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Abstract: Diabetic retinopathy is a prevalent eye disease that poses a potential risk of blindness.
Nevertheless, due to the small size of diabetic retinopathy lesions and the high interclass similarity
in terms of location, color, and shape among different lesions, the segmentation task is highly
challenging. To address these issues, we proposed a novel framework named nmODE-Unet, which is
based on the nmODE (neural memory Ordinary Differential Equation) block and U-net backbone. In
nmODE-Unet, the shallow features serve as input to the nmODE block, and the output of the nmODE
block is fused with the corresponding deep features. Extensive experiments were conducted on the
IDRiD dataset, e_ophtha dataset, and the LGG segmentation dataset, and the results demonstrate
that, in comparison to other competing models, nmODE-Unet showcases a superior performance.

Keywords: deep neural networks; deep learning; diabetic retinopathy; semantic segmentation

1. Introduction

Diabetic retinopathy (DR) is a common and potentially blinding eye disease and is
one of the leading causes of blindness in adults in developed countries. Early diagnosis
and treatment are crucial in preventing the progression of diabetic retinopathy. Many
healthcare institutions have successfully reduced the visual impairment caused by DR and
lowered its blindness rate through the promotion of early screening and timely medical
interventions [1,2]. However, the rapid increase in the number of DR patients still poses
new challenges to public health and healthcare systems.

The main lesions associated with DR include hard exudates (EXs), soft exudates (SEs),
hemorrhages (HEs), and microaneurysms (MAs). EXs are lipid deposits that remain after
the gradual absorption of extravasated plasma substances due to abnormal permeability
of the retinal capillary walls. Typically, EXs manifest as yellow-white or white spots or
patches with clear boundaries [3,4]. SEs are a result of occlusion and damage to retinal
microvessels, causing severe ischemia and hypoxia in the nourished tissue. Typically, SEs
manifest as faint yellow or off-white cotton-like patches with blurred edges [5–7]. HEs
are mainly located in the deep layers of the retina and can appear as dot-like or patch-like
formations, resulting from damaged small blood vessels. Typically, HEs manifest as red,
dark-red, or deep-colored spots or patches, varying in size and shape [8,9]. MAs are a
typical early sign of DR, characterized by localized dilations and bulges of the retinal small
blood vessel walls. Typically, MAs manifest as small red or orange circular or elliptical
structures, commonly distributed in the central area of the retina [10–13]. Based on the
above-mentioned features, it becomes evident that the color and shape of these lesions
in retinal images can easily lead to confusion. For instance, EXs and HEs share similar
colors, and HEs and MAs display close resemblances to each other in both color and
morphology. MAs, which appear on the vessel walls, also have a color resembling the
vessels themselves. Presently, the mainstream method for diagnosing DR still relies on
ophthalmologists manually examining fundus images of patients. However, due to the
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complexity and diversity of DR in retinal images, several issues arise when relying solely on
manual diagnosis by eye care professionals. Firstly, manual diagnosis is susceptible to the
influence of subjective judgments by doctors, and the diagnostic outcomes are constrained
by their experience and expertise. Secondly, manual diagnosis is prone to misdiagnosis and
oversights, particularly concerning subtle lesions that might be overlooked or misjudged.
Lastly, manual diagnosis struggles to keep up with the demands of large-scale image data
analysis and diagnostic requirements. Therefore, it is urgent and necessary to develop an
automated detection method that utilizes computer technology to assist ophthalmologists
with clinical diagnosis.

To address the challenging task of segmenting DR in fundus images and to develop
an accurate segmentation method, we proposed a model named nmODE-Unet, which is
based on nmODE and U-net backbone. The contributions were summarized as follows:

(1) We proposed an nmODE to address the difficulty of segmenting DR lesions in fundus
images. The nmODE has a unique global attractor, which exhibits strong resistance to
noise, facilitating the extraction of lesion features.

