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Abstract: A novel zeroing neural network control scheme based on an extended state observer
is proposed for the trajectory tracking of a tracked mobile robot which is subject to unknown
external disturbances and uncertainties. To estimate unknown lumped disturbances and unmeasured
velocities, a third-order fixed-time extended state observer is proposed, and the observation errors
converge to zero in fixed time. Based on the estimated values, the zeroing neural network controller
is designed for a tracked mobile robot to track an eight shape. The stability of the system is analyzed
based on Lyapunov theory. Simulation results are illustrated to show the effectiveness of the proposed
control scheme.
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1. Introduction

Tracked mobile robots (TMRs) have a wide range of applications in civil, industrial and
military fields. However, TMRs are typical nonlinear systems, and it is difficult to perform
high-precision trajectory-tracking control [1,2]. To enhance the control performance of
mobile robots, a feasible solution with excellent convergence performance and robustness
is imperative in practice. Numerous control methods to address this tracking issue have
been reported, including sliding mode control (SMC) [3,4], backstepping control [5], model
predictive control [6], adaptive control [7,8], etc. In [9], a control method was proposed for
a skid-steering mobile robot based on the kinematic control concept and the input–output
linearization approach. Chen et al. derived the error dynamics of the path using the
combination of the kinematic model of the robot and designed a horizontal steering control
law for the path following of the mobile robot [10]. The authors of [11] developed an integer-
order prescribed-time controller for a four-wheel independently driven skid-steering mobile
robot while considering various disturbances.

In recent decades, a new recurrent network, called zeroing neural network (ZNN), has
attracted the interest of scholars with its potential for parallel computing and nonlinear
processing [12]. The ZNN and its evolved model have been reported to solve robot manipu-
lator quadratic programming [13,14] and trajectory tracking [15,16]. Chen et al. proposed a
novel supertwisting ZNN to address the tracking control of a robot manipulator [17] which
combines SMC and ZNN successfully. Ma et al. developed a ZNN for a bound-constrained
omnidirectional mobile robot manipulator by introducing a time-varying non-negative
vector [18].

The successful application in robot manipulators motivates us to further explore ZNN
application in mobile robots [19], which is a potential field. In [20], a multi-constrained
ZNN with the exponential-convergence property was demonstrated by utilizing the time-
derivative information, and it was applied to a mobile robot with both performance index
optimization and multiple physical-limit constraints. A robust fast-convergence zeroing
neural network was proposed in [21] to implement trajectory-tracking application in a noisy
environment. A ZNN activated through finite-time-convergence activation was employed
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for TMR kinematics to track the desired trajectory [22]. The above-mentioned papers about
mobile robot trajectory tracking are based on the perspective of kinematic models, which
assumes perfect speed tracking [23]. As for an actual situation, the physical parameters
of mobile robots, such as mass, inertia, have an impact on system control. Therefore, it is
necessary to extend the study of ZNNs to the dynamic level of mobile robots.

Moreover, TMRs always work in harsh environments. These papers assume that all
the states of the mobile robot are known and accurate and so are the disturbances. However,
if the velocity cannot be measured due to sensor faults, the ZNN models proposed above
are not viable. Therefore, it is necessary to design a state observer in the ZNN framework
to improve the performance of the system. A key feature of an observer is the convergence
rate. In a specific situation, there is a great need for rapid convergence of observers
to complete the state reconstruction [24]. And some fast-convergence observers have
been developed [25–27]. Fan et al. proposed a fast–finite-time-convergence observer
formation control scheme for nonholonomic mobile robots [28]. In [29], Roger presented
an observer-based PID for the trajectory-tracking control of wheeled mobile robots with
kinematic interferences.

However, the upper bound of the settling time is dependent on the initial states
for finite-time-convergence observers. In view of this, fixed-time-convergence state
observers are explored, which guarantees that the settling time of observer errors is
irrelevant with respect to the initial conditions. Zhang et al. demonstrated a fixed-time
extended state observer (FTESO) for marine surface vessel trajectory tracking [30]. In [31],
fixed-time neuroadaptive practical tracking control based on an extended state observer
was proposed for a quadrotor unmanned aerial vehicle with external disturbances and
time-varying parameters.

