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Abstract: The motion of a continuously operating reference station is usually dominated by the
long-term crustal motions of the tectonic block on which the station is located. Monitoring changes in
the coordinates of reference stations located at tectonic plate boundaries allows for the calculation of
velocity fields that reflect the spatial and temporal characteristics of the region. This study analyzes
the spatiotemporal relationships of regional reference frame points with GNSS data from 25 reference
stations in Sichuan, China, from 2015 to 2021. The common mode errors are extracted and eliminated
by principal component analysis. A time series function model is developed for the reference stations
and their constituent baselines for calculating the velocity field. Subsequently, the spatiotemporal
characteristics of the regional reference frame in Sichuan is analyzed by a stochastic model. The
results show that the influences of the common mode error on the horizontal and vertical directions
of the reference stations is 2.5 mm and 4.3 mm, respectively. Generally, the horizontal motion of
the reference stations in the Sichuan region tends to be in the southeast direction and the vertical
motion trend is mainly uplifting. The east–west and vertical components of the baseline tend to be
shortened, and the random influence among the reference stations is larger in the north–south and
east–west directions—0.39 mm and 0.54 mm, respectively. Polynomial functions are more appropriate
for constructing the fitted random influence covariance model.

Keywords: regional reference frame; common mode errors; Sichuan spatiotemporal characteristics;
time series

1. Introduction

One of the goals of geodesy is to achieve and maintain reference frames from global to
national scales. The implementation of the international terrestrial reference frame (ITRF)
follows the basic principle that minimizes the total horizontal velocity of selected globally
distributed reference stations [1]. ITRF2014 was generated for the first time in the history of
the ITRF by augmented modeling of nonlinear site motion, taking into account the GNSS
times series of seasonal (annual and semi-annual) signals and post-earthquake deformation
at sites affected by large earthquakes [2]. It thus determines accurate and robust long-term
frames and site velocities. The motion of a GNSS site relative to a global reference frame is
typically dominated by the long-term crustal motion of the tectonic block where the site
is located [3]. A regional or local scale reference frame is needed when researchers are
interested in local scale ground deformation, which is usually aligned with the ITRF to
maintain high accuracy and stability [4].

GNSS continuously operating reference stations (CORS) effectively measure the coor-
dinate changes at reference stations, especially those located at tectonic plate boundaries [5],

Appl. Sci. 2024, 14, 432. https://doi.org/10.3390/app14010432 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14010432
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0001-7434-7109
https://orcid.org/0000-0003-0357-5312
https://doi.org/10.3390/app14010432
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14010432?type=check_update&version=1


Appl. Sci. 2024, 14, 432 2 of 16

providing accurate position measurements relative to a specific reference system (e.g.,
ITRF). The final product is usually generated as present velocities to identify slight ground
displacements or structural deformations over time [6]. The accumulation of data from
multiple CORS sites with continuous observations makes establishing a regional reference
frame possible. Yu et al. established a stable Gulf of Mexico reference frame (SGOMRF2014)
using more than 780 CORS sites [7], and the IAG European Sub-Committee provided the
homogenized position and velocity from 3192 sites over 17 years in Europe [8]. Uzbekistan
established an accurate and homogeneous datum based on ITRF2008 and a reference frame
consistent with regional deformation [9]. The 26 continuously operating stations covering
the Spanish part of the Iberian Peninsula and Morocco form the Topo-Iberia network,
providing horizontal and vertical velocity fields [10].

China is located at the southeastern part of the Eurasian plate and is affected by
the eastward subduction of the western Pacific and Philippine plates and the collision
of the Indian and Eurasian plates to the west and southwest, respectively, with complex
and diverse crustal motions and deformations [11]. Yu et al. established an accurate
contemporary horizontal velocity field of the Eurasian plate in the China region based on
data from hundreds of CORS sites from 1998 to 2018 [12]. Located in southwest China,
Sichuan Province is in the Himalayan-Mediterranean seismic zone and has long been
subject to the thrust of the northeast Indian plate and the compressional action of the
Tibetan plateau, which produces intense tectonic deformation activity and frequent strong
earthquakes [13].

