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Abstract: Although a multimodal data analysis, comprising physiological and questionnaire survey
data, provides better insights into addressing management science concerns, such as challenging
the predictions of consumer choice behavior, studies in this field are scarce because of two obstacles:
limited sample size and information privacy. This study addresses these challenges by synthesizing
multimodal data using deep generative models. We obtained multimodal data by conducting an
electroencephalography (EEG) experiment and a questionnaire survey on the prediction of skilled
nurses. Subsequently, we validated the effectiveness of the synthesized data compared with real data
regarding the similarities between these data and the predictive performance. We confirmed that the
synthesized big data were almost equal to the real data using the trained models through sufficient
epochs. Conclusively, we demonstrated that synthesizing data using deep generative models might
overcome two significant concerns regarding multimodal data utilization, including physiological
data. Our approach can contribute to the prevailing combined big data from different modalities,
such as physiological and questionnaire survey data, when solving management issues.

Keywords: questionnaire survey; marketing research; EEG; deep learning; generative adversarial
networks (GANs)

1. Introduction

In multiple cases [1,2], prediction performance may be enhanced using multimodal
data when predicting a diagnosis and decisions. The effectiveness of combining physiologi-
cal and questionnaire survey data has been reported. For example, Hakim et al. (2020) [3]
stated that the accuracy of predicting purchase behaviors was enhanced by combining phys-
iological data from unconscious mind sources with asking-based data from a questionnaire
survey of conscious mind sources. Thus, analyzing different modality-sourced data could
improve predictive performance and determine participants’ insights. Despite their effec-
tiveness, management science databases incorporating physiological and questionnaire
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survey data are yet to be developed. The cause of this condition may be due to two signifi-
cant variables. The subject of a limited sample is among the primary reasons. Furthermore,
the small sample problem results from three aspects. First, developing a massive database
is challenging because performing multiple experiments is expensive. It also requires time
and effort to perform the experiments. For example, an electroencephalography (EEG)
experiment requires 30 min to 1 h per participant. Second, few management science and
human resource professionals have sufficient experience and knowledge to perform physi-
ological experiments. Because of the scarcity of human resource professionals, there are
fewer opportunities for performing physiological experiments in this field. Third, recruiting
experimental participants from a small population is challenging. Because data sampled
from rare groups provide better insights for businesses, methods of recruiting from rare
groups have proven controversial in management science [4,5]. The other primary reason
is permission to apply the data. In return for disguising their personal information, partici-
pants agree to participate in an experiment and utilize data for the initial research objectives
and additional purposes; however, in particular, the additional purposes are challenging.
Notably, regarding commercial applications, most participants might decline to permit the
use of experimental data despite masking their personal information. Furthermore, most
participants are anxious about the maltreatment of their physiological data because they
include essential personal details such as disease and emotional disposition [6].

Considering these issues are underlying conditions intertwined by multiple factors,
developing and using combined databases based on physiological and questionnaire sur-
vey data are challenging. Eventually, a database based on these multimodal data in the
field of management science will be limited to participants. This aspect suggests that it
is demanding to improve predictive performance by conducting additional experiments.
Concretely, when conducting experiments on luxurious real estate and cars for persons with
high income, as there are innately few of those persons, it is challenging to conduct another
experiment based on the same conditions because recruiting other participants with the
same background is challenging. Actually, as it costs too much to conduct experiments on
those rare populations, conducting the experiments is hard because of budget limitations.
Thus, addressing limited samples and privacy issues may be necessary when using com-
bined physiological and questionnaire survey data in management science. Specifically, it
may be possible to address these issues by developing a secure database with a sufficient
sample size that combines physiological and questionnaire survey data.

