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Abstract: The Susceptible–Infected–Susceptible (SIS) model in complex networks is one of the
critical models employed in the modeling of virus spread. The study of the heterogeneous SIS
model with a non-homogeneous nodal infection rate in finite-size networks has attracted little
attention. Investigating the statistical properties of heterogeneous SIS epidemic dynamics in finite
networks is thus intriguing. In this paper, we focus on the measure of variability in the number of
infected nodes for the heterogeneous SIS epidemic dynamics in finite-size bipartite graphs and star
graphs. Specifically, we investigate the metastable-state variance of the number of infected nodes for
the SIS epidemic process in finite-size bipartite graphs and star graphs with heterogeneous nodal
infection rates. We employ an extended individual-based mean-field approximation to analyze the
heterogeneous SIS epidemic process in finite-size bipartite networks and star graphs. We derive the
approximation solutions of the variance of the infected number. We verify the proposed theory by
simulations. The proposed theory has the potential to help us better understand the fluctuations of
SIS models like epidemic dynamics with a non-homogeneous infection rate.

Keywords: mean-field approximation; Susceptible-Infectious-Susceptible (SIS); epidemic model;
Poisson process; bipartite graph; star graph; variance

1. Introduction

The research of modeling and analysis of infectious diffusion processes in networks,
e.g., epidemics, rumors and computer viruses, have attracted ample attention over the past
decades [1,2]. Compartmental models are used to describe this sort of diffusion process. The
commonly used basic compartment models are the Susceptible–Infectious–Susceptible (SIS)
model and the Susceptible–Infected–Recovery (SIR) model. Several theoretical frameworks
such as Markov theory, message passing and mean-field approximation are employed
to model the dynamics of these diffusion processes. For the sake of convenience, most
conventional methods to model the epidemic dynamics implicitly hold the assumptions
that, for example, the underlying network size is infinite, all individuals are fully mixed
and the infection and recovery rates are homogeneous. The usage of these assumptions
helps to reduce the complexity of modeling and analysis. However, real networks are
usually limited in size and heterogeneous nodal infection rate. It is intriguing to investigate
the impact of a given finite-size network topology over the SIS dynamics.

In this work, we focus on the heterogeneous SIS epidemic dynamics in networks
with a given finite-size topology characterized by the adjacency matrix. Specifically, we
investigate the SIS epidemic dynamics with each individual having a non-homogeneous
infection rate or recovery rate. We derive the variance of the number of infected nodes for
the heterogeneous SIS epidemic dynamics in a bipartite network and a start graph with a
finite size. We experimentally verify the proposed theories.

The paper is organized as follows. Section 2 introduces several related works. In
Section 3, we elaborate on the theoretical framework, followed by the approximation
solutions to the variance of infection fractions for bipartite graphs and star graphs. The
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proposed theoretical formulas are derived. Also, we describe the simulation method
employed in this paper. In Section 4, we first demonstrate the comparison between the
theory and the simulation for the infection change versus time. Then, we verify the accuracy
of the proposed theoretical formulas of the variance for the heterogeneous SIS process in
bipartite graphs and star graphs. In Section 5, we analyze the accuracy of the proposed
theoretical approximation formulas and provide several explanations. Finally, we conclude
the paper in Section 6.

2. Literature Review

Much effort has been paid to the modeling and analysis of the dynamics of the
homogeneous SIS process in static networks where fixed infection and recovery rates stay
unchanged for each node. Pastor-Satorras et al. proposed a heterogeneous mean-field
approximation (HMFA) method to characterize the impact of the heterogeneous network
topology on a SIS virus spread [3]. Chakrabarti et al. proposed a time-discrete model to
investigate the SIS epidemic process in networks [4]. Van Mieghem et al. [5] proposed a
time-continuous theoretical framework named N-intertwined mean-field approximation
(NIMFA) to model SIS epidemic dynamics in a static single finite-size network, where the
infection rate as well as the recovery rate are fixed for each node in a given configuration.
In [4,5], the metastable-state fraction of infected nodes and the epidemic threshold are
derived, respectively, for the discrete-time and the continuous-time SIS processes in a
finite-size network. Specifically, the claim that the epidemic threshold is upper-bounded by
the largest eigenvalue of the adjacency matrix of the network topology is also proved.