To properly understand the motion and dynamic mechanisms of continental tectonic
deformation, accurate GNSS coordinate time series and velocity fields need to be deter-
mined [14]. GNSS coordinate time series contain linear trends, periodic terms and step
offsets reflecting the plate movement. The periodic signal may originate from ground
deformation due to seasonal variations in temperature, atmospheric pressure, groundwater
level, surface water load, snow load and soil moisture [6]. The GNSS coordinate time series
exhibits time-dependent background noise with significant spatial correlation [15]. The
errors caused by the incomplete modeling in the position residuals, such as satellite orbits,
environmental loading effects [16] or incorrect modeling (GNSS processing strategy), are
called common mode errors (CME). CME affect the accuracy of station coordinates and
velocity solutions [17] and constitute one of the largest sources of the errors in the accuracy
of regional network time series [18]. CME can be efficiently extracted by methods such as
spatial filtering, mainly stacking, principal component analysis (PCA) and Karhunen–
Loeve expansion (KLE) methods [19,20]. Among them, PCA filtering shows the best
performance, making the station coordinates more convergent and effectively reducing
the uncertainty of station coordinates [21]. Pan et al. applied PCA for CME extraction
of GNSS time series on the Qinghai-Tibet Plateau and evaluated the effect of CME on
velocity [22].

This study analyzes the spatiotemporal characteristics of the Sichuan regional reference
frame based on 25 national reference stations from 2015–2021. GNSS baselines can weaken
the effects of some common errors, making the baseline time series signals subject to weaker
linear and nonlinear effects compared with single stations. Therefore, the Delaunay method
is used to construct the baseline triangulation network of each reference station within
the region. The time series of each baseline is used for subsequent analysis together
with the time series of the reference station. First, the periodicity in the time series is
demonstrated by the Lomb–Scargle periodogram (LSP) and then the influence of CME
extracted by PCA in each direction is analyzed. The velocity field calculated from the
coordinate positions is used to analyze Sichuan’s spatial and temporal motion patterns,
including horizontal and vertical directions. Finally, a covariance model of the stochastic
influence of each component of the baseline by the station motion is constructed to
characterize the stochastic influence of the regional reference frame. The key points
mentioned above can guide the research of plate motion trends and the maintenance of
the reference frame in Sichuan Province.
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2. Experiments and Methodology
2.1. Time Series Function Model

The GNSS coordinate time series function model is:

y(ti) = a + bti + csin (2πti) + dcos(2πti)

+esin (4πti) + f cos (4πti)+
ng

∑
j=1

gjH(ti − Thj) + vi
(1)

where y(ti) denotes the coordinate and baseline time series, a denotes the initial position,
b denotes the rate, and c,d,e, f denote the annual and semi-annual period term coeffi-
cients, respectively, with the annual period being 2π and the semi-annual period being
4π. ∑

ng
j=1 gj H(ti − Thj) is the step correction term. gj is the step shift in position due to

earthquake or antenna replacement occurring at epoch Thj. ng denotes the number of steps
occurring. H is the Heaviside step function, with H value being zero before the step and
one after the step. ti denotes the time in years. vi is the time series residual.

The baseline time series throughout the observation period are preprocessed with
coarse difference rejection and data interpolation. Equation (1) is transformed into matrix
form (2) to derive the residual time series ∆.

L = BX + ∆ (2)

where Bi = [1, ti, sin(2πti), cos(2πti), sin(4πti), cos(4πti)] and X = [a, b, c, d, e, f ]T.

2.2. Lomb–Scargle Periodogram Analysis

The continuous time series implied the spectral characteristics of stations. LSP is
effective in extracting weak periodic signals in time domain sequences, again to some
extent eliminating spurious signals due to non-uniformity in the time domain [23] and is
applicable to unequally spaced data. LSP can be subjected to Fourier analysis driven and
derived from the principles of Bayesian probability theory, which has been shown to be
closely related to box-based phase folding techniques in some cases [24].