Regarding the limited sample size problem, various data augmentation approaches
have been developed [7]. Data augmentation methods based on the synthesized data
using deep generative models such as generative adversarial networks (GANs) [8,9] and
variational autoencoders (VAEs) [10] have been proposed. Other methods, such as mix–
up [11], have also been proposed. In the former data augmentation methods, augmented
data are used as synthesized data based on appropriate probability distributions related
to actual data. However, regardless of the probability distributions, the latter approach
involves trial-and-error based on actual data. Recently, prospective data augmentation
approaches, including GAN-based synthesizers and combined approaches of generative
models and mix-ups, have been presented [12,13]. Notably, because these data augmen-
tation approaches can augment larger-sized data, they can solve limited sample issues.
Moreover, to overcome concerns regarding privacy security, synthetic data-generation
methods are presented using this deep generative model [14]. Generating synthetic data
has an essential advantage over masking personal details. This technology can create
anonymized data that inherit the characteristics of the original data while increasing the
data size [14,15]. Personal information may not be revealed even if someone accesses or
invades the data. However, the applications of these synthetic data-generation technologies
primarily focus on a single modality [14]. It is necessary to address the application of
synthetic data-generation technologies for multimodal data, such as combined physiolog-
ical and asking-based data. This study uses deep generative models to address the data
augmentation approach based on synthesized data.
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Additionally, regardless of these necessaries and effectiveness, few studies have ap-
plied the synthetic data-generation approach to multimodal data in management science
contexts. Although a few studies were reported in management science study areas, these
studies deal with unimodal data, as well as the other studies on synthesizing data [16,17].
We attempt to validate the data augmentation approach by synthesizing small-combined
data consisting of physiological and questionnaire survey data in a management science
issue. Concretely, we address the difficulties, such as the limited sample size and privacy
problems, by applying deep generative models to the combined multimodality data. In
this study, we considered the effectiveness of solving these problems in identifying skilled
nurses, an issue in human resource management. Details of this issue are described in the
Methods section.

2. Related Work

After the experiment, the physiological and questionnaire survey data were tabu-
lated. Accordingly, this study describes deep generative models for tabular data. Several
GAN-based data-synthesis methods have been proposed. Medical GAN (medGAN) [18]
is an approach focused on synthesizing discrete and continuous patient record data. The
medGAN architecture is composed of a combination of an autoencoder and a GAN. Table
GAN (TGAN) [19], which applies a Deep Convolutional GAN (DCGAN) [9] to tabular
data, can be used to synthesize various types of data for general purposes (i.e., continuous,
discrete-like, categorical-type data, and time). Conditional Tabular GAN (CTGAN) [20] is a
method for modifying the TGAN to address imbalanced data derived from non-Gaussian
and multimodal distributions better than the TGAN. CopulaGAN is a deep generative
model modifying CTGAN to generate data containing information on dependencies be-
tween features [20,21]. The tabular variational autoencoder is a model that adjusts the
VAE [10] to tabular data. Xu et al. [20] demonstrated that CTGAN was advanced, and
TVAE was a contender among these representative GAN-based synthesizing data meth-
ods. Cheon et al. [22] demonstrated that CTGAN outperformed TGAN in synthesizing
physiological data (EEG).

Therefore, we attempt to identify the most suitable deep generative algorithm to
solve our issues, among the latest approaches to synthesizing data for tabularly formed
data, CTGAN, CopulaGAN, and TVAE, and find out conditions to improve predictive
performances. These deep generative models are described in detail below.

2.1. CTGAN

The CTGAN architecture was developed based on the GAN (Figure 1) and modified
the TGAN regarding the loss function and normalization method for continuous data.
CTGAN introduces the Wasserstein GAN (WGAN) [23] into the loss function (Equation (1)).
During learning in the discriminator, the WGAN measures the convergence of the distance
between distributions using the Wasserstein distance rather than the Jensen–Shannon
divergence in the vanilla GAN. The loss function was optimized using adaptive moment
estimation (Adam). The Wasserstein loss function is expressed as

L(D, G) = EG(z)∼pg [D(G(z))]− Ex∼Pr [D(x)] (1)

The loss function is represented as L(·). E[·] represents the expected loss. D is the
discriminator function. G is the generator function. Neural networks implement both
functions. z is the noise derived from the standard normal distribution (N(0,1)). G(z)
represents the synthetic data generated by the generator function. pr and pg represent the
real and generated data distribution. x represents real data. This modification decreased the
mode-dropping phenomenon observed in vanilla GAN [8]. Moreover, CTGAN implements
the normalization method with the variational Gaussian mixture model (VGMM) [24] rather
than min–max normalization using the Gaussian mixture model (GMM) [24] used in TGAN.
Unlike the min–max normalization, VGMM can generate continuous data from normalized
complex distributions. This approach is referred to as mode-specific normalization.
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Figure 1. CTGAN architecture. The figure is based on Xu et al. [20].