It can be concluded that ZNNs have not been applied to mobile robot dynamic
control, since its application faces unsolved challenges. One is that unmeasured velocities
encountered in practice lead to failure in building a ZNN control framework. The other
is how to achieve noise suppression and fast convergence simultaneously. To address
the above challenges, a novel activation function with fixed-time convergence and noise
suppression is introduced. Then, an FTESO is employed to estimate the unmeasured
velocities and quickly construct a ZNN model. Finally, a fixed-time-convergence ZNN
model (FXZNN) based on the FTESO is proposed in this paper to achieve the fast tracking
of the desired velocity, as well the trajectory, even with unmeasured velocities and external
disturbances. To the best of our knowledge, this is the first ZNN control framework
based on an observer for TMR tracking control. The main contributions of this paper are
as follows:

(1) An FTESO is designed to estimate the TMR’s unmeasured velocity as well the lumped
disturbances in the system.

(2) An FTESO-based FXZNN model is proposed to improve the desired velocities, conver-
gence speed and tracking control performance of the system with the novel activation
function adopted.

(3) The velocity estimation error between the estimation and the actual values is adopted
for constructing the error function of the proposed ZNN model.

This paper is organized as follows: Section 2 presents the modified TMR kinematic
and dynamic model. Section 3 describes the tracking problem of the TMR. In Section 3, we
demonstrate the design of the FXZNN model based on an FTESO for the TMR and present
the corresponding stability analysis of the model using Lyapunov theory. Simulation results
of the proposed model are given in Section 4, followed by the conclusion in Section 5.
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2. Problem Formulation

In a global XOY coordinate system, the schematic diagram of the motion of a TMR
is presented in Figure 1. Some notations mentioned in Figure 1 are listed in Table 1.
Considering the skidding case, the TMR satisfies the following constraint [32]:

A(q)q̇ = ξ, (1)

where q =
[

x y θ
]T denotes the position and orientation of the TMR, A(q) =[

− sin(θ) − cos(θ) 0
]

is a vector of nonholonomic constraints, ξ is the lateral skidding
velocity.

The TMR kinematic model subject to skidding disturbance can be expressed as

q̇ = J(q)z + φ(q, ξ), (2)

where φ(q, ξ) =
[

ρ1 ρ2
]T is the vector of the disturbance caused by the skidding velocity,

with ρ1 = −ξ sin(θ), ρ1 = −ξ sin(θ), J(q) =
[

cos(θ) sin(θ) 0
0 0 1

]T

, z =
[

v ω
]T , with

v, ω denoting the linear and the angular velocities, respectively.

Assumption 1. The perturbation φ(q, ξ) is bounded because of
∥∥∥[− sin(θ), cos(θ)]T

∥∥∥ = 1, where
∥·∥ is the Euclidean norm of the vector. Its first derivatives is also bounded.

Figure 1. Schematic diagram of TMR motion.

Table 1. Notations in Figure 1.

Notation Meaning

(X, O, Y) The global coordinate system
(X1, O1, Y1) The coordinate system attached to the TMR

q(x, y, θ) The actual position
q(xd, yd, θd) The desired position
(xe, ye, θe) The tracking error

vc The linear velocity generated by the kinematic controller
ωc The angular velocity generated by the kinematic controller
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The dynamic model of the TMR can be described by the following equation:

M(q)q̈ + C(q, q̇)q̇ + G(q)= B(q)τ+AT(q)κ+d. (3)

where M(q) denotes a symmetric and positive defined inertia matrix; C(q, q̇) is a
Coriolis–centripetal matrix; G(q) represents a gravity vector; B(q) is an input transfor-
mation matrix; τ =

[
τl τr

]T are the control inputs, with τl and τr denoting torques of
the left and right sides, respectively; κ = −m(ẋ cos(θ) + ẏ sin(θ))θ̇ represents the vector of
the Lagrange multiplier; d is the bounded external environmental disturbance.

The matrices M(q), B(q) above are defined as follows:

M(q) =

 m 0 0
0 m 0
0 0 I

, B(q) =
1
r

 cos(θ) sin(θ)
sin(θ) sin(θ)

b −b

,

where m is the overall mass of the TMR, I is the inertia, r represents the radius of the wheel
and h represents half of the distance between the track wheels.

The differential form of (2) is shown below:

q̈ = J̇(q)z + J(q)ż + φ̇(q, ξ). (4)

Notice that A(q)J(q) = 0, and it is assumed that the distance between the center of
the TMR form and its center of mass is zero, so the effect of C(q, q̇) can be eliminated from
(3). By multiplying both sides by JT(q) simultaneously, with (4) being substituted into
Equation (3), one can obtain

M̄ż = B̄τ + d̄, (5)

where M̄ = JT MJ , B̄ = JT B , d̄ = JT [d − Mφ̇ − MJ̇z − G] =
[

ρ3 ρ4
]T . Evidently, the

term d̄ contains the information of the unmeasured velocities and other external distur-
bances. Therefore, it is considered to be the lumped disturbance in the model.

