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Abstract: This paper discusses the challenges associated with a class imbalance in medical data and
the limitations of current approaches, such as machine multi-task learning (MMTL), in addressing
these challenges. The proposed solution involves a novel hybrid data sampling method that combines
SMOTE, a meta-weigher with a meta-based self-training method (MMS), and one-sided selection
(OSS) to balance the distribution of classes. The method also utilizes condensed nearest neighbors
(CNN) to remove noisy majority examples and redundant examples. The proposed technique is
twofold, involving the creation of artificial instances using SMOTE-OSS-CNN to oversample the
under-represented class distribution and the use of MMS to train an instructor model that produces
in-field knowledge for pseudo-labeled examples. The student model uses these pseudo-labels for
supervised learning, and the student model and MMS meta-weigher are jointly trained to give each
example subtask-specific weights to balance class labels and mitigate the noise effects caused by
self-training. The proposed technique is evaluated on a discharge summary dataset against six
state-of-the-art approaches, and the results demonstrate that it outperforms these approaches with
complete labeled data and achieves results equivalent to state-of-the-art methods that require all
labeled data using aspect-based sentiment analysis (ABSA).

Keywords: aspect-based sentiment analysis; meta-weigher; imbalance data

1. Introduction

Discharge summaries are virtual worlds where medical staff share their attitudes and
behavior towards patients, diseases, and treatments by writing comments in a text summary
format. Likewise, online and offline medical applications enable discharge summaries to
allow other medical staff to express their opinions about a specific medical decision [1].
Sentiments and opinions that appear in the medical staff’s behavior and attitudes have an
important influence on their decisions. Hence, profoundly understanding and analyzing
these summaries can help medical staff and the medical health center make decisions [2].

Sentiment analysis, also known as opinion mining, is the domain that analyzes text
to infer sentiments, emotions, or evaluations. In the literature, this domain is given many
terms like sentiment analysis and opinion mining as well as many names for various tasks,
for example, subjectivity analysis, opinion extraction, emotion analysis, etc. [3]. Sentiment
analysis studies infer the expressed opinions across various levels, including document,
sentence, and aspect levels. Therefore, various methods have been suggested to address
tasks in three categories: deep neural network models, traditional machine learning, and
rule-based methods [4].

Multi-model aspect-based sentiment analysis (MABSA) is of great value to sentiment
analysis tasks. There are three subtasks, including sentiment extraction (SE), for example,
good, bad, like, etc.; aspect-level sentiment classification (ASC), for example, positive,
negative, and natural; and aspect term extraction (ATE), related to the diagnosis of the
disease, which aims at associating each aspect with its respective polarity separately [5].
MABSA functionally operates at the intersection of information retrieval, natural language
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processing, and artificial intelligence. The aspect is the focus of the opinionated polarity,
which may be explicitly mentioned or implicitly indicated through a set of indicators in the
text. The explicit aspect, also known as a target, appears explicitly in the sentence, while
the implicit aspect, also known as a category, is mentioned in the text implicitly through its
indicators. In the literature, the former is known as aspect-target sentiment analysis (ATSA),
and the latter is called aspect-category sentiment analysis (ACSA). Given a sentence review,
ABSA first extracts a set of aspects and then identifies their respective polarities. MABSA
is mainly performed through three steps: detection, classification, and aggregation. The
detection step requires extracting the evaluated aspects in the text; the classification step
classifies the sentiment into a predefined set of polarities, e.g., positive, negative, and
neutral, in response to the extracted aspects; and the aggregation step produces a concise
summary [6].

However, ATE and ASC components are considered two-step pipelined tasks, and SE
is utilized separately. These three smaller components created for multi-task learning (MTL)
have been combined to form an end-to-end model. Utilizing MTL can concurrently attain
aspects of the opinions and sentiment polarities with a shared encoder. Learning about
each subtask can save a certain amount of computing resources and enhance speed [7].

