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Abstract: Overtaking on a dual-lane road with the presence of oncoming vehicles poses a consid-
erable challenge in the field of autonomous driving. With the assistance of high-definition maps,
autonomous vehicles can plan a relatively safe trajectory for executing overtaking maneuvers. How-
ever, the creation of high-definition maps requires extensive preparation, and in rural areas where
dual two-lane roads are common, there is little pre-mapping to provide high-definition maps. This
paper proposes an end-to-end model called OG-Net (Overtaking Guide Net), which accomplishes
overtaking tasks without map generation or communication with other vehicles. OG-Net initially
evaluates the likelihood of a successful overtaking maneuver before executing the necessary actions.
It incorporates the derived probability value with a set of simple parameters and utilizes a Gaussian
differential controller to determine the subsequent vehicle movements. The Gaussian differential
controller effectively adapts a fixed geometric curve to various driving scenarios. Unlike conven-
tional autonomous driving models, this approach employs uncomplicated parameters rather than
RNN-series networks to integrate contextual information for overtaking guidance. Furthermore, this
research curated a new end-to-end overtaking dataset, CarlaLanePass, comprising first-view image
sequences, overtaking success rates, and real-time vehicle status during the overtaking process. Ex-
tensive experiments conducted on diverse road scenes using the Carla platform support the validity
of our model in achieving successful overtaking maneuvers.

Keywords: overtaking; dual-lane; automatic drive; feasible probability

1. Introduction

In recent years, with the continuous advancements in hardware, the field of au-
tonomous driving has experienced remarkable growth in both research and practical appli-
cations. Overtaking is a pervasive behavior observed during driving, typically occurring
when a preceding vehicle is traveling at a slow pace. However, assessing the environment
to successfully execute overtaking maneuvers, particularly in situations where two lanes
face each other and oncoming vehicles are present, has received scarce research attention.

Modular autonomous driving systems utilize environmental information generated by
perception and prediction modules to obtain a safe overtaking trajectory through numerical
optimization, curve fitting, reinforcement learning, and other techniques [1–3]. During
the overtaking process, the overtaking route may resemble a classic function curve like a
sigmoid or tangent function. Huang et al. [4] proposed using a simulated sigmoid curve for
overtaking path planning. The Baidu Apollo team introduced the EMPlanner algorithm [2],
a planning method primarily designed for obstacle avoidance in urban driving scenarios.
However, EMPlanner typically does not make autonomous overtaking decisions and is
better suited for dealing with stationary obstacles or extremely slow-moving objects. The
Qingzhou team has developed a spatio-temporal coordinated planning algorithm [1,5]
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that can be used for overtaking in scenarios where there is a leading vehicle in the same
lane or oncoming vehicles in a dual-lane environment. This method projects the predicted
trajectories of surrounding vehicles or obstacles at time t onto a spatio-temporal coordinate
system, allowing for the planning of the most suitable vehicle trajectory within feasible
spatio-temporal regions. In the highway-env simulation platform, Brito et al. [6] and
Chen et al. [7] successfully employed reinforcement learning to achieve overtaking and
lane changing with relatively stable outcomes. Ghimire et al. [8] and Yuan et al. [9] utilized
the DQN [10] algorithm to train their model policies and optimize the selection of the best
driving strategies using teacher–student networks.

In addition to trajectory research, significant attention has been devoted to studying
the driver’s overtaking intentions. Rasch et al. [11] and Liu et al. [12] employed statistical
approaches and designed Bayesian networks to classify overtaking intentions based on the
self-information of the overtaking vehicle. Eysenbach et al. [13] established upper-bound
expectations on a Markov chain and adjusted the driving behavior of vehicles to choose
between conservative and aggressive overtaking methods. Furthermore, Mo et al. [14] and
Hegde et al. [15] achieved overtaking through information sharing via vehicular networks.
However, these studies heavily relied on high-precision maps, connected vehicles, and
complex autonomous driving systems.