The NIMFA is extended and adapted to modeling the SIS epidemic dynamics, where
each node may have a different infection rate or recovery rate [6]. In the framework of this
heterogeneous NIMFA, several general solutions to the metastable-state average number
of infected nodes and the epidemic threshold are derived. Jiao et al. studied the scenario
where the nodes in a network with the topology of a bipartite complete are divided into two
groups and the infection rates for nodes in a specific group are identical [7]. This scenario
reduces to a star graph, where outer nodes have the same infection rate that is different
from the center node. Jiao et al. employed the heterogeneous NIMFA and derived the exact
solution to the average steady-state number of infected nodes.

The heterogeneous dynamic process model has various applications. Wang et al.
applied the heterogeneous NIMFA framework to analyze and assess interest Negative
ACKnowledgments on mitigating interest flooding attacks in Named Data Networking
(NDN) [8]. Cui et al. studied a susceptible–infected–water–susceptible (SIWS) model
which takes in to account disease diffusion in various mediums with different infection
rates [9]. Pagliara and Leonard studied the susceptible–infected–recovered–infected (SIRI)
model which assumes that the a recovering individual would change their susceptibility to
reinfection [10]. The incomplete immunity to reinfection leads to a different infection rate
for each node.

In comparison with the statistics of epidemic dynamics such as the metastable-state
number of infected nodes, the variance in the number of infected nodes does not attract
enough concern. The lifetime and the survival time of an epidemic are closely related to its
variance [11]. Van Mieghem and Omic investigated the variance under the framework of
NIMFA with a homogeneous infection rate and curing rate [12]. With the approximation
that individual viral states are independent from each other, the variance as well as its
upper and lower bounds in the nodal viral state and system viral state are derived. These
general solutions are exemplified with complete graphs and bipartite graphs.

3. Methodology
3.1. Theory Framework

We consider a Markov process representing the SIS process in a network with a finite
size, where the topology of the network is specified by an undirected and unweighted
graph G. The size N of a graph G denotes the number of nodes belonging to G. We denote
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by A the adjacency matrix of the topology, where an element aij of the matrix is equal to
1 if the connection between nodal pair i and j exists or 0 if the connection does not exist.
The degree di of the node i is usually defined as di = ∑N

j=1 aij. Each node i could be in one
of two states at a time t: the infected state, meaning that the node is capable of infecting
others, or the susceptible state, meaning that the node is healthy but susceptible to infection.
The infected state and the susceptible state of the node i are denoted by I or S, respectively.

The heterogeneous NIMFA is rehearsed in the following. At time t, the viral state
of a node i is represented by a Bernoulli random variable Xi(t) ∈ {0, 1}. The viral state
of the node i could either be the infected state with probability vi(t) = Pr[Xi(t) = 1], or
the susceptible state with probability 1 − vi(t) = 1 − Pr[Xi(t) = 1]. Assuming there is a
link between an infected node i and a susceptible node j, the infection process per link
connecting an infected node and a susceptible node is a Poisson process with rate βi, as
shown in Figure 1a. The infection process for each nodal pair of infected nodes and one
of its neighbors is independent. Any infected node i will achieve recovery with rate δi. If
the node i recovers, the viral state of node i becomes Xi = 0 from Xi = 1. This is called the
curing process for the infected node i, which is a Poisson process with rate δi, as shown in
Figure 1b. The curing process for each node is independent.

SI

II

SI

SS

(a) (b)

Figure 1. Schematic diagram of two independent Poisson processes of a SIS epidemic dynamic
between a nodal pair in a network. The independent processes are (a) the infection process describing
an infected node infecting its susceptible neighboring node. (b) The curing process describing an
infected node infecting recovered individuals.