2.2. CopulaGAN

Copula is a function that transforms multiple marginal cumulative distribution func-
tions (CDFs) into a univariate joint CDF. Thus, a copula includes information on the
dependencies between each CDF of variables. CopulaGAN is an algorithm applying the
copula theory to the learning of the CTGAN. Accordingly, CopulaGAN has the ability to
learn correlations between columns in tabular data.

2.3. TVAE

The architecture of the TVAE is similar to VAE (Figure 2a). The loss function is
represented as L(·). E[·] represents the expected loss. qϕ(z|x) is the probabilistic encoder;
pθ(x|z) is the probabilistic decoder. These modules were both implemented using neural
networks. pθ(z) is the prior distribution. Z is the latent variables sampled from the latent
distribution (N(µ, σ)). Figure 2b depicts a graphical model of the VAE. ϕ is variational
parameters; θ is generative model parameters. Both are parameters of neural networks.
Similar to the vanilla VAE [10], the evidence lower bound (ELBO) is used as a loss function;
however, it was modified as in the CTGAN framework [20]. The ELBO loss can be expressed
as follows:

Lθ,ϕ = Eqϕ(z|x) [logpθ(x|z)]− KL
(
qϕ(z|x)pθ(z)

)
(2)
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The first term of Equation (2) is the reconstruction loss. The second term is the Kullback–
Leibler loss. Because the ELBO loss function is trained using the Adam, Equation (2) is
transformed as follows:

Lθ,ϕ = −Eqϕ(z|x) [logpθ(x|z)] + KL
(
qϕ(z|x)pθ(z)

)
(3)
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To handle tabular data in the VAE, each row r is pre-processed as follows [25]:

r = cat(αNc, βNc, dNd) (4)

Accordingly, pθ(x|z) is expressed as pθ(r|z). Nc is a continuous column. Nd is a
discrete column. αNc are normalized values, and βNc is one hot vector coming from
Gaussian distributions. dNd are discrete variables. Thus, regarding the TVAE, the optimized
probabilistic decoder is eventually expressed as the following joint distribution:

logpθ(r|z) =
Nc

∑ log
1√
2πδ

exp
(α − α̂)

2δ2 +
Nc

∑ CE
(

β̂, β
)
+

Nd

∑ CE
(

d̂, d
)
+ constant (5)

Here, α̂, β̂, and d̂ are random variables. CE(·) is the conditional expected loss. δ is the
parameter in this network and it is trained using the Adam optimizer.

3. Methods

This study was conducted in accordance with the procedure depicted in Figure 3.
First, we conducted an experiment to collect the seed data for augmentation. Second, we
augmented the seed data using synthesized data generated using deep generative algo-
rithms. Third, we built a predictive model. Because the built model in this phase is derived
from the seed data, it could be considered a normative promising model. Accordingly,
in the validation block, whether synthesized data become close to real data can be con-
firmed by comparing predictive results based on both data. Accordingly, in the validation
phase, whether synthesized data become close to real data can be confirmed by comparing
predictive results based on both data. In the last step, we validated the usefulness of the
synthesized data using a machine learning algorithm in terms of predictive performance.
The detailed explanations are presented below.
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3.1. Acquisition of Seed Data for Generative Synthetic Data

We conducted an EEG physiological experiment and questionnaire survey to acquire
seed data and generate synthetic data for discriminating and predicting skilled nurses. The
procedure is explained below.