Assumption 2. According to [33] , the lumped disturbance (d̄) satisfies the inequality
∥∥d̄

∥∥ < D,
where D is a bounded constant.

Further, (5) can be reformulated as

ż = M̄−1B̄(τ + d̄), (6)

The objective of this brief is that the FXZNN control scheme based on an FTESO is
developed for a TMR to suppress the influence of the lumped disturbance that exists in the
system, deal with the unmeasured velocities and improve trajectory-tracking performance.

3. Main Results
3.1. Preliminaries and Notations

Consider the following nonlinear system:

ẋ(t) = f (t, x), x(0) = 0, f (x(0)) = 0, (7)

where x(t) ∈ Rn, f (t, x) denotes the smooth nonlinear function and it is assumed that the
origin is the equilibrium point of system (7).

Definition 1 ([25]). Let us assume that system (7) is globally asymptotically stable. If there
exists a finite convergence time T for all t ⩾ T satisfying x(t) ≡ 0, then system (7) is globally
finite-time-stable.
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Definition 2 ([34]). System (7) is globally finite-time-stable. For ∀x0 ∈ Rn , there exists T ⩽ Ts ,
Ts ∈ R, denoting a bounded positive value; then, system (7) is globally fixed-time-stable.

Lemma 1 ([35]). If a continuous radial bounded function V(x) :Rn → R+ ∪ {0} satisfies
V̇(x) ⩽ −

(
j1Va

1 (x)− j2Va
2 (x)

)a3 + ϑ, with V(x) = 0 ⇔ x = 0, where ϑ ∈ (0,+∞),
{a1, a2, a3, j1, j2} > 0, a1a3 < 1, a2a3 > 1, then the system is globally stable and converges
to the balance point in fixed time T. Its convergence time T satisfies the inequality

T ⩽ Tmax :=
1

jk
1ι(1 − a1a3)

+
1

jk
2ι(a2a3 − 1)

, (8)

where ι is a positive constant, with 0 < ι < 1 .

Some notations used in the paper are shown below.

(1) Considering a given vector, ∥·∥2 is defined as the Euclidean 2-norm. |·| represents the
absolute value of a scalar. λmin{·} and λmax{·} denote the minimum and maximum
eigenvalue values of a matrix {·}, respectively.

(2) We denote x = [x1, x2, ..., xn]
T and sigα(x) = [sigα(x1), sigα(x2), ..., sigα(xn)]

T , where
sigα(xi) = sgn(xi)|xi|α(i = 1, 2, ..., n), where sgn(·) is the signum function, xi ∈ R,
α ∈ (0, 1), respectively.

3.2. FTESO Design

In this subsection, we explore an FTESO to estimate unmeasured velocities v, ω and
lumped disturbance d̄. To design the observer, the model of the TMR in (6) is converted
into the following form: 

ẋ = v cos(θ)− ρ1,

ẏ = v sin(θ) + ρ2 ,

θ̇ = ω.

(9)


mv̇ =

1
r

τv + ρ3,

Īω̇ =
R
r

τω + ρ4.
(10)

where τv = τl + τr , τω = τl − τr . Further, (9) and (10) can be converted into two cas-
cade subsystems: 

ẋ = v cos(θ)− ρ1,

ẏ = v sin(θ) + ρ2,

v̇ =
1

mr
τv +

1
m

ρ3.

(11)


θ̇ = ω,

ω̇ =
R
Īr

τω +
1
Ī

ρ4.
(12)

Based on Assumption 2, the following FTESO is designed to obtain an accurate
estimation of the unmeasured angular velocity ω and perturbation ρ4 in the equations.

˙̂θ = ω̂ + µ1sigα1(θ − θ̂) + ε1sigβ1(θ − θ̂),

˙̂ω =
R
Īr

τω +
1
Ī

ρ̂4 + µ2sigα2(θ − θ̂) + ε2sigβ2(θ − θ̂),

˙̂ρ4 = µ3sigα3(θ − θ̂) + ε3sigβ3(θ − θ̂) + Υtanh(θ − θ̂).

(13)

where θ̂, ω̂, ρ̂4 are the observation values of θ, ω, ρ4; the parameters αi = iᾱ − (i − 1),
βi = iβ̄ − (i − 1), i = 1, 2, 3, ᾱ ∈ (1 − m1, 1), β̄ ∈ (1, 1 + m2); Υ > D; m1 and m2 are two
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positive constants. The FTESO (13) gains are assigned to ensure that the matrices A, A1 are

Hurwitz, with A =

 −µ1 1 0
−µ2 0 1
−µ3 0 0

, A1 =

 −ε1 1 0
−ε2 0 1
−ε3 0 0

.