(2) We have constructed a new segmentation framework named nmODE-Unet. Experimen-
tal results on two different datasets demonstrate that nmODE-Unet exhibits an excellent
performance in DR lesion segmentation tasks and displays strong robustness.

2. Related Works
2.1. Deep Neural Networks in DR Lesion Segmentations

In the past decade, some studies focusing on the recognition of lesions in DR fundus
images have shown promising results.

Xue et al. [14] proposed a CNN architecture called “Deep Membrane Systems”, which
incorporates an encoder and a decoder. This system utilizes FPN [15] and ResNet101 [16]
as the backbone for Mask R-CNN [17], and employs two distinct branches for detection
and segmentation. It combines both semantic segmentation and edge detection tasks.
“Deep Membrane Systems” combine the advantages of multiple network structures and
can effectively identify lesions of various sizes and shapes in DR fundus images. Experi-
mental results from three challenging DR image datasets have demonstrated the excellent
performance and robustness of this method. Guo et al. [18] proposed L-Seg, which utilizes
a multi-scale feature fusion approach. L-Seg employs VGG16 [19] for feature learning. In
L-Seg, a side feature extraction module is connected after each group of convolution layers,
and feature maps are combined through weighted fusion. Otherwise, they proposed an
improved multi-channel loss function to address the imbalance between the background
and lesions in DR fundus images. The experiments on three public datasets have demon-
strated the effectiveness of L-Seg combined with the improved multi-channel loss in DR
segmentation tasks. Liu et al. [20] proposed a feature reassembly method named M2MRF.
M2MRF effectively mitigates the potential loss of information about small lesions during
the downsampling process. They replaced the bilinear interpolation and repeated stride
convolution layers in HRnetV2 [21] with M2MRF to create a variant of HRNetV2. Experi-
mental results demonstrate that the HRnetV2 variant utilizing M2MRF exhibits superior
performance and generalization capabilities. The experiments on three public datasets have
demonstrated the effectiveness of L-Seg combined with the improved multi-channel loss in
DR segmentation tasks.

While CNN-based methods have made significant advancements in image segmenta-
tion, the task of segmenting DR lesions in fundus images still remains challenging.

2.2. Neural Ordinary Differential Equation

In 2018, Chen et al. [22] introduced the concept of the Neural Ordinary Differential
Equation (neuralODE), treating neural networks as approximations of ODEs and enabling
continuous modeling of neural network. Since then, research on neuralODE has been
consistently expanding. Poli et al. [23] introduced an innovative approach that combines
Graph Neural Networks (GNNs) with ODEs, enabling the modeling of dynamic evolution
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in graph data within continuous time. By incorporating ODEs into graph data modeling,
Graph Neural ODEs provide a more flexible and powerful modeling tool for adapting
to the dynamic nature of graph data. It offers a completely new approach to handling
dynamic graph data. Li et al. [24] introduced an innovative approach that is based on dis-
cretization techniques within stochastic differential equations (SDEs) and employs gradient
estimation to enhance computational efficiency. This method significantly improves the
gradient computation efficiency of SDEs, thereby accelerating their application in machine
learning and other fields. Yi [25] proposed a novel neuralODE model named nmODE.
Regardless of external input, nmODE possesses a unique global attractor, thus embedding
a memory mechanism within it. nmODE demonstrates universality in image classification
or segmentation tasks, laying the foundation for practical applications of neuralODE.

In this paper, we proposed a network structure named nmODE-Unet for the segmen-
tation of DR lesions in fundus images.