However, compared to single-task learning systems, MTL-based MABSA confronts
more difficulties. The first issue is that different annotated subtasks may source an imbal-
anced label classification. In an MTL scenario, it is challenging to create enough examples
with an equivalent number of data labels for each subtask. This issue is made more explicit
in a sequence marking task when the class “others” makes up the majority of the tag sets. A
subtask label occurrence might not be enough to train a robust neural network. Taking an
applied discharge summary corpus in this research as an instance, the number of examples
with the most commonly labeled data is compared against the unlabeled data. With a small
dataset, very unbalanced data may mean that some classes do not provide enough support
for an MTL neural network to perform as intended [8].

To overcome the problem, as mentioned earlier, self-training groups are looking for a
robust way to develop aspect knowledge from the domain, such as choosing input based on
confidence and creating automated pseudo-labels to reduce the effects of incomplete and
unbalanced data [9]. By training a model with additional data that the model automatically
labels, a model’s prediction power can be improved. However, utilizing self-training
always creates noisy pseudo-labels [10], which could lead to the issue of progressive drift.
Re-weighting is a straightforward and common approach to solving this issue. Some self-
training techniques used utility thresholds and uncertainty to assess the data quality of data
that had been pseudo-labeled before giving low-quality pseudo-labels lower weights [11].

Assigning weights is more difficult in the following ways when using a self-learning
method in an MTL and sequence-labeling MABSA. First, smaller weights are required
for the generated pseudo-labeled data to reduce the effects of noise. Second, minority-
labeled classes are assigned higher weights to assist the model in learning from insufficient
data [12]. Finally, distinct subtasks may require different weights to be coordinated thor-
oughly because they have varying convergence rates and degrees of priority (primary tasks
vs. auxiliary tasks). Typical re-weighting studies probably concentrated on one of the
aforementioned circumstances. They created a predefined function to assign weights to
the data, which fixed the denoising or unbalanced distribution issues. It is challenging to
manually create a predefined weighting function that satisfies all three objectives while
also adapting well to changing conditions [13,14].

To address the abovementioned issues, such as imbalanced and insufficient data and
MABSA sub-problem weight reassigning, this study presents a Mix-weightier with the
Meta-based Self-training method (MMS). MMS utilizes self-training to collect additional
data and calculate different weights for several jobs in various situations. The proposed
MMS model contains three components: the Student Model, the Instructor Model, and
the extra meta-weightier. The student model has a similar construction as the IM. For the
student model to receive thorough and objective supervision during training, the meta-
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weights are utilized to reassign weights to both the gold and false labels. In contrast, the
IM only uses gold-labeled data to train it, avoiding the influence of false labels. The meta-
weightier offers subtask-specific weights of hybrid labeled data and data with no labels
for the student model. Moreover, this paper utilized a 3-step update technique based on
meta-learning to train the student model of MMS and the meta-weightier simultaneously
to ensure the meta-weightier can provide accurate weights. The meta-weightier can use the
recent response from the student model to build weights for current inputs by retaining
two sets of parameters. Since it has already been updated using a similar input, the meta-
weightier provides the student model with a better convergence. In the end, the student
model makes final predictions using the IM and meta-weights guidance.

In summary, the primary contributions of this paper are as follows:

• The proposed hybrid techniques SMOTE-OSS-CNN deal with solving issues when
utilizing an imbalanced dataset.

• This paper developed MMS, which combines a conventional instructor-student struc-
ture with a novel meta-weightier to achieve self-training. To reduce the effects of
noise, coordinate sub-tasks, and balance class labels in MABSA, the meta-weightier
can produce weights specific to each subtask.

• To jointly update the meta-weightier and student models, this paper develops a three-
step meta-training technique. By using the suggested technique, MMS will be able
to use the student model’s most recent feedback to guide MMS in the direction of a
temperature gradient.

• In MABSA challenges, this paper outperforms state-of-the-art methods with complete
labeled data while using only 40% of the training data to obtain better performance.
The experimental findings show how effective the suggested MMS is.

The rest of the research is ordered as follows: Literature Review is introduced in
Section 2; the mechanism of our proposed model is explained in Section 3; results of the
experiments are discussed in Section 4; lastly, concluding observations are provided in
Section 5.