3.1.1. Experimental Background: Building Multimodal Database for Predicting
Skillful Nurses

Educators must assess the potential of their students to develop skills comparable to
those of experienced nurses when teaching nursing students. Similarly, managers may
prefer to identify candidates likely to fit well into their team of veteran nurses when hiring
new nurses. Previous studies have demonstrated that empathy is essential in building
relationships between patients and nurses [26,27]. Given that empathy is among the nursing
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skills [28], this aspect suggests that empathetic abilities and dispositions may influence the
professional attitudes of nurses [29]. We used EEG signals and questionnaire surveys to
evaluate the empathetic dispositions of nurses at both the conscious and non-conscious
levels in this study. Developing a database based on a combination of these data sources
may be an effective way to manage nursing staff resources. Analyzing the combined
multimodal data in the database could potentially enhance the predictive performance
of skilled nurses. However, owing to their busy schedules, recruiting sufficient nurses
to participate in the experiment proved challenging. Subsequently, the sample size for
evaluating nurses’ skills in the experiment was anticipated to be limited, and the prediction
model had to achieve high accuracy with limited data. In addition, when nurses leave a
hospital, privacy concerns prevent their data from being used for educational or hiring
purposes, reducing the amount of available data. Thus, nurses can be considered a rare
population [5], and experiments with nurses also include privacy concerns. Developing
a reliable database to assess the skills of nurses is a complex challenge due to issues
related to recruitment, privacy protection, and sample size limitations. These challenges
are intertwined with those described in the Introduction, making the problem even more
challenging. A secure database of multimodal data with a sufficient sample size is required
to manage the resources of nurses.

3.1.2. Participants

The participants were 11 healthy right-handed Japanese women (mean age: 24.5 years
old, range: 21–29 years old). As there were concerns about yielding different EEG data
depending on dominant hands [30], we collected right-handed participants because right-
handed persons might generally be major in handedness. They were divided into two
groups. Group 1 was the low-nursing-skill group, which consisted of five nursing school
students (mean age: 21.2 years old, range: 21–22 years old). Group 2 was the high-nursing-
skill group, which consisted of six veteran nurses with five years of experience in nursing
jobs (mean age: 27.5 years old, range: 26–29 years old, mean job duration: 6 years, range:
5–7 years). They agreed to participate in this experiment after receiving explanations of
their informed consent and signing to acknowledge the disclaimers and their rights. The
Ethics Committee at Prefectural University of Hiroshima approved this study. The present
study was conducted according to the Declaration of Helsinki. One Group 2 participant
was excluded from the data analysis because their EEG data could not be obtained due
to machine troubles. The Bluetooth connection between the EEG device and the personal
computer was disrupted for some reason during the experiment for that participant. Finally,
the number of participants was 10 (Group 1 = 5; Group 2 = 5).

3.1.3. Stimuli and Procedure

Visual stimuli were prepared according to previous studies concerning the prevailing
pain–empathy experimental procedure [31]. The visual stimuli consisted of twelve color
photos: pain pictures (six photos) and no-pain pictures (six photos). The pain picture was
depicted in gruesome scenes in which a knife or scissors pierced the left hand. The no-pain
picture was similarly depicted in no-pain scenarios to the pain picture. All images were
captured from a first-person perspective. The stimuli were randomly presented using
Psychopy [32] implemented in Python, a program package for controlling psychophysics
experiments. Participants wore an EEG headset and stared at a computer screen. After
the EEG experiment, the participants were instructed to answer 20 questions concerning
empathy disposition.

3.1.4. Data Collection and Analysis

EEG data were collected using an EMOTIV Epoc X headset composed of 14 channel
electrodes set according to the International 10–20 system at a sampling rate of 128 Hz. The
signals were analyzed using EEGLAB [33] implemented in MATLAB to remove artifacts
from the raw EEG signals. First, high-pass (1 Hz) and low-pass (40 Hz) filters were
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applied. After filtering, cleaned EEG signals were obtained for each participant using
appropriate artifact-removing techniques such as an independent component analysis
(ICA) and various epoch rejection methods, according to standard procedures regarding
the artifacts and epoch rejection of the EEG signal [34,35]. Regarding the questionnaire
survey for measuring empathetic dispositions, the participants evaluated 20 items on a
5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree).