3. Methodology
3.1. nmODE

For a single-layer neural network, it is sufficient to multiply its input by the weight and
add the bias term to obtain the neuron’s output. It is typically expressed in the following
functional form:

y = f [Wx + b]. (1)

In general, such a single-layer neural network can only address linearly separable
problems, and it is unable to capture nonlinear relationships, making it unsuitable for
handling complex data patterns or tasks. In general, the computational capacity of neural
networks tends to increase with the improvement of their nonlinearity. The nonlinearity of
Equation (1) can be enhanced by constructing an implicit mapping equation, which takes
the following form:

y = f [y + Wx + b]. (2)

Yi [25] has already demonstrated that using sin2(·) as the activation function in a
single-layer neural network effectively enhances the network’s expressive power, and
addressing nonlinear problems such as the XOR problem. When employing sin2(·) as the
activation function in Equation (2), the following expression is obtained:

y = sin2[y + Wx + b]. (3)

Yi [25] has already demonstrated that Equation (3) has one and only one global attrac-
tor. Let ẏ = 0, Equation (3) can be transformed into an ODE, referred to as the “nmODE”,
which we incorporate as a block in the neural network. Its expression is as follows:

ẏ = −y + sin2[y + Wx + b]. (4)

Clearly, the nmODE exhibits a unique global attractor, a property intimately associ-
ated with memory within dynamic systems. Throughout the training process, the nmODE
effectively decouples the initial values and external inputs, where x represents the external
input, and the initial value y(0) is set to 0. This separation of initial values and external
inputs endows the neural network with two distinct types of neurons: learning neurons
and memory neurons. The primary function of learning neurons is to acquire learnable
parameters, while memory neurons obtain features through ODEs. Any neuron represent-
ing the network’s state at any time t, referred to as y(t), is recognized as a memory neuron.
Figure 1 provides an intuitive illustration of the nmODE.
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Figure 1. Intuitive diagram of the nmODE.

3.2. Network Architecture

As is widely known, U-Net [26] has demonstrated an outstanding performance in
medical image segmentation. It is commonly utilized as a benchmark test model for
semantic segmentation tasks.

We proposed a network architecture named nmODE-Unet for segmenting DR lesions,
as shown in Figure 2. Within this proposed network architecture, we have made minor
modifications to the U-Net. Specifically, we inserted an nmODE block into each skip
connection of the U-Net backbone. The shallow-level features serve as inputs to the
nmODE blocks, and the outputs of the nmODE blocks replace the shallow-level features,
engaging in feature fusion with corresponding deep-level features.

Figure 2. The architecture of the network.

4. Experiments and Results
4.1. Dataset

The experiments were conducted using the IDRiD dataset [27], the e-ophtha dataset [28],
and the LGG segmentation dataset [29,30], all of which contain ground truth annotations by
medical professionals. In the IDRiD dataset, 81 fundus images were meticulously annotated at
the pixel level. Following the data split outlined in the IDRiD competition, we used 54 images
for training and 27 images for validation. The e-ophtha dataset comprises two types of lesions:
EX and MA, with 47 images of EX lesions and 148 images of MA lesions. We utilized 31 images
of EX lesions and 98 images of MA lesions for training, and 16 images of EX lesions and
50 images of MA lesions for validation. The LGG segmentation dataset includes 1319 brain
MRI images. Out of these, 1000 images were used for training, and the remaining 319 images
were used for testing.

To mitigate the risk of overfitting caused by the small dataset size, we employed
diverse data augmentation techniques. In practice, we applied horizontal flips, vertical
flips, and rotations of 90◦, 180◦, and 270◦to augment the data. Furthermore, to reduce
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computational overhead, all images were resized to a standardized size of 448 × 448, which
served as the input to the network.

4.2. Experimental Setup

This method was implemented using PyTorch 1.3.0 on an NVIDIA Tesla k40m GPU. In
the experiments, all models were trained using the Adam optimizer for 2 × 103 iterations,
with an initial learning rate of 10−3. The Dice loss was used as the loss function. Each
fundus image was resized to 448 × 448 × 3 and was used as input for the models. Various
evaluation metrics were calculated, including the Dice, IoU, ROC-AUC, and AUPR.

4.3. Results
4.3.1. Comparison with Baseline Models

We conducted experiments on several high-performing segmentation models, includ-
ing FCN [31], DeepLab v3+ [32], U-net [26], and Unet++ [33], and used the results of these
models as baselines.