2. Related Work

Recent MABSA research shows that multi-task knowledge is a common technique [14,15].
Compared to pipeline techniques, MTL-based methods address SE, ASC, and ATE concur-
rently instead of extracting aspect keywords first and then finding sentiment polarity. The
most recent studies concentrate on ways to improve interactions between sub-tasks. The
paper by [16] suggested a unique Gated Bridging Mechanism for filtering out unnecessary
information and exchanging important information between distinct sub-tasks. The work
by [17] provided a message-sharing mechanism across several tasks using a common set
of latent variables that jointly learned numerous correlated tasks at both the word token
and the document levels. In the research by [18], an MTL technique has been proposed to
encode cooperation signals between distinct sub-problems in a stacked-layer network.

However, in MTL-based sequence labeling data, for instance, MABSA, special data
features and needs should also be considered in addition to improving information inter-
actions. Self-training is a potentially useful method to address the issues of potentially
inadequate and unbalanced data features. Making up fictitious labels is a helpful tech-
nique for self-learning. Translating, rotating, and flipping are popular processes used
in computer vision to produce fictional label examples [19]. Due to the uncertainty of
language, creating pseudo-labeled data in the Natural language processing (NLP) disci-
pline is more complex [20]. For token-level sequence labeling tasks, randomly removing,
adding, and replacing specific tokens in a phrase may result in semantic incoherence and
unintended consequences [21]. So, in NLP activities, self-labeling is a more successful
technique. In work by [22], Using a prompt model with self-training for single-shot tasks
was recommended. To provide two viewpoints on an instance through weak and robust
augmentations, the structure from linear motion (SFLM) established an automated label
on the weak enhanced version and fine-tuned it with the highly enhanced version. In the
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research by [23], sentiment augment was developed to create task-specific data from a bank
of billions of unlabeled phrases for a given task. These data were categorized using a su-
pervised instructor model. The paper by [24] is comparable to ours, concentrating on using
self-training to overcome the scarceness of the label difficulty of sequence labeling tasks.
However, they only investigated a single-task setting, whereas this paper is attempting to
handle tasks of multiple sequence labeling.

Because pseudo labels are noisy, it might be problematic for the neural model to
converge effectively, which presents a problem for self-training. The produced pseudo
labels need to be carefully chosen to lessen noise’s effects. The estimated softmax score
was used in some early research [25]. Additionally, a portion of more recent active learning
research relied on model output scores to choose samples [26]. However, a forecast with a
score of high softmax cannot be completely reliable. This is because the quantity of training
data and the generalization capacity of these models, trained for producing pseudo labels,
are constrained. As a result, they may confidently assign incorrect labels [27]. Because
of this, some research [27,28] used curricular learning to choose data examples ranging
from simple to complicated. Some studies on self-learning used data uncertainty as a
selection factor for the data [26,29,30]. In this study, this paper picks pseudo-labeled data
using a model that accounts for utility and data uncertainty. The paper by [18] proposes
a Relation-Aware Collaborative Learning (RACL) framework that enables subtasks to
work collaboratively through multi-task learning and relation propagation mechanisms
within a stacked multi-layer network. Extensive experiments on three real-world datasets
demonstrate that RACL significantly outperforms state-of-the-art methods for the complete
ABSA task.

Recently, deep neural network (DNN)-based models have shown power in feature
representation for many NLP tasks, where the features with the same semantic context are
mapped to close points in the latent space [31]. For instance, the words improve and are
well-prepared, usually represented by close points in the embedding space due to their
semantic relation in the medical corpus. BERT-SPC [32] introduced simply concatenating
the sentence and the aspect term as a pseudo-sentence to model the representation in
response to the aspect. More recently, BERT-Pair [33] investigated BERT for ABSA through
various forms of auxiliary sentences, including pseudo-sentence, question answering, and
natural language inference, to address aspect category detection and polarity identification.