For the time series of length M, the discrete Fourier transform of an arbitrarily sampled
data set is defined as [25]:

F(ω) =
M

∑
k=1

J(tk)e−iωtk (3)

Then, the normalized power spectrum of the Lomb–Scargle method is calculated by
Equation (4):

Pj(ω) =
1

2σ2


[
∑k

1 Jkcos ω(tk − τ)
]2

∑k
1 Jkcos2 ω(tk − τ)

+

[
∑k

1 Jksin ω(tk − τ)
]2

∑k
1 Jksin2 ω(tk − τ)

 (4)

where σ2 is the variance of the time series and τ is the compensation constant that ensures
the invariance of the offset at time tk of each:

τ = (1/2ω)tan−1 ∑k
1 sin 2ωtk

∑k
1 cos 2ωtk

(5)

2.3. Principal Component Analysis

PCA is a common method for reducing the dimensionality of high-dimensional data.
The principle is to transform the original data into a set of linearly independent components,
where the first few components with high contribution are used to represent the original
data [19].
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For the residual coordinate time series V, let the covariance array Σ of V be:

Σ =
1

m − 1
VTV (6)

where the covariance array Σ is a full rank symmetric matrix for which the eigenvalue
decomposition is performed as follows:

Σ = UΛUT (7)

where UT is a row full rank matrix composed of eigenvectors of Σ and Λ is a principal diag-
onal matrix composed of k non-zero eigenvalues of matrix Σ. The eigenvalues of the covari-
ance array Σ correspond to the eigenvectors one by one as (λ 1, U1) , (λ 2, U2) , · · · , (λ n, Un).
At this point, the time series Vi,j can be represented by a set of orthogonal bases Uk as:

Vi,j =
n

∑
k=1

ak(i)Uk(j) (8)

where Uk(j) is the jth element of the kth feature vector and ak is the kth principal component
of Vi,j, expressed in the following form:

ak(i) =
n

∑
j=1

Vi,jUk(j) (9)

The eigenvalues are arranged in descending order, and the first few eigenvalues repre-
senting a larger contribution to the time series Vi,j are called the main mode components,
which are expressed as:

εi,j =
p

∑
j=1

ak(i)Uk(j) (10)

where p is the number of selected principal components, and, in general, the sum of selected
eigenvalues accounts for more than 80% of the proportion of all eigenvalues.

2.4. Variance-Covariance Fitting Model

This study selects four functional models to fit the variance-covariance of the GNSS
time series to investigate the stochastic effects of dispersion between the baselines. The
variance-covariance fitting models are as follows:

Gauss function:
C(d) = C(0)e(−k2d2) (11)

Hirvonen covariance function:

C(d) =
C(0)

1 + k2d2 (12)

Exponential function:
C(d) = C(0)e(−kd) (13)

Polynomial function:

C(d) = C(0) + k1d + k2d2 + k3d3 + · · ·+ kndn (14)

where C(0) denotes the covariance between two signals with zero distance, ki is a parameter
to be determined and di is the length of the baseline between two points.

The variance-covariance obtained by fitting the above equations is clearly based on the
assumption of homogeneous and isotropic random field, in which the correlation between
the two points is only related to the distance.
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2.5. Time Series Resolution Strategy and Analysis Process

In this study, 25 Sichuan CORS(SCCORS) stations were selected in Sichuan Province.
Figure 1a shows the distribution of the stations and the baseline triangulation network
constructed by the Delaunay method. The stations were observed from 2015 to 2021, with
continuous observations for over three years. Garate et al. verified that the velocities
estimated by different geodetic software packages (GIPSY-OASIS, Bernese, and GAMIT)
agree with each other [26]. The GAMIT 10.70 software was used for data processing.
The baseline solution was used to obtain single-day solutions for the Sichuan reference
station and its surrounding IGS stations. The coordinates and velocities of the 12 IGS
stations under ITRF2014 are used as the reference. Figure 1b shows the distribution of
the 12 IGS stations. The GLRED module is used to compute the single-day solutions, and
the time series of both reference station and baseline are obtained from the adjustment
result files.
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Figure 1. Distribution of the IGS and Sichuan CORS(SCCORS) stations. (a) Triangulation network of
regional reference stations in Sichuan. (b) Distribution of the 12 IGS stations.

Figure 2 illustrates the flow chart of the spatial and temporal characterization of the
reference frame. The different observation environments or the occurrence of equipment
replacement at each reference station make the satellite data received by the reference
station to be interrupted. There may also be random and severe coordinate errors in
the coordinate time series, so the daily coordinate time series need to be pre-processed.
In this study, the outliers in the coordinate time series are removed by the quartile
method. For the discontinuous coordinate time series, the interpolation method is used
to complete them. Next, spectral analysis is performed on the station and baseline time
series to obtain the frequencies of periodic signals. Then, PCA is used to extract the
CME, the velocity field is obtained with a time series model to summarize the spatial
motion pattern in the study area and different fitting methods are used to quantify the
covariance model among the reference stations to characterize the random influence of
the regional reference frame.
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3. Results
3.1. Spectrum Analysis