The heterogeneous SIS epidemic process is composed of all curing processes and
infection processes in a given finite-size network. It is useful to introduce the notation
τi, named the effective infection rate, defined as τi = βi/δi. At time t, the number of
infected nodes and the expected fraction of infected nodes are defined as I(t) = ∑i Xi(t)
and y(t) = ∑i vi(t)/N, respectively.

The steady state of the system composed of the SIS process in a given finite-size
network actually corresponds to the metastable state [5]. The steady state, denoted by
vi∞, implies

vi(t)
dt

∣∣∣∣
t→∞

= 0. (1)

We also denote by y or y∞, and I or I∞, the metastable-state fraction of infected nodes
and the metastable-state number of infected nodes. The only approximation employed by
the NIMFA framework leads to

Pr[Xi = 1, Xj = 1] = Pr[Xi]Pr[Xj], (2)

which means that the random variables Xi and Xj are assumed to be independent [5]. This
assumption of independence approximation further induces

E[Xi = 1, Xj = 1] = E[Xi = 1]E[Xj = 1] = vivj. (3)
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The exact Markov differential equation for the viral state of node i can be expressed as

dE[Xi(t)]
dt

= E

[
−δiXi +

N

∑
j=1

aijβ jXj(1 − Xi)

]
. (4)

Substituting (3) into (4) leads to

dvi(t)
dt

= −δivi +
N

∑
j=1

aijβ jvj(1 − vi)

=
N

∑
j=1

aijβ jvj − vi

(
N

∑
j=1

aijβ jvj + δi

)
.

(5)

The Markov differential Equations (4) and (5) were proposed and derived previously
in [6] on p. 2. Similarly, we could obtain the differential equations for all nodal viral states,
shown as

dv1(t)
dt

=
N

∑
j=1

β jaj1vj(t)− v1(t)

(
N

∑
j=1

β jaj1vj(t) + δ1

)
,

· · ·

dvN(t)
dt

=
N

∑
j=1

β jajNvj(t)− vN(t)

(
N

∑
j=1

β jajNvj(t) + δN

)
.

(6)

According to the properties of the Bernoulli random variable, the expectation and
variance of the viral state Xi are expressed as

E[Xi] = vi, (7)

Var[Xi] = (1 − vi)vi. (8)

According to the linearity of expectation, the expectation of I(t) could be expressed as

E[I(t)] =
N

∑
i=1

E[Xi] =
N

∑
i=1

vi. (9)

The variance of I(t) could be expressed as

Var[I(t)] =
N

∑
i=1

Var[Xi] + 2
N

∑
i=1

i−1

∑
j=1

Cov
[
Xi, Xj

]
; (10)

that was derived and shown in ([13] p. 30).
Using the independence approximation (3) and (8), the variance (10) reduces to

Var[I(t)] =
N

∑
i=1

Var[Xi] =
N

∑
i=1

(1 − vi)vi, (11)

since the covariance Cov
[
Xi, Xj

]
is zero for any nodal pair.

3.2. Variance of Infection Fraction for Bipartite Graph

The main topologies concerned are the complete bipartite graph and the star graph.
A complete bipartite graph Km,n is composed of two groups of nodes, where any nodal
pair in one group does not connect and a node in one group is fully connected to all nodes
in another group. As shown in Figure 2a, the nodes on the left side belong to a group of
m = 2 nodes, while the nodes on the right side are of another group of n = 3 nodes. As
shown in Figure 2b, a star graph of n + 1 is a tree structure composed of one special node
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of degree n and the other n nodes of degree 1. The special node, referred to as the center or
the root, is connected to each of the other nodes. A star graph is isomorphic to a complete
bipartite graph Km,n with m = 1.

(a) (b)

Figure 2. Topology of networks concerned in this work. Two sorts of networks are chosen to
investigate the heterogeneous SIS epidemic dynamics: (a) a complete bipartite graph Km,n with two
disjoint node sets, m = 2 and n = 3. (b) A star graph.