In contrast, end-to-end methods typically do not depend on high-resolution maps [16]. At
least two of the following three components are required as inputs to directly output ideal
trajectory or control signals: radar signals, image data, and information about the vehicle
itself. Rhinehart et al. [17] proposed “Imitative Models” to combine the benefits of IL and
goal-directed planning. Imitative Models are probabilistic predictive models of desirable
behavior that are able to plan interpretable expert-like trajectories to achieve specified
goals. Han et al. [18] embedded spatial and temporal attention mechanisms based on
ConvLSTM and SE-Net modules into appropriate layers to focus on key visual information
and long-term and short-term memory in visual sequences in order to predict the steering
angle of the ego vehicle. This contributed to subsequent research on the mapping of
raw inputs and control signals. Chen et al. [19] proposed the Openpilot model, capable
of achieving L2-level autonomous driving functions. Perumal et al. [20] proposed an
innovative uncertainty-aware framework for end-to-end control, utilizing the probabilistic
control barrier function (CBF) to enforce safety constraints. They experimented on a small
race car and achieved better cornering performance. The TCP model [21] developed by
the Shanghai Artificial Intelligence Lab utilizes only first-person view images and vehicle
information as inputs. It can guide vehicle control using generated trajectories and achieved
first place in the 2022 Carla leaderboard. Currently, these end-to-end models are capable of
achieving Level 2 and Level 3 autonomous driving functions. Some research has employed
end-to-end models to generate data required for overtaking, such as trajectory prediction.
Perumal et al. [22] developed IOAS, which provides overtaking suggestions to drivers. This
system predicts the speed of the leading vehicle by combining VNet and TTC-Net networks,
ensuring high accuracy. Similarly, Mandal et al. [23] utilized the tail lights of the leading
vehicle and the headlights of oncoming vehicles to determine the speed information of
relevant vehicles in night-time environments, providing overtaking recommendations.

Nevertheless, the majority of studies in the field concentrate on conservative driving
tasks [21]. These models are trained based on correct control signals or planned trajectories
as labels, but the data generated by traffic accidents is actually equally important. Including
these data in model training can help improve the ability of self-driving cars to avoid dangers.
Currently, there is no denying that the end-to-end model is capable of executing simple driving
tasks on certain simulation platforms. However, its ability to handle more complex and risky
maneuvers, such as overtaking on dual-lane roads, is still a thought-provoking issue.

Thus, an effective end-to-end model for overtaking on roads should have the capacity
to perform overtaking maneuvers when safe and quickly return to the main lane when
potential hazards are detected. In light of these considerations, this paper presents a model
capable of estimating the probability of safe overtaking in real time using the information
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readily available from the vehicle (e.g., image, speed, and steering wheel angle). By utilizing
this probability to make an overtaking decision, an overtaking control scheme is generated.
In accomplishing this, our contributions are as follows:

• This paper proposes an innovative method to address the relatively perilous challenge
of overtaking in autonomous driving, substantiating the viability of the end-to-end
approach in tackling this task.

• This paper abandons the traditional tracking control method, and we design a control
planner that can drive an overtaking curve with fixed lateral displacement at different
speeds using geometric curves.

• This study established a dataset for dual-lane overtaking scenarios called
CarlaLanePass, encompassing both successful and unsuccessful overtaking situa-
tions. CarlaLanePass offers a distinctive perspective that contributes to the realm of
autonomous driving research.

2. Overtaking Guide Net

Our model aims to enable overtaking using a vision module and a set of simple and
readily available parameters. The framework comprises an OFP (Overtake Feasibility Pre-
dictor) and a GDCP (Gaussian Differential Control Planner), as shown in Figure 1. Initially,
we utilize the Gaussian differential controller to generate a dataset called CarlaLanePass,
which includes the probability of safe overtaking in the current situation on the Carla
platform. Subsequently, we train our OFP on this dataset. Finally, based on the feasible
probability generated by this network and other information, our model inputs these values
to the GDCP. The controller can generate the vehicle’s control signal for the next moment,
thus accomplishing the overtaking maneuver or returning to the original lane.