3. Proposed Method

The MABSA task is developed in this part. The idea is adopted from [34] with different
datasets and proposed with a different technique, with an overview of MMS and a detailed
explanation of the meta-weigher training procedure. Figure 1 shows that the proposed
MMS contains three components: the student model, the instructor model, and the meta-
weigher. The IM uses gold data to create pseudo labels, learn the task, and determine
the level of uncertainty for unlabeled data. The student model and the meta-weigher are
collaboratively trained to assign gold and fake data subtask-specific weights. Under the
guidance of the IM and the meta-weigher, the student model is trained with pseudo and
gold labels before conducting the final interference.

MMS uses two distinct instructor and student models, allowing the instructor to
only be trained with gold data to minimize the effects of noise and provide high-quality
pseudo labels. The student model can reduce insufficient and unbalanced data impacts by
adding more training data without requiring further manual annotations. It is possible to
take the appropriate precautions to stop the student model from gradually drifting since
automatically labeled data are noisy. To achieve this, this paper creates the meta-weigher
to offer subtask-specific weights. In contrast to human experts who employ fixed weight
functions, the meta-weigher takes input from the student model into account and may be
dynamically changed while being trained. This is similar to curriculum learning regarding
how it directs the student model to be educated using a learnable input sequence and
distinguishes gold data and pseudo.
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3.1. Task Description

ABSA is a common MTL problem containing SE, ASC, and ATE sub-tasks. Accord-
ing to the baseline research, each sub-task is designed as a task that involves labeling
sequences [35]. Comparison of many existing related works, based on ABSA refers to
Aspect-Based Sentiment Analysis [36], TASD refers to Target Aspect Sentiment Detec-
tion [37], ACSA refers to Aspect-Category Sentiment Analysis [38], and AOPE refers to
Aspect-Opinion Pair Extraction Sentiment is also extracted by this paper proposed ABSA
task [39]. The symbol (s) mentions sentiment, (o) mentions opinion, (c) mentions category,
and (a) mentions aspect. Explicitly, given the input sentence with L tokens, MMS purposes
for predicting a label sequence for each sub-task. The inside, beginning, and outside (IBO)
tagging text schema is utilized for ATE and SE sub-tasks, where “B” refers to the beginning,
“I” refers to the inner, and “O” refers to the other. For the ASC sub-task, MMS utilizes
the set of labels (very pos, pos, neu, neg, and vert neg), very positive, positive, neutral,
negative, and very negative, respectively. Some label in the subtasks refers to these labels
as not having an aspect word and not having a polarity of sentiment, which, in this step,
is ignored.

3.2. Self-Train Learning

The self-training process of MMS will be thoroughly explained in this part. There are
five steps in the MMS self-training: setting up the instructor model, creating pseudo labels,
setting up the student model, and this model self-training using the meta-weigher.
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The first phase, creating artificial instances, oversamples the under-represented class
distribution using the SMOTE-OSS-CNN. On the other hand, the learning model’s decision-
making is directly influenced by the development of synthetic examples closer to the
decision boundary.

The second phase is setting up the instructor model. The IM is a supervised technique
with a labeled dataset Dlab for setting up. To reduce the effect of noise from unlabeled data
on MMS, unlabeled data is not used in this training phase.

Hs = BERTTea(w1, . . . , wL) (1)

Ŷt
s = Argmax (So f tmax(FNNt

Tea(HS))) (2)

(w1, . . . , wL) refer to the input of the L token and S sentence task t ∈ (SE, ASC, and
ATE). Hs is the hidden representation of S ∈ DLab. Feed-forward neural network (FNN)
with two layers of activation of the ReLU. BERTTea is the encoder of the instructor model.
The instructor and the student model utilize BERT-large as encoders to allow for a fair
comparison with research [40,41]. LossTea is utilized to update the instructor model, which
is calculated as the average of the three tasks’ cross entropy CE.

LossTea =
1

∥Tasks∥ ∑t ∈Tasks ∑wi∈s CE
(

Ŷt
wi

, Yt
wi

)
(3)

where Ŷt
wi

∈ Ŷt
s , Yt

s is the gold label sequence, whereas Yt
wi

∈ Yt
s . Ŷt

s is a predicted
label sequence.