3.2. Data Augmentation: Generating Synthetic Data and Checking the Quality

We developed deep generative models using the SDV package [36] in Python and
generated synthetic data using the default parameters of the deep generative models
(CTGAN, CopulaGAN, and TVAE), excluding the number of epochs. Furthermore, we set
the number of epochs from 5 to 1000 in eight grades (5, 10, 30, 50, 100, 300, 500, and 1000)
and generated synthetic data from two deep generative models (CTGAN, CopulaGAN,
and TVAE) according to multiple numbers of real data from 100% to 3000%. As well as
the number of those epochs, the other parameters set the default parameters. The default
parameters are listed in Supplementary Table S1. We assessed the quality of the synthetic
data from two perspectives: the reproducibility of each variable and the entire structure.
Two measurements were obtained from the former perspective.

First, the mean squared errors (MSEs) and correlation coefficients (CCs) of the real and
generated synthetic data for each augmented sample in each epoch were calculated. These
indices were calculated for the same variables in each dataset. Lower MSE values and
higher CC values indicate a more satisfactory quality. The degree of constructive matching
between real and generated synthetic data is the measurement in the latter view. This
measurement calculates the total average of the squared error for each corresponding pair
of elements of the CC matrices between the real and generated synthetic data. The small
values of this measurement indicate that the synthetic data can be accurately generated by
considering the relationships between the variables. We refer to this measurement as the
structure matching value (SMV). The SMV is defined as follows:

SMV =
1
N

N

∑
(

rG − rR
)2

(6)

where rG is an element of the correlation coefficient matrix in the generated synthetic data,
rR is an element of the correlation coefficient matrix in the real data, and N denotes the
number of variables. Consequently, if the MSE is small, the CC is high, and the SMV is low,
the generated data can be sufficiently close to the real data.

3.3. Predictive Modeling

We used the XGBoost algorithm [37] as the predictive model. The feature variables
were EEG signals from 14 electrode channels and Likert scale data from 20 empathic
disposition questionnaires. The dependent variables were binary data (veterans = one,
not veterans <students> = zero). The hyperparameters of the XGBoost algorithm were
optimized using Optuna in the Python package. The optimized hyperparameters are listed
in Supplementary Table S2.

3.4. Validation Procedures for Synthetic Data

Whether the generated synthetic data can replace real data must be assessed. We
evaluated the effectiveness of synthetic data using an evaluation framework (Figure 4).
The pipeline is classified into four blocks. The Experiment block is the data collection
phase. The Deep Generative Models block is the synthesized data generation phase. Deep
generative models learn the seed data in this phase. The Building Predictive Model block is
the parameter optimization phase to build the trained model based on the seed data. In
the validation block, evaluation metrics (accuracy, precision, recall, AUC, and F1 score)
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are calculated on every input piece of data (generated data in each epoch). The main code
(deep generative model and XGBoost) is described in Supplementary Codes S1 and S2.
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The data were divided into training and testing sets in a ratio of 7:3. The training
dataset was used to model and generate synthetic data. In the modeling phase, the training
dataset was used in the XGBoost algorithm. The synthetic data were generated using the
same training dataset and deep generative models. The trained XGBoost model validated
both the synthetic and test data. Evaluation metrics (accuracy, area under the curve (AUC),
precision, recall, and F1 score) were used to assess the predicted results produced through
these two datasets. Here, as for evaluation metrics, the relationships between predicted and
actual values are represented in Table 1. The table organizing the relationship is referred to
as a confusion matrix. True positive (TP) are data classified as positive by the predictive
model that actually are positive. False positive (FP) are data classified as positive by the
predictive model that actually are negative. False negative (FN) are data classified as
negative by the predictive model that actually are positive. True Negative (TN) are data
classified as negative by the predictive model that actually are negative.

Table 1. Confusion matrix.

Actual Values

Positive (1) Negative (0)

Predicted Values
Positive (1) TP FP

Negative (0) FN TN
The row represents predicted values, and the column represents actual values.