Lemma 1. The metastable-state average number y of infected nodes for the heterogeneous SIS
process in a complete bipartite network Km,n with the setting (βi = βm, δi = δm) for i = 1, · · · , m
and (βi = βn, δi = δn) for i = m + 1, · · · , m + n, can be expressed as

E[I(t)] = mωm + nωn, (12)

where

ωm =
βmβnmn − δmδn

(δm + βnn)βmm
, (13)

ωn =
βmβnmn − δmδn

(δn + βmm)βnn
. (14)

Proof of Lemma 1. The expression for the metastable-state fraction y of the number of
infected nodes was previously proved and shown as Theorem 1 in [7]. Substituting N =
m + n and using E[I(t)] = y · N leads to the expression for E[I(t)].

Proposition 1. The variance Var[I] of the metastable-state average number of infected nodes for the
heterogeneous SIS process in a complete bipartite network Km,n with the setting (βi = βm, δi = δm)
for i = 1, · · · , m and (βi = βn, δi = δn) for i = m + 1, · · · , m + n, can be expressed as

Var[I] = m(1 − ωm)ωm + n(1 − ωn)ωn, (15)

where ωn and ωn are shown in (13) and (14)

Proof of Proposition 1. The nodes in a complete bipartite graph are divided into two sets.
Within each set, the nodes are identical for the configuration concerned, which was proven
in [7]. For the node i of the complete bipartite graph with i = 1, · · · , m, the metastable-state
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fraction vi of infection is identical, e.g., vi = ωm as shown in (13). Similarly, vi = ωn for
i = m + 1, · · · , m + n. Substituting ωm in (13) and ωn in (14) into (11) leads to

Var[I(t)] =
m

∑
i=1

(1 − ωi)ωi +
m+n

∑
j=m+1

(1 − vj)vj

= m(1 − vm)vm + n(1 − ωn)ωn.

A complete bipartite graph Km,n is isomorphic to a star graph with the setting m = 1.
A star graph of size 1 + n is a tree with one rooted node as the center, having degree n and
the other having degree 1 as siblings connecting to the center.

Corollary 1. The variance Var[I] of the metastable-state average number of infected nodes for the
heterogeneous SIS process in a star graph of n + 1 nodes with the setting (βi = βm, δi = δm) for
i = 1 and (βi = βn, δi = δn) for i = 2, · · · , n + 1 can be expressed as

Var[I] = (1 − ωm)ωm + n(1 − ωn)ωn

=
(δmβm + δmδn)(δnβnn + δmδn)(βmβnn − δmδn)2

(δm + βnn)2(δn + βm)2β2
mβ2

nn
.

(16)

where ωm and ωn are shown in (13) and (14).

Proof of Corollary 1. The star graph of the n + 1 nodes is isomorphic to the complete
bipartite graph Km,n where m = 1. Substituting m = 1 into (15) and conducting some
manipulations (see Appendix A for details), we can derive the corollary (16).

3.3. Simulation Method

It is straightforward to consider the SIS process in a given finite-size network as
a Markov chain where each system state is denoted by a vector [X1, X2, · · · , XN ]. It is
apparent that the state [0, 0, · · · , 0] is the absorbing state, which means the system will stay
unchanged if it enter into this state. Notable is that any other system states could achieve the
absorbing state with a non-zero probability. The final steady state of the exact SIS process
in the finite-size network is the absorbing state. The steady state of the NIMFA model
corresponds to the metastable state of the exact SIS process in the finite-size network [5].
But, it is relatively hard to theoretically define and empirically detect the metastable state.

Van Mieghem et al. proposed the ε-SIS model and employed the steady state of the
ε-SIS model to approximate the metastable state in the exact SIS process [14]. Through a
simulation of the ε-SIS model, Li et al. obtained extensive empirical results with sound
accuracy for various network topologies [15]. One merit of the ε-SIS model is that there is
no absorbing state and it is unnecessary to detect the metastable state.