Theorem 1. The states θ, ω and the disturbance ρ4 can be estimated using FTESO (13) in fixed
time T1, with T1 being denoted as

T1 ⩽
λ

ρ
max(P)

r2ρ
+

1
r2σϖσ

, (14)

where ρ = 1 − ᾱ, σ = β̄ − 1, r1 = λmin(Q)
λmax(P) , r2 = λmin(Q1)

λmax(P1)
, ϖ ⩽ λmin(P1) is a positive constant.

The symmetric positive matrices P, Q, P1, Q1 satisfy the function{
PA + AT P = −Q,

P1 A1 + AT
1 P1 = −Q1.

(15)

Proof. The estimation error of the observer is defined as
θ̃=θ − θ̂,

ω̃=ω − ω̂,

ρ̃4=ρ4 − ρ̂4.

(16)

The derivative of (16) is given as
˙̃θ = ω̃ − µ1sigα1(θ − θ̂)− ε1sigβ1(θ − θ̂),

˙̃ω =
1
Ī

ρ̃4 − µ2(sigα2(θ − θ̂)− ε2sigβ2(θ − θ̂),

˙̃ρ4 = −µ3sigα3(θ − θ̂)− ε3sigβ3(θ − θ̂)− Υ tanh(θ − θ̂).

(17)

The remaining proof is similar to that of Theorem 1 in [36] and is thus omitted here
due to space constraints. If t ⩾ T1, θ̃, ω̃, ρ̃4 can converge to zero in fixed time. The proof
is completed.

Remark 1. The smooth function ρ̂4 is used to approximate ρ4. It should be noted that ρ̂4 = ρ4
cannot be obtained due to problems such as sampling noise and sampling delay.

According to (11), an auxiliary variable is defined as ψ = x cos(θ) + y sin(θ), with its
derivative being given as ψ̇ = v + ω(−x sin(θ) + y cos(θ)). Then, the FTESO for estimating
the linear velocity v and the lumped disturbance signal ρ3 is shown as follows:

˙̂ψ = v̂ + ω̂(−x sin(θ) + y cos(θ)) + µ1sigα1(ψ − ψ̂) + ε1sigβ1(ψ − ψ̂),

˙̂v =
1

mr
τv +

1
m

ρ̂3 + µ2sigα2(ψ − ψ̂) + ε2sigβ2(ψ − ψ̂),

˙̂ρ3 = µ3sigα3(ψ − ψ̂) + ε3sigα3(ψ − ψ̂) + Υ tanh(x).

(18)

where ψ̂, v̂, ρ̂3 are estimation values of ψ, v, ρ3, respectively. The estimation errors are
defined as follows: 

ψ̃=ψ − ψ̂,

ṽ=v − v̂,

ρ̃3=ρ3 − ρ̂3.

(19)
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The error system dynamics are shown as follows:
˙̃ψ = ṽ + ω̃(−x sin(θ) + y cos(θ))− µ1sigα1(ψ − ψ̂)− ε1sigβ1(ψ − ψ̂),

˙̃v = ρ̃3 − µ2sigα2(ψ − ψ̂)− ε2sigβ2(ψ − ψ̂),
˙̃ρ3 = −µ3sigα3(ψ − ψ̂)− ε3sigα3(ψ − ψ̂)− Υ tanh(ψ − ψ̂).

(20)

The stability analysis of error system (20) is the same as in Theorem 1 and is thus also
omitted here.

3.3. FTESO-Based FXZNN Model Design

An auxiliary velocity control input that achieves tracking for kinematic model (2) is
given by (21), which is a uniformly asymptotically stable velocity command obtained and
used in the study of tracking problems for mobile robots [37].

zc =

[
vc
wc

]
=

[
vd cos θe + k1xe

ωd + k2vdye + k3vd sin θe

]
, (21)

where vd ≥ 0, ωd are the desired linear and angular velocities, respectively, and k1 , k2 are
positive constants.

Since the approach assuming “perfect velocity tracking” is unrealistic [38], we should
find the torque input (τ) to implement trajectory tracking, such that z converges to zc in
fixed time. Then, the FTESO-based FXZNN model is introduced. The schematic diagram
of the FTESO-based FXZNN control system is shown in Figure 2.

Figure 2. Schematic of the fixed-time control system for a TMR.