Figure 1. OG−Net. The input image is processed through the network, which outputs the safety
probability of continuing the overtaking maneuver under the current state. The output proba-
bility is combined with the vehicle state information and inputted into the GDCP for the next
control operation.
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2.1. Gaussian Differential Control Planner

This paper adopts the primitive function of the Gaussian distribution as the trajectory
for overtaking by an AV. It takes the form of a smooth S-shaped curve, as shown in the
first part of Figure 2. The first derivative of this function represents the angle between
the vehicle’s body and the road in the vertical direction at the current moment, while
the second derivative precisely corresponds to the steering wheel angle at the vehicle’s
position. The aim of this study was to design a GDCP that can generate corresponding
control signals by incorporating the current safety probability, ultimately achieving lane-
changing overtaking. The overall model flow is illustrated in Figure 1. This paper proposes
the overtaking phase parameter op, combined with the vehicle speed v, to replace the
coordinate information input in the control planning function. When the vehicle’s speed
changes, it leads to variations in the longitudinal displacement of the vehicle. To address
this, a velocity adaptation coefficient α and a reference speed v0 are introduced, as shown
in Equation (1). The overtaking trajectory, vehicle heading angle, and steering wheel angle
at v0 = 20 m/s are depicted in Figure 2.

Figure 2. Vehicle overtaking trajectory, heading angle, and steering wheel angle. During the entire
overtaking phase, the size of the blue shaded area is the degree to which the vehicle changes its
orientation every time the steering wheel controls the vehicle. The black pattern in the lower right
corner of the image is the logo of the steering wheel.

As the vehicle speed increases, a higher value of α results in the reduced curvature of
the overtaking curve. The smoothing parameter σs of the overtaking trajectory function
increases, and the stretching factor σs is defined as shown in Equation (1).

σs = ασs0 =
v
v0

σs0 (1)

where σs0 is the smoothing parameter that can complete overtaking when v = v0. Since
the variation range of x is different when the vehicle speed is different, this paper defines
a range[−εα, εα], and the AV only performs overtaking operations within this range, as
shown in Equations (2) and (3).

t′ = −εα +
2εα

op
t, t ∈ [0, op] (2)

S(−εα) < ξ (3)
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where ξ is a hyperparameter, which is a number close to 0. If ξ is too large, it could
result in the vehicle not making smooth turns at the beginning and end of the overtaking
maneuver, and it could also amplify the yaw angle error caused by differential operations.
On the other hand, if ξ is too small, it might lead to a delay in transitioning to the opposite
lane after receiving the overtaking signal, potentially causing a missed opportunity for
optimal overtaking. When t is equal to op, the vehicle has occupied the opposite lane
and complete the lane change. ε is a hyperparameter that is utilized to control the range
of lateral displacement in the transition lane. After putting Equation (2) into S(x) and
calculating its second-order derivative, the output value theta is the rotation angle s of the
steering wheel at this moment, as shown in Equation (4).

θ(t′) =
t′

kσ3
s

e
−t′2
2σ2

s (4)

where k is a fixed value that can affect the maximum lateral displacement of the vehicle
during overtaking and is determined through repeated experiments. Once the vehicle
completes the maneuver of overtaking the target vehicle in the opposite lane, the system
reverses the past direction control sequence to return to the main lane. When the output
probability is low, our system gradually reduces the vehicle’s speed. Due to the symmetry
of the overtaking trajectory, the AV can restore the heading angle by performing the inverse
operation of the recently executed direction control sequence. By performing the reverse
direction control operation again, the vehicle can return to the main lane and await the next
overtaking opportunity.

2.2. Overtake Feasibility Predictor

The OFP utilized the overtaking phase parameter op to determine past and future
vehicle behaviors and explored the feasibility of using this parameter as a replacement for
RNNs to consider contextual information. This approach allowed us to reduce the model
size and improve operational efficiency. Furthermore, our model focused on outputting the
probability of being able to continue overtaking in the current state, rather than generating
planned waypoints and control signals. Our end-to-end model was trained using a dataset
collected from Carla. The overall framework consisted of an image encoding module, a
vehicle information encoding module, a phase selector, and a GDCP. Our optimization
objectives were as follows:

arg min
θ

E(x,p)∼D[L(p, fθ(x))] (5)

where D = (x, p) is a dataset containing the information x available to the vehicle
and the probability p that it can safely overtake in the current state, and fθ(x) ∈ [0, 1],
p ∈ [0, 1]. Under the premise of ensuring that the generation probability is as far be-
low the prior probability as possible, the difference between the generation probabil-
ity and the ground truth is minimized. Each piece of information is a bound group
xt = (it, st),t ∈ [0, 2op] and st = (θt, vt, opt).