The Lomb–Scargle periodogram method was used to perform spectral analysis of the
time series of the Sichuan reference stations and baselines separately. Figure 3 shows the
results of the time series spectral analysis of some stations (SCMN and SCXC) and baselines
(SCML-SCMN and SCJL-SCXC).
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Figure 3. Results of the Lomb–Scargle periodogram method for analyzing the time-frequency
transformation of time series. (a,b) represent the spectral analysis results of the reference stations
SCMN and SCXC, respectively. (c,d) represent the spectral analysis results of baseline SCML-SCMN
and SCJL-SCXC, respectively.
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Both stations show a periodicity with a frequency of one year and half a year (weaker).
However, station SCMN does not show a clear peak in the E direction with a period of one
year. The effect of longer periodicity (about 2.7 or 5 years) is present in the figure, but the
length of the time series of the reference station in the Sichuan area of this study is 7 years,
so the error is probably due to the sampling interval of the LSP method. In addition, the
two stations also show an insignificant periodicity of about 250 and 270 days in the N
direction due to the different environments in which the stations are located. Affected by
plate motion, ground subsidence and changes in the surrounding environment, the stations
may show insignificant periodic movements with the stacking of multiple factors.

The baseline SCML-SCMN and SCJL-SCXC time series in all four components of N, E,
U and L show obvious annual periodicity; the periodicity of the E and L components with
half-year frequency is not obvious, which may be due to the baseline weakening the spatial
correlation among the reference stations and makes the spatially correlated CME change.

3.2. Common Mode Error Analysis

The CME is extracted using PCA, and the number of principal components is deter-
mined according to different principal component contribution rates, greater than 80% in
this study [27]. The effects of CME on the reference station SCMN, baseline SCML-SCMN,
are shown in Figures 4 and 5. The residual series of the reference station and baseline
without CME removed are periodic. The CME is more intuitive to reflect the main trend of
the residual series, and the time series with CME removed becomes smaller and stable in
all directions by orders of magnitude and do not have obvious periodicity.
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Table 1 shows the impact of CME on each reference station and each direction of the
baseline, including the maximum value, the minimum value and the average value of the
absolute value. The impact of CME reaches the millimeter scale. Using the average of
absolute values as the main reference, the CME impact on the plane of the reference station
is about 2.5 mm. The impact on the vertical direction is larger, with an average impact of
about 4.3 mm. The CME impact on each direction of the baseline decreased compared to
the reference station, with a reduction of 0.14 mm (13.9%) and 0.69 mm (15.9%) in the N
and U directions, respectively, and the most significant reduction in the E direction, with
1.06 mm (47.3%).

Table 1. Statistics of the absolute mean value of the influence of CME on each reference station and
each baseline (unit: mm).

Statistics
Reference Station Components Baseline Components

N E U N E U L

Max 2.31 2.96 6.36 2.17 2.11 5.90 2.32
Min 0.33 1.49 3.44 0.05 0.04 2.55 0.10

Average 1.01 2.24 4.34 0.87 1.18 3.65 1.18

3.3. Analysis of Spatiotemporal Movement Patterns

The velocity field of the Sichuan reference station was calculated using the time series
model, and Figure 6 and Table 2 show the motion rates of the reference station in the
horizontal and vertical directions. The same site may have different velocities in different
reference frames, so it is meaningful to discuss site velocities with specifying reference
frame. In this paper, all site velocities referred in Figure 6 and Table 2 are aligned to the
reference frame of IGS14.
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13 SCMX −7.8 39.9 5.0      
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Figure 6. Movement rate of the Sichuan regional reference stations in the (a) horizontal direction and
(b) vertical direction.

Table 2. Velocity of Sichuan reference station (Unit: mm/y).