Considering the design process of ZNNs, the following design formula is introduced:

ė(t) = −γΦ(e(t)), (22)

where e(t) represents the velocity error vector and γ > 0 ∈ R denotes the design parameter
used to adjust the rate of convergence. Φ(·) : Rn → Rn is the vector of activation functions,
any elements ϕ(·) : R → R of which can be any odd function with the monotonically
increasing property [39].

Then, a vector error equation, which enables the estimated velocities v̂, ω̂ to follow
the ones generated by (21) as soon as possible, is constructed as follows:

ec = zc − ẑ, (23)

where ẑ =
[

v̂ ω̂
]T .

By combining Equations (22) and (23), a neurodynamic model of the TMR dynamics
equation can be obtained as follows:

żc − ˙̂z + γϕ(ec) = 0, (24)
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where ˙̂z =


1

mr
τv +

1
m

ρ̂3 + µ2sigα2(ψ − ψ̂) + ε2sigβ2(ψ − ψ̂)

R
Īr

τω +
1
Ī

ρ̂4 + µ2sigα2(θ − θ̂) + ε2sigβ2(θ − θ̂)

,

żc =

[
v̇d cos(θe)− θ̇evd sin(θe) + k1 ẋe

ω̇d + k2v̇dye + k2vdẏe + k3v̇d sin(θe) + k3vd θ̇e cos(θe)

]
.

The control input can be obtained from (24) as follows:

[
τv

τω

]
=

mr
{
(v̇c − γϕ(ec1))−

1
m

ρ̂3 − µ2sigα2(ψ − ψ̂)− ε2sigβ2(ψ − ψ̂)

}
Īr
R

{
(ω̇c − γϕ(ec2))−

1
Ī

ρ̂4 − µ2sigα2(θ − θ̂)− ε2sigβ2(θ − θ̂)

}
, (25)

where ec1 = vc − v̂, ec2 = ωc − ω̂.
Up until now, we have constructed the ZNN control scheme based on the FTESO.

Different activation functions are used to obtain controllers with different performance, and
the following activation function with the fixed-time-convergence property is designed:

ϕ(eci) = (g1sigl1 x + g2sig1−1/l1(x))l2 + g3x, (26)

where {g1, g2, g3, l1, l2} ∈ R+, l1l2 > 1, l2(1 − 1/l1) < 1, i = 1, 2.

Remark 2. The residual error of the conventional ZNN model exponentially converges to zero,
indicating that the convergence rate is slower with a smaller residual error. In view of this, the acti-
vation function ϕ(eci) is designed to amplify the value of ėci/eci to achieve fixed-time convergence.
Additionally, the linear part of the activation acts as the robust term to achieve noise suppression.

Theorem 2. Using FTESO (13) and (18), if the controller in (24) and the activation function
in (25) are adopted, then the TMR can accurately follow the desired velocity generated by the
kinematic controller in (21) in fixed time Teci , that is, ẑ ≡ zc. The upper bound of convergence time
Teci (i = 1, 2) satisfies

Teci ⩽
1

γgl2
1 (l1l2 − 1)

+
1

γgl2
2 (1 − l2(1 − 1

/
l1))

. (27)

Proof. In the first step, we will verify that these states do not escape to infinity in any time
interval [0, T2).

Since the analyses of the two subsystems (11) and (12) are relatively similar, we take
(12) as an example for analysis, and the other subsystem can be analyzed according to it.{

ω̂e=ω̂ − ωc

ωe=ω − ωc
⇒ ω̂e − ωe = −ω̃ ⇒ ω̂e + ω̃ = θ̇e. (28)

We take the bounded function

F(θe, ω̃, ρ̃4) =
1
2
(θ2

e + ω̃2 + ρ̃2
4). (29)

The derivative of the above equation can be obtained as

Ḟ(θe, ω̃, ρ̃4) = θe θ̇e + ω̃ ˙̃ω + ρ̃4 ˙̃ρ4

= θe(ω̂e + ω̃) + ω̃ ˙̃ω + ρ̃4 ˙̃ρ4.
(30)
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Considering

 ˙̃ω=
1
Ī

ρ̃4 − µ2(sigα2(θ − θ̂)− ε2sigβ2(θ − θ̂)

˙̃ρ4=− µ3sigα3(θ − θ̂)− ε3sigβ3(θ − θ̂)− Υsign(θ − θ̂)
, we have

Ḟ(θe, ω̃, ρ̃4) = θe θ̇e + ω̃ ˙̃ω + ρ̃4 ˙̃ρ4

= θe(ω̂e + ω̃) + ω̃

[
1
Ī

ρ̃4 − µ2(sigα2(θ̃)− ε2sigβ2(θ̃)