As depicted in Figure 1, this study used yolop [24] as the DAD (driving area detector)
to focus on the features of the exercisable area. The image i that is preprocessed by the
DAD undergoes feature extraction through Conv1, resulting in a feature vector jimg. The
overtaking stage information op, along with the vehicle’s heading s and speed, are input
into MLP1, which generates a constraint feature, jstate. The final encoded feature F is formed
by the fusion of these vectors, shared among the next stages:

Ft = MLP2(Concat[jimg
t , jstate

t ]) (6)

The structure of the neural network is shown in Table 1. The safety of overtaking
maneuvers may be substantial when the autonomous vehicle (AV) is still in the original
lane and there are preceding vehicles. However, if there is a vehicle not far ahead af-
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ter entering the opposite lane, the likelihood of a successful overtaking becomes almost
zero. To mitigate the influence of similar image features on decision making, this study
introduced the Phase Selector (PS) in the feature analysis stage after feature fusion. The
selection of network branches is determined by incorporating the current overtaking phase
parameter, guided by op, to generate the probability of safe overtaking in the current phase,
denoted as pt:

pt = Sigmoid[PS(opt , Ft)] (7)

Ctr(t + 1) =
{

θ(t + 1), 1
n ∑t

i=t−n pt ≥ P
−θ(t), 1

n ∑t
i=t−n pt < P

(8)

where Ctr(t+ 1) represents the control signal to be executed by the vehicle in the next moment,
and P and n are hyperparameters designed to address issues related to instability in the
output probabilities of the probability generation module. When there is noise interference, the
decision probability obtained from a certain piece of data may be lower than this threshold.
If a vehicle that is overtaking in a safe environment conservatively returns to the main lane
based on these data, the network will be too sensitive and it will be difficult for the vehicle to
complete an overtaking maneuver. If n is too small, the error probabilities caused by recent
noise in the received data could significantly impact the accuracy of current decisions, resulting
in oscillations between overtaking and non-overtaking determinations. Conversely, if “n” is
too large, the probabilities generated from past time instances could heavily influence current
decisions, potentially causing the vehicle to miss the optimal overtaking or evasion timing.
When the probability average of the last n predictor outputs is greater than P, the system can
continue to use the overtaking signal to overtake. On the contrary, the vehicle should execute
the reverse control signal of the previous step and finally return to the main lane.

Table 1. Detailed network structure of our OFP model. The × sign in the right column indicates the
number of modules in the network.

Layer Type # of Filters Activation Function #

Driving area detector

yolop

Conv1

ResNet-34

MLP1

FC 128 ReLu ×2

MLP2

FC 512 ReLu ×2

FC 256 ReLu ×1

Dense Block1

FC 256 ReLu ×2

FC 1 ReLu ×1

Dense Block2

FC 256 ReLu ×1

FC 128 ReLu ×1

FC 1 ReLu ×1

Dense Block3

FC 256 ReLu ×2

FC 1 ReLu ×1
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2.3. Loss Design

The objective of this model was to differentiate the output probabilities as much as
possible while they were relatively concentrated, maximizing the effectiveness of repairing
models with significant probability differences. Initially, binary cross-entropy loss was
used as the loss function of the model. The total loss of the model decreased during
the convergence process, and the prediction probability was generally close to the label
probability. However, it was almost always higher than the label probability. This result
made overtaking decisions dangerous. Hence, this study aimed to design a penalty term
that can amplify the loss value when the estimated probability is too large and decrease
it slightly when the estimated probability is conservative. Therefore, the superposition of
the exponential function and the traditional binary cross-entropy loss function was more
in line with our wishes. In order to keep loss ∈ (0,+∞), the loss function was written
as in Equation (9), where pt represents the probabilities generated by the model and p̂t
represents the ground-truth probabilities. If the generated probabilities are lower than the
actual probabilities, the system tends to be conservative and may miss overtaking opportu-
nities. However, if the generated probabilities are higher than the actual probabilities and
overtaking is performed, it poses risks to the passengers. Therefore, the penalty term in the
right half of Equation (9) was used to amplify the impact of the error probability on the
model when p̂t > pt and, conversely, could serve as a relaxation term to reduce the model
updates when p̂t < pt in order to reduce conservative output probabilities.