Series Station N E U Series Station N E U

1 LUZH −9.2 33.7 −0.3 14 SCNC −9.7 32.1 0.6
2 SCBZ −8.9 31.9 1.3 15 SCNN −17.1 35.8 0.8
3 SCDF −11.8 41.2 2.1 16 SCPZ −18.3 34.2 0.3
4 SCGU −8.7 31.7 0.7 17 SCSM −11.8 36.3 0.6
5 SCGZ −10.3 45.4 1.6 18 SCSN −8.4 32.1 −0.3
6 SCJL −17.7 37.6 0.9 19 SCSP −10.9 37.6 0.6
7 SCJU −8.7 33.8 1.4 20 SCTQ −9.9 34.3 0.1
8 SCLH −11.5 43.1 0.5 21 SCXC −16.9 38.6 1.2
9 SCLT −14.9 40.9 −0.1 22 SCXD −14.0 36.5 0.1

10 SCMB −8.6 33.5 1.1 23 SCXJ −6.4 37.0 −1.5
11 SCML −19.4 46.3 −1.9 24 SCYX −13.1 36.2 −1.5
12 SCMN −16.5 37.3 0.2 25 SCYY −18.5 37.1 0.2
13 SCMX −7.8 39.9 5.0

The average velocity of reference stations in the north–south direction is 12.4 mm/y,
and 37.0 mm/y in the east–west direction. Among them, the change velocity in the north–
south direction at SCML station is 19.4 mm/y, and the change velocity in the east–west
direction is 46.3 mm/y, which are higher than the average motion velocity. The other
stations had similar horizontal velocities and more stable motion trends. The vertical
motion trend of the reference stations is dominated by uplift (accounting for 76% of the
total number of stations), mainly distributed in the central and northern parts. The average
vertical motion velocity is 0.6 mm/y, and the SCMX station has the most obvious vertical
uplift with a rate of 5.0 mm/y. Six stations in the central and southern part of the country
have a sinking trend in the vertical direction, among which the SCML has an obvious
sinking trend with a sinking rate of 1.9 mm/y.

Figure 7 shows the annual rate of change of each baseline in the triangular network
calculated using the Sichuan baseline time series. The bottom graph of Figure 7a–c shows
the interpolated velocity field of Sichuan using the Kriging interpolation method, which is
based on the velocities of 25 Sichuan reference stations in the N, E and U directions. The
bottom graph of Figure 7d shows the topographic heights of the Sichuan region interpolated
using the same method, which is based on the geodetic heights of 25 Sichuan CORS stations.
Table 3 shows the statistics of the annual rate of change of each component of the baseline.
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Figure 7. Distribution of annual change rate of Sichuan regional baseline in (a) N Component; (b) E
Component; (c) U Component; (d) L Component, respectively. The bolded baseline indicates that the
annual rate of change of the baseline is negative, showing a shortening trend; the unbolded baseline
has a positive annual rate of change, showing an extension trend.

Table 3. Statistics of annual change rate of Sichuan regional baseline (Unit: mm/y).

Series Baseline N E U L Series Baseline N E U L

1 LUZH_SCBZ 0.3 −0.4 1.6 0.1 33 SCMB_SCSM −3.1 2.8 −0.4 −3.7
2 LUZH_SCJU 0.5 −0.2 1.6 −0.2 34 SCMB_SCSN −0.1 −0.2 −1.5 −0.2
3 LUZH_SCMB 0.7 −0.4 1.1 0.3 35 SCMB_SCTQ −1.3 1.2 −1.0 −1.7
4 LUZH_SCNC −0.4 −0.5 0.9 −0.5 36 SCMB_SCXD −5.4 2.6 −0.9 0.3
5 LUZH_SCSN 0.7 −0.6 −0.3 0.7 37 SCMB_SCYX −4.5 2.5 −2.7 −1.5
6 SCBZ_SCGU 0.3 0.4 −1.0 −0.1 38 SCML_SCMN 2.7 −8.7 2.3 −6.5
7 SCBZ_SCNC −0.7 −0.2 −0.6 0.7 39 SCML_SCXC 2.7 −7.4 2.8 7.5
8 SCDF_SCJL −6.2 −4.1 −1.0 5.5 40 SCML_SCYY 1.5 −10.3 2.3 −5.4
9 SCDF_SCLH 0.3 2.5 −1.1 −1.5 41 SCMN_SCSM 4.7 −0.5 0.4 4.6