The dice score, IoU score, ROC-AUC score, and AUPR score of nmODE-Unet and
the baseline models on the IDRiD dataset are summarized in Tables 1 and 2. The ROC
curves and the PR curves are shown in Figures 3 and 4, respectively. In addition, the binary
segmentation images on the IDRiD dataset are visualized in Figure 5.

As observed from Tables 1 and 2 and Figure 5, FCN excels in recognizing EX and SE
lesions, but its segmentation results for HEs and MAs are not satisfactory. DeepLab v3+
excels in recognizing EXs and SEs, but performs poorly in its segmentation results for MAs.
Unet++ demonstrates a strong overall performance in recognizing SE, HE, and MA lesions.
Unet performs well in recognizing EX and HE lesions, but its performance in recognizing
SE is notably much lower compared to other baseline models. Overall, the baseline models
are effective in identifying larger lesions, but encounter difficulties in segmenting very
small lesions like MAs.

Compared to the baseline models, the nmODE-Unet not only performs remarkably in
identifying larger lesions, but also significantly improves the segmentation performance
for smaller lesions like MAs. In terms of evaluation metrics, nmODE-Unet achieved higher
dice scores by 7.45%, 11.20%, 1.41%, and 1.75%, higher IoU scores by 5.79%, 3.95%, 2.33%,
and 1.52%, and higher AUPR scores by 6.67%, 6.02%, 5.23%, and 8.10% in the segmentation
of EXs, SEs, HEs, and MAs, respectively, when compared to the second-place model.
Regarding ROC-AUC scores, it obtained higher scores by 1.51%, 0.06%, and 4.47% in
the segmentation of EXs, SEs, and MAs, respectively. Although the ROC-AUC score of
the U-net model in HE segmentation is higher than that of nmODE-Unet by 0.55%, it is
evident that its performance is notably insufficient in comparison to nmODE-Unet across
other indicators.

Table 1. The segmentation results on the IDRiD dataset: Dice and IoU.

Model
Dice IoU

EX SE HE MA mDice EX SE HE MA mIoU

FCN [31] 0.6304 0.5835 0.4952 0.3805 0.5224 0.5055 0.4623 0.3522 0.2379 0.3898
DeepLab v3+ [32] 0.6741 0.5709 0.5394 0.4155 0.5500 0.5845 0.4977 0.3882 0.2813 0.4379
U-net [26] 0.6770 0.4645 0.5620 0.4376 0.5353 0.5654 0.3696 0.4205 0.2845 0.4100
Unet++ [33] 0.6552 0.5861 0.5896 0.5087 0.5849 0.5520 0.4624 0.4240 0.3465 0.4462
nmODE-Unet 0.7515 0.6981 0.6037 0.5262 0.6449 0.6424 0.5372 0.4473 0.3617 0.4972

Table 2. The segmentation results on the IDRiD dataset: ROC-AUC and AUPR.

Model
ROC-AUC AUPR

EX SE HE MA mROC-AUC EX SE HE MA mAUPR

FCN [31] 0.8954 0.9584 0.8150 0.7571 0.8561 0.6624 0.6658 0.4885 0.3255 0.5356
DeepLab v3+ [32] 0.9415 0.9030 0.8724 0.8291 0.8865 0.7694 0.6779 0.5417 0.3200 0.5773
U-net [26] 0.9374 0.8005 0.8964 0.8948 0.8823 0.7620 0.4350 0.5739 0.3803 0.5334
Unet++ [33] 0.9473 0.9089 0.8638 0.8506 0.8927 0.7610 0.6103 0.5670 0.4367 0.5938
nmODE-Unet 0.9624 0.9590 0.8909 0.9395 0.9380 0.8361 0.7381 0.6262 0.5177 0.6795
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(a) (b)

(c) (d)

Figure 3. (a–d): The ROC curves for EXs, SEs, HEs, and MAs on the IDRiD dataset.

(a) (b)

(c) (d)

Figure 4. (a–d): The PR curves for EXs, SEs, HEs, and MAs on the IDRiD dataset.