L(p, p̂) =
N

∑
t=0

pt log p̂t + (1− pt) log(1− p̂t) + e(λ( p̂t−pt)) − 1 (9)

2.4. Algorithm Process

The entire process can be divided into two main phases, training and simulation, as
illustrated in Algorithm 1. Initially, CarlaLanePass was utilized to train the OFP. This network
was trained iteratively in batches based on the training epochs. Data points with approximate
values of p = 0 and p = 1 were prioritized for training, gradually incorporating data until all
instances were covered. After completing the training phase, the information obtained by the
ego vehicle was fed into the OFP network to generate the current probability p. Subsequently,
the average of the most recent ‘n’ probabilities was computed to decide whether the upcoming
action should involve overtaking or returning to the original lane.

Algorithm 1: OG-Net process.
Data: CarlaLanePass.
Result: Output control signal Ctr(t + 1), probability of safe passing p;
Input: Sensory input i, speed of the ego vehicle v, steering of the ego vehicle θ, overtaking phase

parameter o, critical probability P, significant degree n.
data := (i, v, θ, o, p̂) ∈ CarlaLanePass;
Initialize P, n;
Training OFP;
for i:=1 to epochs do

Import data excluding p̂ ∈ ( i
2×epochs , 1− i

2×epochs ); jimg ← Conv1(DAD(i));
jstate ← MLP1(v, θ, o);
F ← MLP2(Concat(jimg, jstate));
switch o do

pt ← Sigmoid[PS(o, F)]
Backprop;

Simulation;
for t:=1 to ∞ do

θ(t)← GDCP(v, o);
pt ← OFP(i, v, θ, o);
if 1

n ∑t
i=t−n pt < P then

Ctr(t + 1)← (−θ(t− 1), decelerate);
else

Ctr(t + 1)← (θ(t), accelerate);
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2.5. CarlaLanePass Description

To investigate the feasibility of implementing two-lane overtaking scenarios using an
end-to-end model, this paper proposes a dataset CarlaLanePass specifically for overtaking
on narrow two-lane roads. CarlaLanePass covers both correct and incorrect overtaking sce-
narios along with their corresponding safety probabilities, rather than providing waypoint
or control signal coordinates. It gathers information captured from 170 distinct scenarios
involving autonomous driving vehicles performing lane-changing overtaking maneuvers.
We used a GDCP to perform overtaking operations in any scenario. From the beginning
of the overtaking task until an accident occurred or the overtaking was successful, we
collected data every 50 ms. When a vehicle in the opposite lane was very close to the
ego vehicle, it would quickly collide with the oncoming vehicle when overtaking. In this
case, at least about 20 pictures were collected, and the overtaking probability label of each
picture was close to 0. If a collision occurred, we recorded the overtaking probability as
0 and recursively calculated the overtaking probability of the previous data entry using
Equation (10). However, during the entire overtaking process, if no collision occurred,
we recorded the overtaking probability of each data entry as 1, as illustrated in Figure 3.
When the entire overtaking process went smoothly, a total of 240 pictures were collected.
The dataset includes a total of 12,605 jpg images with dimensions of 1280× 720 pixels.
Additionally, the dataset provides easily obtainable vehicle information such as speed,
overtaking phase, and steering wheel angles.

pt =

{
pt+1 +

1
T , Overtaking f ailed
1, Success f ulovertaking

(10)

where t ∈ (1, 2, ..., T). Calculating the overtaking probability in a recursive way is similar to
feeding back “experience” from the future to the current moment. Sending a signal to the
current moment: If one continues to perform overtaking operations at this time, what is the
probability of a collision? To capture a variety of urban double-lane overtaking scenarios,
we utilized the Carla simulation platform to record the first-person view images, vehicle
speeds, cornering information, overtaking progress, and other relevant data for each frame
in different overtaking scenarios with varying vehicle distributions and weather conditions.