10 SCDF_SCLT −3.6 0.2 −0.2 2.7 42 SCMN_SCXD 2.5 −0.8 −0.1 −1.1
11 SCDF_SCSM −0.5 −5.0 0.3 −2.2 43 SCMN_SCYX 3.3 −0.9 −1.7 1.8
12 SCDF_SCTQ 1.4 −6.8 −0.1 −6.5 44 SCMN_SCYY −1.3 −1.2 0.0 1.7
13 SCDF_SCXJ 4.7 −3.5 −1.6 −3.3 45 SCMX_SCNC −2.1 −7.9 −3.9 −6.5
14 SCGU_SCMX 0.8 7.2 4.7 −7.0 46 SCMX_SCSN −0.9 −7.8 −5.3 −5.5
15 SCGU_SCNC −1.0 −0.4 0.1 1.0 47 SCMX_SCSP −3.1 −1.9 −4.4 −2.6
16 SCGU_SCSP −2.3 5.3 0.0 −5.6 48 SCMX_SCTQ −2.0 −6.5 −5.2 5.2
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Table 3. Cont.

Series Baseline N E U L Series Baseline N E U L

17 SCGZ_SCLH −1.2 −2.3 −1.1 −1.7 49 SCMX_SCXJ 1.4 −3.3 −6.7 2.3
18 SCGZ_SCLT −4.5 −5.2 −1.4 4.0 50 SCNC_SCSN 1.2 −0.1 −0.7 −1.0
19 SCGZ_SCSP −1.0 −6.8 −0.4 −6.7 51 SCNN_SCPZ −1.2 −1.9 −0.5 2.3
20 SCGZ_SCXC −6.6 −8.2 −0.6 7.1 52 SCNN_SCXD 3.1 1.0 −0.9 2.8
21 SCJL_SCLT 2.8 3.6 −0.9 −0.9 53 SCNN_SCYY −0.7 0.6 −0.9 −0.8
22 SCJL_SCML −1.7 8.2 −2.8 0.2 54 SCPZ_SCXC 1.6 5.0 0.7 −1.6
23 SCJL_SCMN 1.1 −0.5 −0.6 −1.1 55 SCPZ_SCYY 0.5 3.2 0.0 −0.2
24 SCJL_SCSM 5.8 −1.1 −0.2 0.6 56 SCSM_SCTQ 1.8 −1.6 −0.6 1.1
25 SCJL_SCXC 0.9 0.7 0.2 −0.7 57 SCSM_SCYX −1.4 −0.4 −2.1 1.2
26 SCJU_SCMB 0.1 −0.1 −0.5 0.2 58 SCSN_SCTQ −1.3 1.4 0.5 −1.2
27 SCJU_SCNN −8.3 1.2 −0.8 3.7 59 SCSP_SCXJ 4.6 −1.4 −1.9 −3.1
28 SCLH_SCLT −3.4 −2.9 −0.1 4.0 60 SCTQ_SCXJ 3.4 3.2 −1.6 2.1
29 SCLH_SCSP 0.3 −4.5 0.5 −3.9 61 SCXC_SCYY −1.3 −2.9 −0.5 −1.2
30 SCLH_SCXJ 4.9 −6.3 −1.4 −7.3 62 SCXD_SCYX 0.9 −0.1 −1.5 0.8
31 SCLT_SCXC −2.0 −2.9 0.9 2.8 63 SCXD_SCYY −3.7 −0.4 0.2 3.0
32 SCMB_SCNN −8.5 1.5 −0.4 7.3

The following results can be drawn from Figure 7 and Table 3:

• Analyzing the annual change rate of the north–south component of the baseline, the
baseline in the north–east direction is mainly shortened, with a mean annual change
rate of −2.7 mm/y, concentrated in the western and northern areas of Sichuan. The
bottom graph shows that the movement of the plates in the region is smoother in
the north–south direction. Some of the baselines in the north–west direction are in a
stretching state, with a mean annual rate of change of 2.0 mm/y, concentrated in the
south-central part of Sichuan. The more intense plate motions in the region may be
one of the reasons for the baseline stretching.

• The annual rate of change of the east–west component of the baseline is analyzed,
and a large number of baselines in the north–east direction are shortening year by
year, concentrated in the central and northern areas (68%), with a mean annual rate of
change of −3.0 mm/y. The bottom graph shows that the movement of the plates in
the region is smoother in the east–west direction, which may have caused the baseline
stretching. Some baselines in the north–west and north–east directions are mainly in a
stretching trend, with a mean annual rate of change of 2.7 mm/y.