]
+ρ̃4

[
−µ3sigα3(θ̃)− ε3sigβ3(θ̃)− Υsign(θ̃)

]
⩽ θeω̂e + θeω̃ +

1
Ī

ω̃ρ̃4 + 2Υ|ρ̃4|+ G,

(31)

where θ̃ = θ − θ̂, G = ω̃
[
−µ2(sigα2(θ̃)− ε2sigβ2(θ̃)

]
+ ρ̃4

[
−µ3sigα3(θ̃)− ε3sigβ3(θ̃)

]
Because θ̃, ω̃, ρ̃4 converge to zero in fixed time, it can be seen that they are bounded,

and we can obtain |G| ⩽ L1. According to Young’s inequality, we have

Ḟ(θe, ω̃, ρ̃4) ⩽
1
2

θ2
e +

1
2

ω̂2
e +

1
2

θ2
e +

1
2

ω̃2 +
1
2

ω̃2 +
1
2 Ī

ρ̃2
4

+2Υ2 +
1
2 Ī

ρ̃2
4 + L2

= θ2
e + ω̃2 +

1
Ī

ρ̃2
4 +

1
2

ω̂2
e + 2Υ2 + L1.

(32)

Since ω̂e is bounded, |ω̂e| ⩽ L3; therefore,

Ḟ(θe, ω̃, ρ̃4) ⩽ θ2
e + ω̃2 +

1
Ī

ρ̃2
4 + L̄, (33)

where L̄ = 1
2 L2

2 + 2Υ2 + L1.
The above equation can be written as

Ḟ(θe, ω̃, ρ̃4) ⩽ 2F(θe, ω̃, ρ̃4) + L̄. (34)

By solving for the inequality above,

F((θe, ω̃, ρ̃4)) ⩽ F(θe(0), ω̃(0), ρ̃4(0)) +
L̄
2

e2t − L̄
2

. (35)

As can be seen from (35), the states of the system θe, ωe, ρ̃4 are bounded. As a result,
these states do not escape to infinity in any time interval [0, T2).

Below, we demonstrate the fixed-time-convergence property of the system. For model
(24), we design the Lyapunov function as shown below:

V0 =
1
2
|eci|. (36)

The derivative of (36) is

V̇0 = ėcisign(eci)

= −γ

[
(g1sigl1 |eci|+ g2sig1−1/l1 |eci|)

l2
+ k3|E1i|

]
= −γ(g1sigl1 |eci|+ g2sig1−1/l1 |eci|)l2

⩽ −γ(g1sigl1 V0 + g2sig1−1/l1 V0)
l2 .

(37)

Based on Lemma 1, for all i, the bounded time Ti of the ith subsystem can be obtained as
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Ti ⩽
1

γgl2
1 (l1l2 − 1)

+
1

γgl2
2 (1 − l2(1 − 1

/
l1))

.

Then, eci converges to zero in upper-bound time Teci , with Teci = max{Ti}. Under the
condition of no noise, the FTESO-based FXZNN model is fixed-time-stable, since Teci is
independent of the initial state. The proof is completed.

3.4. FTESO-Based FXZNN Model Analysis with Noise

Noises are inevitable in practical implementation of neural networks. The FTESO-
based FXZNN model in (24) with additional noises will be discussed in this part.

Remark 3. Noise mainly includes high-frequency noises caused by sensor measurements and low-
frequency noises caused by hardware implementation offset errors, instantaneous decline in power
sources, etc. Disturbance mainly includes internal and external disturbances. Internal disturbance
is caused by parameter variation and model uncertainties. External disturbance is caused by the
interaction with the environment.

Theorem 3. If the proposed FTESO-based FXZNN model in (24) is attacked by an additional
bounded noise n(t) and ni(t) satisfies |ni| ⩽ γg3|eci|, where ni(t) denotes the ith element of n(t),
no matter whether the dynamic system is in any initial state, the FTESO-based FXZNN model in
(24) converges to the designed velocity in fixed time Tni .