The third phase is creating pseudo labels. MMS employs the initialized instructor
model to produce data pseudo labels of unlabeled Dunl , utilizing modeling tools to choose
these produced labels and estimate data uncertainty. Dunl is extracted from the initial
dataset without label annotation.

Sunl , specifically, for each sentence without a label, considering dropout, given Naug
forward passes through the instructor model (dropout can introduce stochasticity). With
each run using the same model parameters, data augmentation is the term used by MMS to
describe the averaged representations of this unlabeled data. Then, for each token within a
sub-task t, an averaged representation is translated into a soft pseudo label.

Logtitst
s,pseu =

1
Naug

∑i ∈ Naug
FNNt

Tea (Hs,i) (4)

Ŷt
S,pseu = So f tmax

(
Logitst

S, pseu

)
, (5)

where Hs,i signifies the BERT hidden statuses of a sentence S from the ith forward pass
in the instructor model. MMS applies the dropout proposed by [42] to calculate data
ambiguity unc in the following Equation, based on labels of soft pseudo Ŷt

S,pseu.

unct
pseu =

Ŷt
S,pseu × Log Ŷt

S,pseu

∑S,∈Dunl
Ŷt

S,,pseu × Log Ŷt
S,,pseu

(6)

The above Equation is based on the idea that if this paper can apply the same model to
forecast the same example more than once and the results are various, this paper can com-
pute the entropy from these additional trials to estimate the uncertainty for this example.

The last data ambiguity uncpseu, for example, is averaged over various tasks t. The
occurrences are complex samples, as evidenced by higher data uncertainty. MMS may not
provide helpful information if it provides the self-training student model with too many
simple instances. However, a high level of uncertainty can imply that these data examples
are noisy. For this reason, MMS only employs pseudo-labeled data with ambiguity ranging
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from L% to U%, where L and U are hyperparameters. Dunc
pseu stands for the pseudo-label

data that has been filtered by uncertainty.
Moreover, the prediction utility of the instructor model for unlabeled data is measured

by utilpseu, which this paper defines. The variance between utilpseu and uncpseu is that
utilpseu is the level of the token and uncpseu is a measure of instance level. utilpseu is to
sample the sentences whose label sequences have more than no other tags, while uncpseu
purposes for selecting more confident and reliable sentences. The following Equation of
utilpseu is calculated by

utilpseu =
1

∥tag′∥ ∑tag ∈ tag′ So f tmax
(

logitstag
s, pseu

)
, (7)

where tags′ is the all-no other tags set from SE, ASC, and ATE. ABSA considering the
unbalanced label distributions, MMS chooses examples of which util > βtag to get more
no other tags, creating a pseudo-labeled dataset D util

pseu. βtag is a threshold hyperparameter,
the data samples uncertainty applied upper bound (U%) 80%, 75%, and 65%, lower bound
(L%) 20%, 30%, and 35%, and utility threshold (βtag ) 0.25, 0.3, and 0.4, respectively. The
ultimately chosen batch of pseudo-labeled data is by the following Equation.

Dpseu = Dutil
pseu ∩ Dunc

pseu (8)

To optimize the information gain for the student model without adding excessive
noise, MMS can selectively choose pseudo-labeled data with the right level of uncertainty
and utility.

The fourth phase is setting up the student model. The student model is set up with
Dlab, which is similar to the instructor model. Prepared student model aids avoid gradual
drift when the student model demeanors self-training with data of pseudo-labeled.

The fifth phase is using a meta-weigher to self-train the student model. The selected
pseudo-labeled data set is MMS. Dlab and Dpseu to form Dmix is combined first using MMS.
The student model uses Dmix to accomplish self-training. The student model applied the
BERT encoder to input the sentence S′ ∈ Dmix to obtain the representation HS′ by using
the first Equation and next applying the second Equation to get prediction labels Ŷt

S′ Then,
the following Equation is used to calculate Loss t

Mix.