Appl. Sci. 2024, 14, 411 7 of 12

EX SE HE MA

Fu
nd

us
im

ag
e

G
T

nm
O

D
E-

U
ne

t
U

ne
t+

+
U

-n
et

D
ee

pL
ab

FC
N

Figure 5. The binary segmentation results of four kinds of lesions. The first row shows the color
fundus images, the second row shows the ground truth. The text on the left side from the third to the
seventh row indicates the models used, and the corresponding segmentation results of each model
are shown on the right side.

From Figure 5, it can be observed that, for the segmentation of EXs, the lesions within
the red box in the ground truth have a large area and appear as blocks. The baseline model
exhibits poor segmentation in this area, identifying lesions as dots and showing a higher
rate of false negatives. For the segmentation of HEs, the lesions within the green box in
the ground truth consist of only three patches. However, all models segment more lesions
in this area, indicating a noticeable presence of false positives. Overall, the segmentation
performance of nmODE-Unet is significantly superior to that of the baseline model.

We also conducted experiments on the e-ophtha dataset. The Dice score, IoU score,
ROC-AUC score, and AUPR score of nmODE-Unet and the baseline models on the e-ophtha
dataset are summarized in Tables 3 and 4. The ROC curves and the PR curves on the e-
ophtha dataset are shown in Figures 6 and 7, respectively. From Tables 3 and 4, as well as
Figures 6 and 7, it can be observed that nmODE-Unet outperforms the baseline models in
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all evaluation metrics. Furthermore, when comparing the segmentation results with those
from the IDRiD dataset, it becomes evident that all methods show a significant decrease in
segmentation performance on the e-ophtha dataset. However, the extent of the decline in
segmentation results for nmODE-Unet is notably lower than that of the baseline models,
particularly in the case of MA lesions. The baseline models exhibited reductions in Dice
score and AUPR score ranging from 0.1225 to 0.2573 and from 0.1823 to 0.2934, respectively,
while nmODE-Unet demonstrated decreases of 0.0930 and 0.1282, respectively.

Table 3. The segmentation results on the e-ophtha dataset: Dice and IoU.

Model
Dice IoU

EX MA mDice EX MA mIoU

FCN [31] 0.3841 0.2580 0.3211 0.2451 0.1480 0.1930
DeepLab v3+ [32] 0.5402 0.2033 0.3718 0.3633 0.1148 0.2391
U-net [26] 0.5157 0.2062 0.3610 0.3412 0.1182 0.2438
Unet++ [33] 0.5626 0.2514 0.4070 0.3764 0.1464 0.2614
nmODE-Unet 0.6659 0.4332 0.5496 0.5064 0.2774 0.3919

Table 4. The segmentation results on the e-ophtha dataset: ROC-AUC and AUPR.

Model
ROC-AUC AUPR

EX MA mROC-AUC EX MA mAUPR

FCN [31] 0.8648 0.5772 0.7120 0.4382 0.1137 0.2760
DeepLab v3+ [32] 0.7321 0.7383 0.7352 0.4963 0.1399 0.3181
U-net [26] 0.8163 0.8710 0.8437 0.4909 0.1246 0.3078
Unet++ [33] 0.8402 0.8205 0.8304 0.5021 0.1433 0.3227
nmODE-Unet 0.9251 0.9153 0.9202 0.7121 0.3895 0.5508

(a) (b)

Figure 6. (a,b): The ROC curves for EXs and MAs on the e-ophtha dataset.

(a) (b)

Figure 7. (a,b): The PR curves for EXs and MAs on the e-ophtha dataset.

To assess the versatility and robustness of nmODE-Unet, experiments were conducted
using the LGG segmentation dataset. The results on the LGG segmentation dataset are
summarized in Table 5. From Table 5, it can be observed that nmODE-Unet outperforms
the baseline models. In terms of evaluation metrics, nmODE-Unet outperformed the
second-place model with higher Dice scores, IoU scores, ROC-AUC scores, and AUPR
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scores by 1.18%, 2.56%, 0.49%, and 2.37%, respectively. Clearly, nmODE-Unet is applicable
to different types of medical images and demonstrates excellent robustness.