• The annual rate of change of the vertical component of the baseline was analyzed and
68% of the baseline showed a shortening trend characteristic with a mean annual rate
of change of −1.4 mm/y. A small number of baselines were in a stretched state with a
mean annual rate of change of 1.1 mm/y. As can be seen from the bottom graph, the
shortened baselines are mainly concentrated in the subsidence area, indicating that
ground subsidence may cause baseline shortening in the Sichuan region.

• From the annual rate of change in the shortening trend baseline, the vertical component
is 1.3 mm/y and 1.6 mm/y lower than the north–south and east–west components,
respectively. From the annual rate of change in the stretching trend baseline, the
vertical component is 0.9 mm/y and 1.6 mm/y lower than the north–south and
east–west components, respectively, showing a more stable baseline in the vertical
direction.

• Analyzing the annual rate of change of baseline lengths, the baselines in the north–
west direction are mainly dominated by a shortening trend, with a mean annual rate
of change of −2.8 mm/y, showing that these baselines are shortened on a scale of
2.8 mm per year; some of the baselines in the north–east and north–west directions are
dominated by a stretching trend, with a mean annual rate of change of 2.6 mm/y, with
more obvious changes. From the bottom graph, it can be seen that the topography of
Sichuan gradually declines from northwestern to southeastern, and the baseline of
scale shortening is mainly concentrated in the region with relatively smooth topog-
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raphy, while the baseline of the region with larger drop is dominated by stretching,
which may provide some new ideas for the study of baseline change.

3.4. Analysis of Random Influence between Reference Stations and Model Construction

The random influence among the reference stations refers to the effect of the motion
trend of each reference station in the horizontal and vertical directions on the motion
trend of the baseline in the horizontal and vertical directions. The magnitude of the
random influence of the reference stations in adjacent areas is mainly determined by
finding the standard deviation of each direction of the residual sequence after excluding
the baseline CME.

The statistics of the random influence of each direction of the baseline is calculated.
The results show that average random influence of the baseline is larger in the north–south
and east–west components, 0.39 mm and 0.54 mm, respectively, and smaller in the vertical
component and the long component of the baseline, 0.02 mm and 0.22 mm, respectively. The
random influence between the reference stations is mainly distributed in the north–south
and east–west directions.

The random influence model treats the random influence as a random variable and fits
its covariance function. The covariance function is fitted to visualize the spatial distribution
characteristics of the random influence. The random influence of each directional compo-
nent of the baseline was fitted by baseline length statistics using four different functional
models (Figure 8).
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The Hirvonen function model fits poorly, especially in the L direction, and the Gaus-
sian, polynomial and exponential function models fit more closely to the random influence
values with smooth fitting curves. Table 4 demonstrates the fitted point errors. The poly-
nomial fit has the smallest error in fitting all baseline components, and the fitting effect
of each component is improved by 5%, 50%, 23.8% and 46%, respectively, compared with
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the exponential function fit. The improvement is most obvious in the E direction, and it
is better than the exponential function fit and the Hirvonen function fit. Therefore, us-
ing a polynomial function as a random influence covariance function fitting method can
effectively improve the fitting accuracy.

Table 4. Error statistics of fitting points (unit: mm).

Statistics Gauss Hirvonen Polynomial Exponential

N

MAX 3.58 3.14 2.03 2.17
MIN 0.28 0.27 0.57 0.10
AVE 1.78 1.52 1.22 1.20
RMS 2.08 1.76 1.34 1.41

E

MAX 4.21 3.14 1.47 3.09
MIN 0.24 0.65 0.16 0.37
AVE 2.12 1.72 0.66 1.33
RMS 2.42 1.95 0.83 1.66

U

MAX 0.44 0.51 0.25 0.38
MIN 0.01 0.08 0.04 0.04
AVE 0.16 0.26 0.13 0.17
RMS 0.25 0.30 0.16 0.21

L

MAX 3.98 10.85 2.12 4.03
MIN 0.14 0.88 0.68 0.02
AVE 1.53 5.02 1.38 2.40
RMS 2.07 6.10 1.49 2.76

4. Discussion

The spatiotemporal relative motion of the Sichuan regional reference station is influ-
enced by the external environment, geological factors and other non-tectonic signals. The
horizontal motion of the reference station is mainly concentrated in the southeast direction
and the motion trend in the vertical direction is mainly uplift. The baseline components
show mainly north–south compression and east–west stretching, which are consistent with
the direction of crustal deformation in the Sichuan region, suggesting that the collision
and wedging of the Indian plate with the Eurasian plate is still the main source of tectonic
motion in mainland China [28].