Figure 3. Dataset description. The dataset includes complete sequences of overtaking successes or
failures in most two-lane overtaking scenarios.
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3. Simulation Experiment and Result Analysis

This paper proposes a batch training method inspired by human learning characteris-
tics. Starting from the training data with output values close to 0 and 1, the dataset was
gradually expanded, and the model was trained step by step.

3.1. Training with Adaptive Data Importation

During the training process, we initially constructed a simple neural network that
combined image features and vehicle information features for regression tasks. However,
we encountered a challenge as the model failed to converge after 5–10 training iterations,
and the output values remained concentrated around a fixed value regardless of the
input situation. After conducting multiple experimental adjustments, we discovered that
this issue arose due to the high similarity among the training samples. Many datasets
exhibited uniformly distributed output probabilities within the range of (0, 1). Without
effective pre-training, it became challenging for the model to distinguish features among
the data. To address this issue, we drew on the method of adaptive image clustering and
adopted an Adaptive Data Induction Training (ADIT) method inspired by human learning
characteristics [25]. We started with training data that had output values close to 0 and
1, gradually expanding the dataset to train the model in a step-by-step manner, and the
model gradually converged through this process. In this experiment, our model performed
100 training iterations, gradually reducing the learning rate from 0.002 to 0.00001. The
training was conducted using the SGD optimizer.

3.2. Predictor Test

We conducted model testing on CarlaLanePass to evaluate the model’s output prob-
ability. The dataset primarily consists of three scenarios: safe overtaking throughout the
process, collision occurring during the tentative overtaking phase, and no overtaking
initially. The experimental results on the test set are shown in Figure 4. When the AV
was driving in the main lane and there were no oncoming vehicles initially, the system
assigned a relatively high probability for overtaking, encouraging the AV to cautiously
enter the opposite lane. If an oncoming vehicle was detected while the AV was in the
process of changing lanes and had not completed the overtaking maneuver, the system
considered the possibility of a safe overtaking maneuver to be very low. Therefore, as the
vehicle progressively advanced, the probability of successfully completing an overtaking
maneuver gradually decreased until it reached zero. The probabilities output by our model
should be slightly lower than the safety probabilities in the dataset to ensure the safety of
autonomous driving.

3.3. Comparison with Existing Methods

To explore the advantages and disadvantages of this approach in comparison to others,
we conducted an evaluation according to the following criteria:

(i) The average L2 distance between the ideal and actual positions within the first five
seconds of a successful overtaking maneuver.

(ii) Time spent in the adjacent lane Mt;
(iii) Number of overtaking maneuvers initiated Mo;
(iv) Success percentage of overtaking maneuvers Ms.
(v) Collision probability Pc.
(vi) Average completion time per kilometer Tc.
(vii) Completion of selected road segments Route Completion.
(viii)Trajectory smoothness and control signal smoothness.

Table 2 provides a quantitative comparative analysis of the overtaking task. We
replicated several lane-changing overtaking methods with lane-changing capabilities on
the Carla platform. The experiments were conducted on a dual-lane highway segment
measuring 1 km in length. We collected experimental data from 20 distinct scenarios, each
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involving lane-changing overtaking tasks. Various factors were considered, including
traffic density, vehicle speeds, and vehicle types.

Trajectory fitting analysis. The experiments showed that although our method did not dis-
cretize the reference point of the path like the traditional method and then carry out control
planning towards the target path point, its actual effect was not poor for the overtaking
route with a single trajectory. The differences between the ideal trajectory points and the
actual trajectory points were calculated within the first five seconds, commencing from
the initiation of the overtaking steering maneuver. In our approach, the steering control
sequence was solely influenced by the velocity factor, resulting in consistent trajectories
for the same velocity sequence. As a result, the disparities between the ideal and actual
trajectories were significantly reduced compared to conventional methods. Table 2 reveals
that our method demonstrated better performance in terms of trajectory fitting.