Evaluation metrics are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN (= All samples)
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)
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F1 score = 2 × Precision × Recall
Precision + Recall

(10)

Accuracy is the overall collectiveness of predicted results (Equation (7)). Precision
is the ratio of true positive values to the total number of positive values (Equation (8)).
Recall is the ratio of true positive values to the total actual positive values (Equation (9)).
The F1 score is the harmonic mean of precision and recall (Equation (10)). The F1 score
measures the balance of precision and recall. If one or the other values are high or low,
the F1 score is low. However, when both indices are high, the F1 score becomes high. As
for AUC, we explain the index, referring to Figure 5. To calculate the AUC, the receiver
operating characteristic (ROC) curve needs to be created. The ROC curve is composed
of the false positive rate (FPR) and the true positive rate (TPR). The FPR and TPR are
calculated as follows:

FPR =
FP

FP + TN
(11)

TPR =
TP

TP + FN
(12)

The FPR is the ratio of false positive values to the total actual negative values (Equa-
tion (11)). The TPR is the ratio of true positive values to the total actual positive values
(Equation (12)). The TPR is ultimately the same as the recall. The ROC curve is created
on the horizontal axis as the FPR and the vertical axis as the TPR (Figure 5). The ROC
curve is created by plotting FPR and TPR depending on different thresholded values for
classification. As depicted in Figure 5a, the diagonal blue dot line is lined by randomly
predicting outcomes. The red line is placed over the blue dot line. This indicates that the
predictive model of the red line achieved better than the chance level performances. The
AUC is the area under the ROC curve, and the values of the AUC fall between 0 and 1
(Figure 5b). A value close to 1 signals good predictive performance.
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3.5. Experimental Environment

The EEG signal was collected using a Windows 10 computer equipped with 64 GB
memory, a Quadro RTX3000 GPU with Max-Q Design 6 GB, and an Intel Core i7 9750H
6 core/12 thread 4.5 GHz CPU. Synthetic data were generated using Mac OS Ventura on a
machine with 32 GB memory, 2.3 GHz, QuadCore Intel Core i7.

4. Results
4.1. EEG and Questionnaire Survey Data

EEG data were obtained from each participant. The time sequence data of the EEG
has 384 rows for each participant; thus, ten participants totaled 3840 rows. The columns
of the EEG data are the EEG channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6,
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F4, F8, and AF4). Accordingly, the EEG data contained 3840 rows and 14 columns. The
questionnaire survey data were organized into datasets with 10 rows and 20 columns.
Descriptive statistics are shown in Supplementary Table S3.

4.2. Combined Data from the EEG and Questionnaire Survey Data

EEG and questionnaire survey data were merged into a single dataset (Figure 6).
However, because the two datasets had different numbers of rows, the empty fields in the
questionnaire survey data were filled with the same values in the first-row data for each
participant. Eventually, the dataset for the analysis contained 3840 rows and 34 columns,
excluding the column of respondents.
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represent different numbers; the black straight lines represent the same numbers. The purple straight
lines represent the EEG signal data. The red, blue, and green straight lines represent respondents 1, 2,
and 10’s answered data, respectively.

4.3. Qualities of the Synthetic Data

We checked the quality of the synthetic data generated using three indices: MSE, CC,
and SMV. A detailed explanation of these indices is provided in the Methods section. The
results of these indices are shown in Figure 7 and Supplementary Table S4. In all the deep
generative models, all data quality indices improved with an increase in the number of
epochs. Although the TVAE outperformed both GAN-based synthesizers (CTGAN and
CopulaGAN) in overall quality indices, the data generated by the TVAE had no variance
until 30 epochs owing to the generation of the same numbers. Accordingly, the CCs
could not be calculated from 5 to 30 epochs in the TVAE. In particular, the CopulaGAN



Appl. Sci. 2024, 14, 378 11 of 17

outperformed CTGAN in terms of CCs during early epochs and yielded better SMV
performances than CTGAN during late epochs.
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Figure 7. Results of comparison between the real and generated synthetic data. Abbreviations: MSE:
mean squared error, SMV: structure matching value. (a) Real vs. CTGAN. Legend is at the top of the
right end. Legend represents the sample sizes generated by the CTGAN. (b) Real vs. CopulaGAN.
Legend is at the top of the right end. Legend represents the sample sizes generated by CTGAN.
(c) Real vs. TVAE. Legend is at the bottom of the right end. Legend represents the sample sizes
generated by TVAE.