Table 5. The segmentation results on the LGG segmentation dataset.

Model Dice IoU ROC-AUC AUPR

FCN [31] 0.7591 0.6066 0.8536 0.6977
DeepLab v3+ [32] 0.8228 0.7005 0.9534 0.8615
U-net [26] 0.8057 0.6748 0.8988 0.8024
Unet++ [33] 0.8352 0.7185 0.9188 0.8028
nmODE-Unet 0.8470 0.7441 0.9583 0.8825

4.3.2. Comparison with IDRiD Challenge Teams

The comparison of AUPR scores between nmODE-Unet and the top ten teams in
the IDRiD competition is shown in Table 6. It can be observed that there is a significant
variation in the results among these competing teams. The second-ranked team, PATech,
did not complete the SE segmentation task, but they achieved the highest score in EX
segmentation and demonstrated an excellent performance in HE and MA segmentation.
Compared to these competing teams, nmODE-Unet ranks No. 4 in EX segmentation, No. 1
in SE segmentation, No. 3 in HE segmentation, No. 1 in MA segmentation, and achieves
the highest average AUPR score among the four kinds of lesions. Clearly, nmODE-Unet
exhibits significant competitiveness when compared to these competing teams.

Table 6. Comparison with top ten teams in IDRiD challenge.

Team EX SE HE MA mAUPR

VRT (1st) 0.7127 0.6995 0.6804 0.4951 0.6469
PATech (2nd) 0.8850 - 0.6490 0.4740 -

iFLYTEK-MIG (3rd) 0.8471 0.6588 0.5588 0.5017 0.6484
SOONER (4th) 0.7390 0.5396 0.5395 0.4003 0.5539
SAIHST (5th) 0.8582 - - - -

lzyuncc_fusion (6th) 0.8202 0.6259 - - -

SDNU (7th) 0.5018 0.5374 0.4572 0.4111 0.4769
CIL (8th) 0.7554 0.5024 0.4886 0.3920 0.5346
MedLabs (9th) 0.7863 0.2637 0.3705 0.3397 0.4401
AIMIA (10th) 0.7662 0.2733 0.3283 0.4627 0.4367
nmODE-Unet 0.8361 0.7381 0.6262 0.5177 0.6795

4.3.3. Comparison with State-of-the-Art Segmentation Methods

Using AUPR as the evaluation metric, the comparison of the performance for four
kinds of lesions between nmODE-Unet and state-of-the-art methods is shown in Table 6.

Through a detailed analysis of the data in Table 7, we can obtain the following results:
(1) compared to [18], the AUPR score of nmODE-Unet is 8.66%, 2.68%, and 5.50% higher in
the segmentation of EXs, SEs, and MAs, respectively, but 1.12% lower in HE segmentation;
(2) compared to [20], the AUPR score of nmODE-Unet is 1.45%, 4.49%, and 2.97% higher in
the segmentation of EXs, SEs, and MAs, respectively, but 6.07% lower in HE segmentation;
(3) compared to [34], the AUPR score of nmODE-Unet is 4.51% and 4.42% lower in the
segmentation of EXs and HEs, but 1.00% and 10.25% higher in the segmentation of SEs and
MAs, respectively; (4) compared to [35], the AUPR score of nmODE-Unet is 3.14% and 1.27%
lower in the segmentation of EXs and HEs, but 2.56% and 0.29% higher in the segmentation
of SEs and MAs, respectively; (5) the method in [20] achieved the highest value in HE
segmentation, the method in [34] achieved the highest value in EX segmentation, the
method in [35] achieved the highest value in mAUPR, and nmODE-Unet achieved the
highest value in SE and MA segmentation, respectively.
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Table 7. Comparison with other state-of-the-art methods.