Overtaking ability comparison. Existing lane-changing research methods generally involve
motion planning based on the assumption of ideal perceptual information. Therefore, we
compared the performance of our approach under two scenarios: one where the information
about other vehicles was known, and another where the information about other vehicles
was unknown. When the information about other vehicles was known, relative velocities
and positions between vehicles were calculated, and GDCPs were employed to ensure
path safety robustly. Simultaneously, in cases where the speeds of other vehicles were
known, if the leading vehicle did not cooperate by reducing its speed, our method could
abandon the overtaking attempt and ensure a return to the original lane within a certain
timeframe. This contributed significantly to reducing the number of overtaking maneuvers
initiated (Mo). Our approach followed the principle of emulating human driver behavior,
overtaking only when success is certain, resulting in a shorter time taken for overtaking
(Mt) in comparison to other methods. In scenarios where perception accuracy is high, the
advantages of the vehicular networking series of methods in terms of overtaking success
are undeniable. This is because these methods not only acquire the positional information
of surrounding vehicles but also gain insight into the intentions of other vehicles, which
makes executing overtaking maneuvers more convenient. However, the requirement for all
vehicles in the driving environment to be equipped with vehicular networking systems
reveals certain drawbacks. Although the success rate of overtaking significantly drops
when the perception information is less than ideal, the drop is not as pronounced compared
to other perception-aware methods. This provides evidence that an end-to-end approach
for achieving lane changes is indeed feasible.
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Figure 4. The output of the OFP. The left side of each row is an average of three pictures captured in a
certain overtaking scenario. The right side of each row shows the fitting performance of the predictor
under different scenarios. In most cases, the predicted probability was close to and generally lower
than the label probability.

Table 2. Track matching metric. The table shows the difference between the vehicle trajectory and the
ideal trajectory within three seconds from the overtaking action when the vehicle speed was 20 m/s.
It also includes a comparison of lane occupation time, number of attempts, and overtaking success
rate when performing overtaking tasks, as well as the collision rate, road segment completion rate,
and time per kilometer when driving on a straight road.

Method L2 (m) Mt Mo Ms Pc Tc
Route

1 s 3 s 5 s Completion

EMPlanner [2] 0.291 1.853 4.134 8.2 1.09 72.6 0.73 194.5 99.4

TCP [21] − − − − − − 0.84 215.6 97.1

Cooperation [26] 0.285 1.977 4.066 11.2 6.8 78.1 0.58 159.4 99.2

Global Info [26] 0.279 2.011 4.153 11.4 6.5 84.3 1.47 182.8 98.3

KF Control [27] 0.314 1.799 3.976 10.7 33.5 63.4 2.88 198.5 89.0

GDCP 0.276 1.919 3.906 5.2 3.2 81.7 0.71 147.4 98.7

GDCP-OFP 0.289 1.936 4.011 5.4 7.9 62.3 2.42 164.2 94.6

Smoothness analysis. Traditional path planning involves first planning trajectory points
and then executing trajectory tracking control. This approach offers the advantage of better
robustness during the planning process, making it suitable for most autonomous driving
scenarios. However, the scenarios addressed in this experiment involved relatively straight-
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forward route options, encompassing only three situations: following a vehicle, overtaking,
and returning to the original lane when danger is detected. The results of the experiment
indicated that employing a method that directly plans control signals with varying maxi-
mum lateral displacements can effectively complete these tasks. This approach not only
reduces the computational complexity but also ensures the smoothness of both the trajec-
tory and control signals, ultimately enhancing passenger comfort. Huang et al. [4] built an
overtaking environment with a mini car and recorded the overtaking track and the steering
wheel angle signal. As one of the rare approaches that utilize common function curves for
overtaking trajectory planning, our method was compared to the abovementioned method,
and the trajectory outcomes are illustrated in Figure 5. Assuming that the speeds of the
leading vehicle and the ego vehicle were constant, and using the geometric curve to plan
the overtaking path, the route planned by the model in this paper was smoother, and the
fluctuation of the control signal was not severe. This was because Huang et al.’s solution
was to plan the trajectory first and then use the PID algorithm to restore the planned
trajectory as much as possible. Our solution was to directly calculate the executed control
signal based on the derivative of each key point of the target curve, so that both the control
signal and the trajectory looked smoother.

Figure 5. (a,b) Smoothness of overtaking trajectory and control signal variation, where (c,d) indicate
the fitting effect of the method in this paper.

