to identify and maintain significant
features from each DenseBlock. To demonstrate the effectiveness of the proposed model,
an evaluation was conducted using several structural combinations. The experimental
results showed that a structure that aggregated multiple features could perform effectively.
However, a comparative experiment between the proposed FRM and modified module
structure in an extended study demonstrated structural limitations in the FRM performance.
The results of this study highlight the necessity for further study to identify improved
modules suitable for the proposed structures in the future. Moreover, to increase the uti-
lization of the proposed model in the study, experimental studies on datasets with various
characteristics other than texture datasets should be conducted. Further research is also
needed on whether the proposed model is suitable for segmentation and object detection.
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