Model EX SE HE MA mAUPR

L-seg [18] 0.7495 0.7113 0.6374 0.4627 0.6515
M2MRF [20] 0.8216 0.6932 0.6869 0.4880 0.6724
SAA [34] 0.8812 0.7281 0.6704 0.4152 0.6738
CARNet [35] 0.8675 0.7125 0.6389 0.5148 0.6834
nmODE-Unet 0.8361 0.7381 0.6262 0.5177 0.6795

4.4. Discussion

Due to the small size of DR lesions and the high interclass similarity in terms of
location, color, and shape among different lesions, the segmentation task is highly chal-
lenging. To further enhance the accuracy of DR lesion segmentation, we proposed a novel
framework, nmODE-Unet, and conducted comparative experiments with commonly used
image segmentation networks and other state-of-the-art methods. The experimental results
indicate that our approach is competitive. Particularly, the segmentation of SE and MA
lesions on the IDRiD dataset has achieved the highest values we are aware of.

Due to the poor image quality and noise interference in the e-ophtha dataset, all
methods experienced a significant decrease in segmentation accuracy, particularly in the
case of MA lesions. MA lesions are extremely small in size, share similarities with retinal
blood vessels, and are susceptible to information loss during the downsampling process,
exacerbated by noise, leading to mis-segmentation issues. However, while our method
also exhibited reduced accuracy, it remained significantly superior to other approaches. As
evident from Tables 3 and 4, the segmentation performance of nmODE-Unet surpasses that
of other methods by a wide margin, primarily because nmODE possesses a unique global
attractor. The presence of this global attractor enhances the network’s resistance to noise.

We have measured the FLOPs, parameters, memory usage, and inference time for
nmODE-Unet and the baseline model. The results are presented in Table 8. Unet++
and DeepLab v3+ exhibited the highest computational complexity. Unet++ recorded
the highest FLOPs, while DeepLab v3+ had the highest parameter count and memory
usage. In comparison to the U-Net backbone, nmODE-Unet does not increase FLOPs
and parameters. However, both inference time and memory usage are increased due
to the iterative process required by the nmODE block for solving ordinary differential
equations. Despite the absence of increased FLOPs and parameters, nmODE-Unet exhibits
an improved segmentation performance. Nonetheless, the drawback lies in the longer
inference time, indicating the need for further improvement in this regard.

Table 8. Computational efficiency and resource requirements.

Model FLOPs (G) Parameters (M) (s)/Batch Memory (M)

FCN [31] 156.18 18.64 0.01 298.07
DeepLab v3+ [32] 136.21 59.34 0.05 953.50
U-net [26] 181.35 19.20 0.01 304.74
Unet++ [33] 213.78 9.16 0.02 153.98
nmODE-Unet 181.35 19.20 1.13 485.96

5. Conclusions

In this paper, we proposed a novel framework named nmODE-Unet, which is based
on the nmODE block and U-net backbone for the segmentation of DR lesions. The perfor-
mance of nmODE-Unet was evaluated on the IDRiD dataset, the e-ophtha dataset, and
the LGG segmentation dataset. nmODE-Unet exhibited a superior performance over the
baseline model across all datasets. On the IDRiD dataset, nmODE-Unet demonstrated a
competitive performance compared to state-of-the-art methods and the top ten teams in
the IDRiD challenge.

While the nmODE block has demonstrated an excellent performance, its adaptability
to a wider range of medical image types remains to be verified. MedSAM [36] exhibits a
robust performance across a diverse array of datasets, proving that a single foundation
model can handle various segmentation tasks, eliminating the need for task-specific models.
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Integrating the nmODE block into more deep learning networks to build foundation models,
similar to MedSAM and capable of handling diverse segmentation tasks, is a topic worthy
of further research.

Our research goal is to apply nmODE-Unet to clinical diagnosis; we believe that, by
training nmODE-Unet with a more diverse set of medical images representing various
types, it has tremendous potential to become a valuable tool for clinical diagnostics.
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