In this work, we implement the ε-SIS model and employ it as the simulation method.
A self-infection Poisson process with rate εi is added to each node i for i = 1, · · · , N. Even
if the system enters into the state [0, 0, · · · , 0], the probability that the system jumps out of
the state is non-zero. In other words, there is no absorbing state in the ε-SIS model. At the
beginning of a simulation instance, a portion of the nodes are selected to be infected while
the others are susceptible. After a warm-up time, one can continue to run the simulation for
a long time and record the change in the system state. After stopping the simulation, one
can calculate any statistics of the dynamics, such as the time-average number of infected
nodes, according to the records.

The simulation environment setup is described in the following section. We take the
simulation time to be 103 time units and set the self-infection rate εi = 10−3 for i = 1 · · · N.
For a given setup (βm, βn, δm, δn, ε) and a graph, we start one simulation and record the
number of infected nodes in the graph for each time step until the end of the simulation.
Finally, we can calculate the statistical properties such as the time-average value of the
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steady-state average number of the infected nodes. For a given setup, we only need to
run one single simulation instance to calculate all related statistical properties. We can
then show the relation between one of the statistical properties and the simulation time in
a figure.

In this work, we also show the relation between the statistical properties as a function
of infection rate. We fix the setup (βn, δm, δn, ε). Then, we change the setup of βm from 0 to
a large enough number. For each number of βm, we calculate the corresponding statistical
properties. Finally, we can show the relation between the metastable-state number and the
infection rate βm in a figure.

4. Results
4.1. Time Evolution

We implement a discrete-time simulator of the ε-SIS model which was elaborated in
Section 3.3. We first conduct experiments on the time evolution of infection and verify the
existence of the metastable state of the system.

Figure 3 demonstrates a single run of the simulation, which shows the change in the
fraction number y(t) of a heterogeneous SIS process as a function of time in a complete
bipartite graph K15,25 with the model settings βm = βn = 0.2 and δm = δn = 1. The fraction
y(t) of infected number starts at a small portion which is fixed at the very beginning of
the simulation as a parameter. Then, the fraction increases rapidly into a plateau where
it fluctuates between a relatively fixed range. The thick curve and the dashed thin curves
denote the theoretical mean and standard deviation of the fraction of infected nodes,
respectively. The theoretical mean value is calculated by (12), while the standard deviation
is obtained via the square root of the variance (15), shown in Proposition 1. It appears
that there exists a metastable-state mean value of the infection number which can be
approximated by the steady-state average number of infected nodes calculated by the
above-mentioned NIMFA model.

0 200 400 600 800 1000

time t
0

5
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15

20

25

30

35

40

in
fe

ct
io

n 
nu

m
be

r y
(t)

Bipartite Graph K15, 25, m = n = 0.2
m = n = 1, = 10 3

single run of simulation
steady-state mean value of theory
standard deviation

Figure 3. Time evolution of the fraction y(t) of the infected nodes of a single run of a SIS process
in a complete bipartite graph K15,25 with two disjointed node sets. The thin blue curve denotes the
simulation results recorded while conducting the ε-SIS model, while the thick red straight curve
denotes the theoretical steady-state mean value (12). The dashed lines denote the standard deviation
obtained via the square root of the variance (15).

4.2. Variance of Infection Fraction in Bipartite Graph

We conducted numerous simulations for the heterogeneous SIS process in the bipartite
graph in order to verify the proposed theory (15) proven in Proposition 1. The number
of infected nodes versus time for each run of a simulation with a specific configuration is
recorded as demonstrated in Figure 3. The records with various configurations are collected
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and then used to calculate several statistical properties such as the steady-steady mean
fraction y∞ of the infected nodes and the steady-state variance Var[I] of the fraction of the
infected nodes.