Differences in processing software and strategies, noise models or details of the sites
defining the reference system can affect the uncertainty of the velocity field [10]. The
most advanced version was not used in the solution strategy of this study, such as the
old one (IERS03) used for the solid tide correction model. ITRF2020 is the latest enhanced
terrestrial reference frame that applies motion constraints to the complete time series of
the four techniques with more reliable origin positions and accuracy over time [29]. We
used ITRF2014 from 2015 to 2021 instead of the latest ITRF2020, which may also have a
slight influence on the accuracy of the velocity field. Also, considering the complexity
of the topography in the Sichuan region, the GNSS time series of the stations in the
region inevitably contain a residual signal, which should be modeled deterministically or
stochastically for improving the accuracy of the GNSS time series [30]. In addition, the
lower time span (seven years) makes it possible for random noise to affect the amount of
vertical coordinate change, making it unreliable to describe and compare velocities at each
site in detail. Therefore, this study reflects the uplift in Sichuan region through the overall
change. Seasonal variations, load model errors and component shares of thermoelastic
variability in horizontal and vertical deformations have been explained [31]. If a cleaner
time series is desired, noise models need to be considered in addition to filtered CME [15].
In the future, the rationality of using the PCA method can also be investigated by comparing
the percentage of components with the corresponding seasonal variations and load model
errors [11,14].

In terms of modeling variance-covariance functions with random influence, the Gauss,
Hirvonen and exponential functions mentioned in Section 2.4 are positively definite, and
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thus the parameter k in the function model does not affect the model’s positive definiteness
to some degree. However, polynomial functions do not have positive definiteness, so it is
important to determine the acceptable range of variation of the parameter k. Therefore, we
focus on the acceptable range of variation of the parameter k in polynomial functions.

The function models fitted in the paper are generally predicated on small regional
scales, so baseline lengths of up to 300 km are generally chosen. Taking the N direction as
an example, the coefficients k1, k2 and k3 of the model of the function fitted by the cubic
polynomial are −8.6 × 10−4, −2.0 × 10−6 and 5.4 × 10−9, respectively. In order to maintain
the positive definiteness of the function model, three schemes are used to test the Sichuan
region, mainly discussing the range of values of the parameter k. Figure 9 shows the results
of the tests.

• Set k2 and k3 to the constants that have been calculated and adjust the value of k1;
• Set k1 and k3 to the constants that have been calculated and adjust the value of k2;
• Set k1 and k2 to the constants that have been calculated and adjust the value of k3.
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(a–c) only adjusts the values of k1, k2 and k3 respectively.

The following results can be drawn from Figure 9:

• Since k1, k2 and k3 are all variables, it is not possible to determine the range of values
of all three variables at the same time. Therefore, the control variable method is used
to analyze the effect of a particular variable on the positive definiteness of the function;

• In all three schemes, the polynomial fit value decreases as the value of the single
variable k decreases. In particular, at values of −1.70 × 10−3 for k1, −4.8 × 10−6 for
k2 and −4.0 × 10−9 for k3, the function fit value is close to zero. In order to maintain
the positive definiteness of the function, the single variable k may not be smaller than
the above values, respectively;
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• The polynomial function model does not have positive definiteness, so the k value
needs to be carefully chosen to fulfill the requirement. Meanwhile, the method for
calculating the range of k-values of the function model in the E, U and L components
is also similar to that of the N component, which will not be discussed here.

5. Conclusions

This study analyzes the time series of reference stations and baselines in the Sichuan
region by the LSP method. The CME is eliminated for the coordinate series and the velocity
field of the Sichuan region is constructed to investigate the spatiotemporal motion direction
of the regional frame. A covariance model of the random effects of the baseline components
is also constructed to characterize the random effects of the regional reference frame. The
Sichuan region is mainly characterized by annual cycles in all directions. The covariance
error reaches mm level between the reference station and the baseline, which is highly
significant in the vertical direction. The temporal motion of the Sichuan region is mainly
dominated by the southeast direction, with an overall uplift in the vertical direction. The
polynomial function is more suitable for constructing the fitted random effect covariance
model. In the future, exploring the causal mechanisms of nonlinear variations in coordinate
time series and their quantitative impact values can be helpful for the study of reference
frame’s intrinsic motion patterns and the relative motions between different plates.
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