3.4. Ego Vehicle Travels at Varying Speeds

In an actual overtaking operation, it is impossible for the vehicle to keep running at a
constant speed to complete the overtaking maneuver. Overtaking is often accompanied
by the behavior of accelerating first, then overtaking, and then slowly returning to the
main lane after deceleration. As shown in Figure 6, we tested the trajectories and control
signal changes of two cases under variable speed conditions. The experiments showed that
although the vehicle control signal was not stable when returning to the main lane in case
of danger, the vehicle trajectory was relatively smooth and did not affect passenger comfort.
Additionally, in the test with a total driving distance of 20 km, the collision rate was 3.7%
when the vehicle failed to return to the original lane during overtaking. Moreover, our
model ensured relatively safe lateral displacement and complete overtaking even under
variable speed conditions.



Appl. Sci. 2024, 14, 38 13 of 15

Figure 6. (a) The trajectory of the vehicle accelerating and overtaking before decelerating and
returning to the original lane, (c) the trajectory of the vehicle returning to the original lane when it
tried to overtake and encountered danger. (b,d) show the changes in the steering wheel angle in the
two cases.

3.5. Ablative Study and Visualization

Predictor component analysis. In this paper, the ablation experiments of several innovative
points were analyzed to verify the importance of each part, and the results are shown in
Table 3. Firstly, in different overtaking stages, different image features may correspond to
similar safety probabilities. Since we discarded the temporal network to learn contextual
information, and the number of parameters required for optimal fitting varied across
different overtaking stages, the Phase Selector (PS) played a crucial role. Due to the
continuous distribution of probability label values in each group of data, it was challenging
to quickly distinguish the features among the data. Numerous experiments have shown
that directly importing all data for training without a pre-trained model can easily lead to
oscillations and failure to converge at local optima. By importing the dataset in batches
based on probability labels and prioritizing highly discriminative data for training, we
achieved satisfactory fitting results.

Table 3. This paper considers a correct prediction to be obtained when the difference between the
output probability and the probability label of the dataset is within 0.15.

ADIT PS Loss Function Optimal Loss Optimal Accuracy
√ × Our Loss 0.425 76.6
√ √ BCELoss 0.381 79.6

× √ Our Loss 0.491 68.2

× × BCELoss 0.488 53.1
√ √ Our Loss 0.361 86.7

Velocity adaptation coefficient. If one calculates the second derivative of the planned
overtaking trajectory to derive the steering control signal sequence and then executes
steering control at each moment, with a fixed velocity, the vehicle’s trajectory will be quite
stable. However, in reality, different situations will result in varying velocities. If the
vehicle’s speed is higher than the ideal speed, the traveled distance at each position will
be greater, causing an increase in lateral displacement that could extend beyond the lane.
Conversely, if the lateral displacement decreases, the vehicle could collide with the leading
vehicle. Therefore, the introduction of the parameter α can help control the variation in
trajectory length while ensuring that even after a simple second-derivative calculation,
the vehicle’s maximum lateral displacement is maintained. According to Figure 7, it can
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be seen that within the range of v ∈ [10, 35], the maximum lateral displacement was in
the range of [2.82, 3.84] when α was introduced, while the maximum lateral displacement
without introducing α was in the range of [1.04, 9.23].

Figure 7. Variation in lateral displacement during overtaking phase at different speeds. (a) shows the
displacement change introduced by α. (b) shows the displacement change without α.

4. Conclusions

This paper proposed a novel framework for lane overtaking using an end-to-end
model. It explored the use of fixed geometric curves in overtaking scenarios and introduced
a dataset that emphasizes the importance of including incorrect driving operations as
training data and provides new ideas for datasets in the field of autonomous driving. The
experimental results demonstrated the effectiveness of this model, even in challenging
overtaking situations. Our approach has advantages in terms of trajectory smoothness
and passenger comfort, as well as time per kilometer. Even without the assistance of
high-precision maps, the performance will not lag much behind other methods that use
map information as a priori knowledge in overtaking scenarios. However, the application
scenarios of this model are still very limited. Future work will focus on extending overtak-
ing application scenarios, such as multi-lane overtaking, and we will improve the accuracy
of feasibility probability prediction and the stability of trajectories to enhance the practical
application of autonomous driving.
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