Take the results shown in Figure 4 as an example for the heterogeneous SIS process
in a bipartite graph. The metastable-state mean and variance are compared with the
corresponding steady-state theoretical results in each diagram. The markers and curves
denote the metastable-state simulation results and the steady-state theoretical results,
respectively. Without the loss of generality, the fraction of infected nodes are shown as a
function of the infection rate βm while the other set of parameters (βn, δm, δn, ε) is fixed. The
variance of the number of the infected nodes corresponding to the mean infection fraction
is also demonstrated with the same set of parameters.
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infection rate m
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1.0
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n 
y

Bipartite Graph K15, 25, 
n = 0.2, 
m = n = 1, = 10 3

(a) Mean Fraction of Infected Nodes

Simulation
Theory
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nc
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r[I
]

Bipartite Graph K15, 25, 
n = 0.2, 
m = n = 1, = 10 3

(b) Variance of Number of Infected Nodes
Simulation
Theory

Figure 4. Statistical properties of the heterogeneous SIS process in a bipartite graph K15,25. The
scattered cycles denote the simulation results, while the dashed curves denote the theory. (a) The
mean value of the steady-state fraction of infected nodes is shown, where the theory is calculated by
(12). (b) The variance of the steady-state fraction of infected nodes is demonstrated, where the theory
is calculated by (15).
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4.3. Variance of Infection Fraction in Star Graph

We conduct numerous simulations for the heterogeneous SIS process in a star graph
in order to verify the proposed theory (16) proved in Corollary 1. Take the results shown in
Figure 5 as an example of a heterogeneous SIS process in a star graph. The center node is
with the infection rate different to the other nodes. The comparisons of the steady-state
fraction of infected nodes and the variance and the metastable-state fraction of infected
nodes and the variance are demonstrated. Although the noises are relatively large in
simulations for a finite-size star graph, the trend of simulation results is still apparent as
shown in Figure 5.
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Star Graph N = 40, n = 0.2, 
m = n = 1, = 10 3

(a) Mean Fraction of Infected Nodes
Simulation
Theory
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Star Graph N = 40
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(b) Variance of Number of Infected Nodes
Simulation
Theory

Figure 5. Statistical properties of the heterogeneous SIS process in star graph N = 40. The scattered
cycles denote the simulation results, while the dashed curves denote the theory. (a) The mean value
of the steady-state fraction of infected nodes is shown, where the theory is calculated by (12). (b) The
variance of the steady-state fraction of infected nodes is demonstrated, where the theory is calculated
by (16).
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5. Discussion

The existence of the metastable-state of the heterogeneous SIS in bipartite graphs and
star graphs are verified, which is shown in Figure 3 for a non-trivial case. The statistical
mean value of the fraction y(t) of infected nodes tends to stay unchanged, although the
simulation result changes as time goes on. It appears that the metastable-state mean value
of the fraction of infected number for the heterogeneous SIS process corresponds to the
steady-state expectation value of the proposed theory. The theoretical standard deviation as
the square root of the proposed variance (15) provides a relatively accurate approximation
of the statistical fluctuation as shown in Figure 3. Moreover, the deviation of the fraction
of the infected number according to the simulation results is restricted to a limited range,
which could be predicted by the theoretical variance to some extent.

According to the comparisons shown in Figure 4, the proposed theories are capable of
approximating the real heterogeneous SIS process in bipartite graphs for the range of vari-
ous infection rates. Specifically, the proposed approximations of the steady-state number
of infected nodes and the variance can be used to predict the metastable-state number of
the infected nodes and the variance. Although the inaccuracy of the approximation is not
apparent for the mean fraction of the infected number, it is relatively large for the approx-
imation to the variance for a small range of infection rates. It is shown that the obvious
discrepancy between the theory and the simulation lies in the phase transition point, e.g.,
the epidemic threshold. The main reason is that the NIMFA framework employed in this
work has its own limitations in approximation. The homogeneous NIMFA framework
could not predict a real variance larger than 0.25N, where N is the network size [12]. As
the infection rate grows, the accuracy of the approximations increases dramatically. For
relatively large infection rates, the discrepancy between the theory and the simulation
becomes tiny enough to be omitted.