Tni =
1

γgl2
1 (l1l2 − 1)

+
1

γgl2
2 (1 − l2(1 − 1

/
l1))

. (38)

Proof. Similarly to Theorem 1, the error function array of the FTESO-based FXZNN model
in (24) can be expressed as dec/dt = −γϕ(ec) + n(t), and its correspondent subsystem can
also be obtained as

deci
dt

= −γϕ(eci) + ni, i = 1, 2. (39)

The Lyapunov function V1 = 1
2 |eci| is utilized. The time differentiation of V1 is

dV1

dt
= ėci sgn(eci) = (−γϕ(eci) + ni) sgn(eci). (40)

Since the novel activation function in (26) is adopted, |ni| ⩽ γg3|eci|, and the following
formula is obtained:

dV1

dt
= ėci sgn(eci) = (−γϕ(eci) + ni) sgn(eci)

=

[
−γ((g1sigl1 |eci|+ g2sig1−1/l1 |eci|)

l2
+ g3|eci|) + ni

]
sgn(eci)

= −γ(g1sigl1 |eci|+ g2sig1−1/l1 |eci|)l2 + ni − γg3|eci|

⩽ −γ(g1sigl1 V0 + g2sig1−1/l1 V0)
l2 .

(41)

Based on Lemma 1, for all i, the bounded time ti of the ith subsystem can be obtained as

Ti ⩽
1

γgl2
1 (l1l2 − 1)

+
1

γgl2
2 (1 − l2(1 − 1

/
l1))

.

Then, eci with noise converges to zero in upper-bound time Tni, with Tni = max{Ti}.
Obviously, the proposed model in (24), in the presence of noise, converges to the velocity
signal in (21) in fixed time Tni , and Tni is also irrelevant with respect to the initial state of
the system. The proof is thus completed.
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4. Simulation Experiments

A circular path or a straight line was used in the simulation study with constant
reference velocities, which is a simplification in comparison to the environment that TMRs
encounter in real applications. The performance of the controller cannot be fully investi-
gated by using such a reference trajectory because the controller does not output any signal
after a certain point. For simulation purposes, an eight shape was given as the reference
trajectory in this paper. The desired signals were presented as

xd = 10 sin(t/20),

yd = 10 sin(t/10),

θd = actan2(ẏd, ẋd),

vd =
√

x2
d + y2

d,

ωd =
ÿd ẋd − ẍdẏd

x2
d + y2

d
,

t ∈ [0, 120].

(42)

The initial values of the TMR were given as
[

x y θ
]T

=
[

0 0 0
]T . The

FTESO’s design parameters were chosen as µ1 = ε1 = 90, µ2 = ε2 = 270, µ3 = ε3 = 2700,
Υ = 0.1, α1 = 0.8, α2 = 0.6, α3 = 0.4, β1 = 1.2,β2 = 1.4, β3 = 1.6. The initial states for
the FTESO were selected as ẑ =

[
0 0

]T ,
[

ρ̂3 ρ̂4
]T

=
[

0 0
]T . The FTESO-based

FXZNN model parameters were given as γ = 150, l1 = 1.5, l2 = 2, g1 = 1,g2 = 0.1,
g3 = 10. The lumped bounded disturbance was given as d = [2 + cos(t/10) + cos(t/3),
1 + 2sin(t/5) + cos(t), 1]T . Some common noise forms are shown in Table 2 [19]. The
considered noise in this paper is given as n(t) =

[
0.5 cos(2πt) + 0.5 0.5exp(−t) + 0.5

]T .
Simulation experiments were conducted to explore the performance of the proposed scheme
under noise and noise-free conditions, respectively. The TMR parameters are listed in
Table 3 [40]. All the simulations were conducted using MATLAB R2020b/Simulink software,
and the ode45 (DormandPrince) solver was used for the differential calculations with a
relative tolerance value of 0.001.

Table 2. Various noises.

No. Noise Item Expression

1 Constant noise ni(t) = 0.5
2 Periodic noise ni(t) = 0.5 cos(πt)
3 Disappearing noise ni(t) = 0.5exp(−t)

Table 3. TMR parameters.

Parameter Value Unit

m 150 Kg
I 35 Kg·m2

h 0.25 m
r 0.1 m
ξ 0.01 -

4.1. Tracking Performance in Noise-Free Environment

To verify the proposed FTESO’s performance, it was compared with the finite-time
extended state observer (FESO) proposed in [26] and the linear extended state observer
(LESO) proposed in [41]. The observer gains and initial conditions of the LESO and FESO
are the same as those in this article. The comparison results are shown in Figure 3.
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Figure 3. Comparison results of the FTESO, the FTESO proposed in [26], and LESO proposed in [41] .

Two indices, integrated time absolute error (ITAE =
∫ t f inal

0 t|eci|dt, i = 1, 2) and

integrated absolute error (IAE =
∫ t f inal

0 |eci|dt, i = 1, 2), were utilized to evaluate the
transient- and steady-state performance of the observer, where t f inal = 120 s is the running
time of the simulation. Small performance index values represent good performance. The
comparisons of the performance indices of the scheme are shown in Table 4. Obviously, the
performance of the proposed FTESO is better than that of the FESO and LESO.