Loss t
Mix = CE

(
Ŷt

S′
mix

, Yt
S′

mix

)
, (9)

For predicting a label sequence use Ŷt
S′ mix

. The pseudo or gold label sequence can be
presented by Yt

S′ mix
. The input length present by L and a loss sequence present by Loss t

Mix
is with this length. MMS retains the right to use this loss sequence as the meta-input
weigher for calculating the weights particular to each subtask. Then, Loss t

Mix is observed
as input parts of meta-weigher to computing the particular to each subtask and weights
Wt of time-changing.

Wt = meta − weigher
([

Loss t
Mix; Htab; Hepo; HS′

])
, (10)

where (;) illustrations chain and a two-layer forward neural network present meta-weigher.
The epo and tab are consistent embeddings of epoch and label, inspired by fully connected
layers, the model encoded by two separate embedding layers. The student model learning
progress is indicated by Hepo, which is normalized between 1 and 100 as an integer. A
one-hot vector is assigned to each label, and the one-hot vector is entered into the relevant
embedding layer to produce Htab, It identifies the relevant class. Similar to the previous
example, this number likewise maps into a one-hot vector and is fed into the appropriate
embedding layer to produce Hepo. This paper leaves out HS′ , Htab, and Hepo from the inputs
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of meta-weigher for clarity. Next, by using Wt weighted for each sub-task Loss t
Mix to gain

the final LossStu.

LossStu =
1
L ∑L wt. Loss t

Mix (11)

The following section provides specifics on how to update the student model using
LossStu. Algorithm 1 illustrates the whole MMS training.

Algorithm 1 MMS Self-learning

Input:
The instructor model, the student model, the meta-weigher;
Epoch’s maximum training iterations; the unlabeled data set Dunl ; the labeled data set Dlab;
Output:
A validation set’s predictions.
1: for i = 0 toward Epoch do
2: Setting the instructor model within Dlab.
3: Producing pseudo labels for Dunl within the prepared instructor model.
4: mingling the Dlab and pseudo-labeled Dunl toward form Dmix.
5: Prepared the student model within Dlab.
6: By training the student model and meta-weigher within Dmix by using the three-meta-update
approach
7: A conclusion based on the set of validation.
8: end for

3.3. Training Model

This part describes a 3-step meta-updating technique for training the student model
and the meta-weigher. Figure 2 shows the workflow. Using this technique, MMS can
weight-matching data instances using the most recent feedback (LossStu) from the student
model. The calculated weights may coordinate three sub-tasks in ABSA and reduce the
effects of noise in Dmix.

According to LossStu loss sequence, Once updated, the student model from ts = 0 to
ts = 1 is based on the following Equation.

θ1
stu = θ0

stu − λstu ∇θstu ∝m LossStuz (12)

TimeStep presents by ts. ∝m is a hyperparameter. The learning rate is shown by λstu
for the SM. However, the meta-weigher is not updated at this stage. Then, the student
model applies data with gold labels to compute LossLab. Its assistance with the meta-
weigher leads the student model to the suitable gradient way. Utilizing the revised student
model parameter θ1

stu and gold-labeled data, LossLab is computed. Next, the meta-weigher
is updated by the following Equation.(

θ1
mix = θ0

mix − λmix ∇θmix (∝m LossStu

∣∣∣θ1
stu

)
(13)

The learning rate for the meta-weigher is presented by λmix. LossLab is only applied
for training meta-weigher at this stage, without modifying other methods.

Then, MMS gains an updated meta-weigher ts = 1. Next, the student model’s
principle was previously changed using the data from the current batch, and the meta-
weigher may direct the gradient more appropriately. The meta-weigher takes the feedback
of the existing batch from the student model LossMix as input, the model of the original
student ts = 0, in the following Equation, officially updated with the supervision technique
of the upgraded meta-weigher.
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θ1
stu = θ0

stu − λstu ∇θstu (∝m LossStu

∣∣∣θ1
mix

)
(14)

where Loss 2
stu is correspondingly calculated with LossLab that relies on θ0

stu and θ1
mix. Al-

gorithm 2 shows the three-step meta-updating complete process. Algorithm 2 is used to
compute the time costs without/with, and the results show that conducting a three-step
meta-update will cost an additional 0.40 times the run cost.