It appears that the steady-state variance of the number of infected nodes calculated by
(16) is capable of approximating the simulation results for a relatively large range of various
infection rates, as shown in Figure 5. The discrepancy of the theory and the simulation
appears near the epidemic threshold. On the other hand, compared to the scenario of the
bipartite graph, the theory for the star graph performs better and more accurately predicts
the variance near the epidemic threshold.

6. Conclusions

The NIMFA framework, as a sort of individual-based mean-filed approximation, is
extended to modeling the heterogeneous SIS process in bipartite graphs and star graphs.
Specifically, several approximations to the variance of the metastable-state fraction of
infected nodes are proposed. To the best of our knowledge, this is the first attempt to
analyze the statistical fluctuations of the heterogeneous SIS process in specific graphs,
which has attracted little attention. The empirical works in this paper demonstrate the
effectiveness of the proposed theory to some extent. Especially, the proposed variance
approximations provide better accuracy for a relatively large range of infection rates,
although it does not perform near the epidemic threshold.

One limitation of the approximation lies in the discrepancy between the theory and
the statistical properties of real dynamics near the phase transition point. The main reason
is the NIMFA framework employed and extended in this work is a first-order approxi-
mation. In future studies, the accuracy of the approximation of the variance should be
improved. Selecting more accurate mean-field approximation frameworks with relatively
low computational complexity [16–18] helps to improve the accuracy of the expectation
and the variance approximation. Moreover, much attention should be paid to the bounds
on the variance.

A basic assumption that most of the related works are based on is the choice of Poisson
process. The Poisson process could be analyzed theoretically in the framework of the
Markov theory. However, many real contact and infection activities are non-Markovian
processes in networks with temporal topologies. There is a lack of some general theoretical
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framework to analyze the above-mentioned non-Markovian processes [19,20]. One could
extend some propositions proposed in this work to these complex scenarios.
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Appendix A. Proof of Corollary 1

The metastable-state variance Var[I] of the heterogeneous SIS process in the com-
plete bipartite graph Km,n, shown in (15), is composed of two parts, e.g., the left-part
m(1 − ωm)ωm and the right-part n(1 − ωn)ωn. We begin the proof from manipulating the
left-part. Substituting (13) into the left-part leads to

m(1 − ωm)ωm = m ·
(

1 − βmβnmn − δmδn

(δm + βnn)βmm

)
·
(

βmβnmn − δmδn

(δm + βnn)βmm

)
= m · (δmβmm + βmβnmn − βmβnmn + δmδn)(βmβnmn − δmδn)

[(δm + βnn)βmm]2

=
(δmβmm + δmδn)(βmβnmn − δmδn)

[(δm + βnn)βm]
2m

(A1)

For m = 1, the expression (A1) reduces to

m(1 − ωm)ωm =
(δmβm + δmδn)(βmβnn − δmδn)

[(δm + βnn)βm]
2 . (A2)

Similarly, substituting (13) into the right-part and conducting some manipulations
leads to

n(1 − ωn)ωn = n ·
(

1 − βmβnmn − δmδn

(δn + βmm)βnn

)
·
(

βmβnmn − δmδn

(δn + βmm)βnn

)
= n · (δnβnn + βmβnmn − βmβnmn + δmδn) · (βmβnmn − δmδn)

[(δn + βmm)βnn]2

=
(δnβnn + δmδn)(βmβnmn − δmδn)

[(δn + βmm)βn]
2n

.

(A3)
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For m = 1, the expression (A3) reduces to

n(1 − ωn)ωn =
(δnβnn + δmδn)(βmβnn − δmδn)

[(δn + βm)βn]
2n

. (A4)

Combining (A2), (A4) and (15), we could obtain the metastable-state variance of the
number of infected nodes for the heterogeneous SIS epidemic process in the star graph, as
demonstrated in (16).
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