4.4. Predictive Results

The predictive performances are shown in Table 2 and Supplementary Table S5. The
evaluation metrics for both deep generative models improved as the number of epochs
increased, regardless of the amount of synthetic data.
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Table 2. Comparison of predictive results.

Epoch 10 100 1000

Algorithms CT
GAN

Cop-
GAN TVAE CT

GAN
Cop-
GAN TVAE CT

GAN Cop-GAN TVAE

Calculation time 15.3 s 16.3 s 12.4 s 1 min 25 s 1 min 25 s 39.1 s 14 min 29 s 14 min 20 s 4 min 18 s

Evaluation
metrics

Accuracy Syn-sample
sizes

3840
(100%) 0.484 0.465 0.548 0.971 0.833 1.000 1.000 1.000 1.000

115,200
(3000%) 0.540 0.465 0.480 0.992 0.833 0.994 1.000 1.000 1.000

AUC Syn-sample
sizes

3840
(100%) 0.478 0.487 0.538 0.892 0.762 0.993 1.000 0.999 1.000

115,200
(3000%) 0.530 0.487 0.487 0.895 0.762 0.961 1.000 0.999 0.997

Precision Syn-sample
sizes

3840
(100%) 0.476 0.489 0.533 1.000 0.802 0.995 1.000 1.000 1.000

115,200
(3000%) 0.536 0.489 0.488 1.000 0.802 0.973 1.000 1.000 1.000

Recall Syn-sample
sizes

3840
(100%) 0.432 0.568 0.602 0.784 0.695 0.992 1.000 0.997 1.000

115,200
(3000%) 0.445 0.568 0.536 0.789 0.695 0.948 1.000 0.997 0.995

F1 Syn-sample
sizes

3840
(100%) 0.453 0.525 0.565 0.879 0.745 0.993 1.000 0.999 1.000

115,200
(3000%) 0.486 0.525 0.511 0.882 0.745 0.960 1.000 0.999 0.997

Parentheses in the synthesized sample size row represent the multiple of the seed data. Bolded numbers represent the best performance in each synthesized sample size row within each
epoch. Abbreviations: AUC, Area Under Curve; Cop-GAN, CopulaGAN; Syn-sample sizes, Synthesized Sample Sizes.
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According to the increasing number of epochs, both GAN-based synthesizers (CTGAN
and CopulaGAN) required much more computation time than the TVAE; however, there
were minor differences in the calculation time between those GAN-based synthesizers and
TVAE during shorter epochs (Figure 8, Table 2 and Table S6). When conducting a predictive
analysis concerning real data, all predictive performances (accuracy, AUC, precision, recall,
and F1 score) were 1.0. Therefore, regardless of the generated sample size, the predictive
performances of the synthetic data generated using the trained models over 500 epochs
were similar to those using real data. However, high volatilities in predictive performance
were observed during shorter epochs (<100 epochs) in all generative models.
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5. Discussion and Conclusions

To the best of our knowledge, this is the first study to apply deep generative models
to data consisting of two different modalities in a management science study. We demon-
strated that data augmentation by synthesizing different modalities of data using deep
generative models might contribute to yielding good predictive performances in detect-
ing whether candidates are veteran nurses. Moreover, we found out that the number of
epochs plays a crucial role in improving predictive performance rather than the number
of generated sample sizes. This suggests that our approach could apply synthesized data
to business fields by anonymizing individual information because the real data might be
replaceable with synthesized data, even if the synthesized data were small and limited
in size. As for selecting appropriate deep generative models, because all deep generative
models learned through sufficient epochs might yield good performance, an approach to
synthesizing data derived from different sourced modalities might be effective for manage-
ment science issues. In particular, we confirmed that TVAE outperformed the GAN-based
synthesizers regarding the stability of the generated data quality through all epochs. Thus,
the TVAE is the better synthesizer in validated deep generative models in our study, re-
garding predictive performances, computation time, and data quality. However, there are
some concerns regarding the application of such models. Considering that our results
are consistent with previous studies [38,39], the GAN-based synthesizers are expected
to require longer computation durations than the TVAE across almost all epochs. Mean-
while, the TVAE generated no variance data for several variables during the shorter epochs
(5–30 epochs). This outcome implies that the TVAE has a computational time advantage
over the CTGAN; however, it requires sufficient epochs to attain satisfactory data quality.
Moreover, although CopulaGAN is the GAN-based synthesizer modifying the CTGAN