Appl. Sci. 2024, 14, 300 10 of 24

Algorithm 2 The method of 3-step meta-updating for the student model and meta-weigher

Input:
A prepared the student model, the meta-weigher; the mixed label; the pseudo-labeled dataset
Dmix; and the labeled dataset Dlab;
Output:
Updated parameters in the second time step for the student model and the first time step for the
meta-weigher.
1: calculating weighted Dmix with LossStu.
2: Between time step 0 and the first-time step, updating the student model within LossStu.
3: Between time step 0 and the first-time step, update the meta-weigher within Dlab, which relies
on the student model in the first-time step.
4: Between time step 0 and time step 2, updating the student model within Dmix, which relies on
the meta-weigher in the first-time step.

4. Experiments and Results

This section presents the settings used in this paper’s empirical experiments, includ-
ing the hyperparameter initialization, applying the proposed to polarity detection, the
benchmark datasets, and the comparative methods.

4.1. Data Collection

The DS datasets as the objective corpus are examined in this research wherein 1237 de-
identified DS, obesity illness, and 15 comorbidities were considered as an illustration in
Table 1. This dataset was downloaded from the website www.i2b2.org/NLP/Obesity/
(15 May 2023), which was used to determine a correlation among various medical terms.
The experiment was performed to evaluate the proposed MMS, the treatment quality,
and health care based on the ABSA using the DS of the patients. This paper empirically
estimated the performance of the proposed solutions on a real benchmark.

Table 1. The i2b2 obesity corpus statistics.

Diseases Absent Present Unmentioned Questionable Total

Asthma 1 75 529 1 606
CHF 7 239 344 0 589
CAD 16 331 240 4 591

Obesity 3 245 354 4 606
Diabetes 12 396 181 6 595

Depression 0 90 519 0 609
GERD 1 98 500 3 602

Gallstones 3 93 513 0 609
Hypercholesterolemia 9 246 343 1 599

Gout 0 73 534 2 609
Hypertriglyceridemia 0 15 594 0 609

Hypertension 10 441 149 0 600
OSA 0 88 510 7 604
OA 0 89 513 0 602

Venous Insufficiency 0 14 592 0 606
PVD 0 83 525 0 608
Sum 62 2616 6940 28 9644

Referring to the parameters in Table 1, the words “Absent” and “Present” correspond-
ingly indicated that every DS provided the data on certain illnesses only and specific
illnesses together with other associated diseases. The words “Questionable” and “Unmen-
tioned” implied that each DS may relate to other diseases and does not refer to data about
other related illnesses, respectively.

www.i2b2.org/NLP/Obesity/
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4.2. Active Learning Method

The purpose of the active learning (AL) method is to reduce the problems and costs
related to the manual annotation step in supervised and semi-supervised machine learning
approaches [43,44]. Reduction in the manual annotation burden becomes exceptionally
critical in the medical domain because of qualified experts’ high costs for annotating
medical documents. This technique is applied for different biomedical tasks, for example,
text classification, medical named entity recognition, and de-identifying medical records.
The common AL technique is to choose the samples randomly. AL methods iteratively use
ML approaches, and a human annotator can drastically decrease by being involved in the
learning process.