Table 4. Comparisons of performance indices of observers.

Index FTESO (Proposed
Observer) LESO FESO∫ t f inal

0 |ec1|dt 5.2872 × 10−4 0.02994 0.13891∫ t f inal
0 |ec2|dt 5.39 × 10−3 0.05634 0.60107∫ t f inal
0 t|ec1|dt 2.61 × 10−3 1.4943 5.17001∫ t f inal
0 t|ec2|dt 1.4131 × 10−4 0.03808 39.38684

In the following, simulation results of the TMR are presented to demonstrate the
effectiveness of the proposed FTESO-based FXZNN model.

The simulation results are shown in Figures 4–7. Figure 4 presents the overall tracking
performance of the model and the control inputs of the TMR. It can be observed that the
TMR can reach the desired trajectory under the proposed control scheme. In Figure 5, we
can observe the TMR’s performance in detail, which confirms the TMR’s correct behavior.
It is observed in Figure 5c that the angle suddenly changes at t = 15π and t = 25π.
When conducting real experiments, it is recommended to change the angle defined at
t ∈ [15π, 25π] to avoid potential risk, though it does not affect the simulation result.
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Figure 4. Tracking performance of the proposed model and control inputs in noise-free environment.
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Figure 5. Evolution of TMR’s position (x,y,θ).
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Figure 6. Evolution of TMR linear velocity v and angular velocity ω in noise-free environment.
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Figure 7. The lumped disturbances and their observations.

Figure 6 displays the curves of the TMR’s velocities. Obviously, the linear and angular
velocity observation values can converge to the ones generated by the kinematic controller
in fixed time. Figure 7 illustrates that the proposed observer can accurately estimate the
system state and compensate for unknown lumped disturbances. It is observed that the
proposed control scheme drove the TMR to follow the desired trajectory under the condi-
tions of unknown lumped disturbances. Thus, the proposed control scheme is effective
and efficient.

4.2. Tracking Performance in Noise-Polluted Environment

To further validate system robustness, we conducted simulation experiments consid-
ering noise n(t). The above discussion demonstrates the superiority of the FTESO, and the
comparison with other observers is omitted here due to space constraints. The simulation
results are shown in Figures 8–10. Figure 8 demonstrates that the proposed scheme can
track the desired trajectory. It is shown in Figure 9 that even in the noise-polluted envi-
ronment, the proposed model can follow velocities generated by the kinematic controller
quickly. By comparing Figures 6 and 9, it is found that the difference in the simulation
results is very small between noise-free and noise-polluted situations. However, Figure 10
shows that the control signal curve is not smooth due to high-frequency noise.
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Figure 8. Tracking performance of the proposed model and tracking error considering noise.

Next, the convergence time of the system was explored through the comparison
between theory and simulation. In view of Theorems 2 and 3, we can calculate the theo-
retical convergence time in noise-free and noise-polluted environments separately. The
comparison results are presented in Table 5.
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Figure 9. Evolution of TMR linear velocity v and angular velocity ω considering noise.
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Figure 10. Tracking control signals τv and τω considering noise.

Table 5. Convergence time validation.

Condition Theoretical Convergence Time a Simulation Convergence Time b

Linear Velocity Angular Velocity Linear Velocity Angular Velocity

Noise-free 2.003 s 2.003 s 1.11 s 1.689 s
Noise-polluted 2.003 s 2.003 s 1.115 s 1.693 s

a is calculated using (27) and (38). b indicates that the velocity tracking error reaches the 10−5 order.

5. Conclusions

In this paper, a novel FTESO-based FXZNN control scheme is proposed for TMRs.
By virtue of the ZNN and extended state observer methods, the proposed control scheme
can guarantee that a TMR subject to unmeasured velocities and lumped disturbances
precisely tracks the velocity generated by the kinematic controller, as well as the reference
trajectory. Additionally, FXZNN model construction with unmeasured velocity is solved
using the proposed FTESO. As shown in the simulation experiments, the proposed FTESO
can achieve desirable performance when comparing it to the FESO and LESO. In addition,
we verified the convergence time of the control model under noise conditions, and the
results showed that the convergence time of the model was not affected by noise.

Generally, this paper provides a novel control framework for the trajectory-tracking
control of TMRs and successfully extends ZNNs from mobile robot kinematic control to
dynamic control, which builds a research bridge from observers to ZNNs. In future works,
we would like to conduct physical experiments to verify the effectiveness of the proposed
scheme and extend this framework to other similar mobile robots, such as skid-steering
mobile robots.
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