Appl. Sci. 2024, 14, 378 14 of 17

to grasp dependencies between features, there were a few differentiations among deep
generative models. This suggests that the usage of the other GAN-based synthesizers, as
well as CopulaGAN, might also be appropriate to replicate the correlation structures of
data. Regardless of the model type, the predictive performance improved proportionally
to the epochs and not the sample sizes generated. This outcome indicates that sufficient
epochs play a crucial role in improving predictive performance. This suggests that a priory
setting of sufficient epochs must be required to yield good performance using synthesized
data generated using deep generative models.

In this way, our study contributes to applying different modal-based-synthesized data
generated using deep generative models to management science issues. However, our
study has several limitations and concerns. Most brain science studies are conducted with
a small number of participants. However, Button et al. [40] pointed out that experiments
with a small sample size have low statistical power and reproducibility of an experiment.
Executing the experiment with a larger sample size might have been desirable in our study.
Although our results may be effective under certain conditions, they were derived from
only one case of predicting skilled nurses. There are a lot of issues in management science
contexts to solve: social networks [41] and multiple source data fusion for management
decision-making systems in the data transformation era [42]. Therefore, our results should
be applied with caution. This study may have attained better predictive performance
because we generated and predicted data in a well-designed experiment. Given the few
cases in which data based on well-designed experiments can be obtained in the manage-
ment science field, the extent to which our results can be applied is still being determined.
Summarily, trials using various types of multimodal seed data are required. In addition,
when solving a more complex problem, an approach combining multiple synthesizing
methods might be required [12,13]. Moreover, given that the newly GAN-based approach
of introducing a roundtrip method to the conditional GAN is proposed [43], applying it to
tabular-formed data might be promising. Although the present study calculated the deep
generative models using default parameters, the approach of automatically optimizing
hyperparameters of the GAN-based model has been proposed [44]. The evolutionary
architectural search GAN (EAS-GAN) enables the optimization of hyperparameters, in-
cluding network architecture [45]. These automated methods do not require searching for
optimized parameters through trial-and-error. Although those methods are not applied to
the tabular data format, another finding could be brought to our study if the optimized
parameters were adopted in this study. Thus, further research is required to facilitate
the use of generative multimodal data for management science challenges. Concretely,
first, although the experiment in the present study was conducted with a small partic-
ipant sample, we need to perform a comparable experiment between the results of the
augmented data based on a small participant sample and a large participant sample’s
results under the condition of sampling these participants from the same population in the
next step. This experiment might enable us to confirm the reproducibility of the results of
experiments with a large participant sample by using augmented data. Second, to confirm
the robustness of our results concerning the other new multimodality data besides both
EEG and questionnaire survey data, we need to experiment with adding other modalities,
such as photo images, movies, texts, music, and other physiological data. Third, to validate
generalizing our results, we should apply the approaches of the present study to a wide
variety of management science fields, including digital marketing and decision-making
systems for managing businesses.

In conclusion, the present study provides a beneficial approach for applying mul-
timodal data to management science issues as a first step. We demonstrated that with
sufficient training in deep generative models, we could generate big data almost similar
to real data, using small multimodal data as seed data, which included EEG signals and
questionnaire survey data. Furthermore, our results could be extended to other issues
in management science, such as marketing management and marketing research, since
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they overcome the restrictions of the limited sample size and privacy concerns when using
multimodal data, including physiological data such as EEG signals.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app14010378/s1, Table S1: The default parameters in each deep
generative model. Table S2: Results of optimizing parameters. Table S3: Basic statistics. Table S4: Data
qualities in each deep generative model. Table S5: Predictive performance in each deep generative
model. Table S6: Computation time. Code S1(A): CTGAN, Code S1(B): CopulaGAN, Code S1(C):
TVAE, Code S2(A): XGBoost(Validation: Setting the trained model), Code S2(B): XGBoost(Validation:
Predicted results).
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