Figure 3 shows the AL general cycle to extract information from the document. As
an iterative cycle, the query strategy was used to select the informative samples from
unstructured medical text documents. A human annotator does the labels, and these
samples are used for extracting data and building an ML-based model at every recurrent
cycle. This technique has not been fully explored for biomedical information extraction [30].
The key idea of AL is to test the effectiveness of the suggested model by decreasing
the number of samples that need manual labeling. The major problem is identifying
the practical examples available to train a model, producing better effectiveness and
performance [45].
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To accomplish the abovementioned objective, the authors collected the opinions and
views (through questionnaires) from various teachers, lecturers, linguistics (English lan-
guage) doctoral students, and annotators capable of teaching, understanding, and reading
English. The dataset was supplied based on AL and human annotators, and they were
asked to label each sentence using one of five terms: very positive, positive, neutral, nega-
tive, and very negative. The final label or polarity of the sentences was decided based on
the annotators’ majority vote, wherein the dataset was labeled sentence-wise. Two illnesses
were chosen randomly from a list of sixteen diseases: Asthma with 606 and Obesity with
606 DSs. The annotator aimed to create a gold standard to train data labeled at the sentence
level containing 10.439 sentences. The sentiment tag for each discharge summary based on
the sentences was assigned with the polarity of +1, 0.5, 1, 0, −0.5, and −1, corresponding
to each positive, positive, neutral, negative, and very negative, as shown in Table 2. These
datasets were utilized to assess the final results. To show the unbalanced label distributions
in ABSA, the ratios have been a list of various tags with three different tasks. ASC sub-task
denotes the ratio of very positive, positive, neutral, negative, and very negative. In this
research, MMS adopted the idea from the study [1], which applied 10-fold cross-validation
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to randomly select the training data as validation sets for adjusting hyper-parameters.
The other data are utilized for MMS training. Table 3 shows the statistical details of the
used datasets.

Table 2. The gold standard corpus statistics.

Diseases Very Positive Positive Neutral Negative Very Negative Total

Obesity 141 215 180 41 29 606
Asthma 213 150 211 21 11 606

Table 3. The percentage of tags ratio refers to the various tags for each sub-task. For the SE and ATE
sub-tasks, it shows the tags O, I, and B for all tag percentages. For the ASC sub-task, it shows the tags
ratio of very positive, positive, neutral, negative, and very negative.

Dataset Statistics Training Validation Testing

Obesity

No. Sentence 2155 510 990
No. Token 31,120 7240 10,560

Aspect labels (%) 10.93 9.99 13.20
Opinion labels (%) 9.02 7.29 8.90

The ratio of tags (SE) (%) 7/2/77 7/3/79 8/3/77
The ratio of tags (ATE) (%) 9/2/89 9/2/11 8/2/88
The ratio of tags (ASC) (%) 8/3/3/4/6 8/3/3/4/4 9/3/3/4/5

Asthma

No. Sentence 1160 220 870
No. Token 3090 8210 9620

Aspect labels (%) 9.89 10.01 12.41
Opinion labels (%) 9.15 7.40 8.97

The ratio of tags (SE) (%) 9/3/80 9/4/90 9/4/79
The ratio of tags (ATE) (%) 8/3/90 9/3/12 9/2/80
The ratio of tags (ASC) (%) 8/3/3/4/6 8/3/3/4/7 9/3/3/4/6

4.3. Word Embedding Model

BERT, one of the most accepted pre-trained models, can deal with succession task
problems such as textual classifiers, question answering, relation extractions, and SA. This
model can be trained using vast textual corpora; thus, it does not require dealing with the
parameters tuning. Therefore, fine-tuning was performed for the hyper-parameters. Two
models were considered inclosing, BASE and LARGE, wherein they are different in terms of
the number of hidden layers, attention heads, the size of the feed-forward networks hidden,
and highest sequence length parameters (the sizes of the accepted input vectors) (12 or 24),
(12 or 16), (768 or 1024), and (512 or 1024), respectively [46,47]. The applied BASE model
hyper-parameters are enlisted in Table 4. Compared to the LARGE model, the BASE model
is better in terms of less complexity, small dataset, and low sequence length. Conversely,
the LARGE model is comprised of a large number of parameters, leading to an over-fitting
and small dataset that is inappropriate for training the LARGE model. In addition, the
sequence length of LARGE is also a restriction because a small length is unsuitable for
the LARGE model as the model has limitations in fine-tuning the parameters, leading to
poor training.

These parameters were selected after performing the experiments with various feasible
values. The choice of large values of epoch and learning rate could not lower the loss values.
The BERT was used with two distinct tokens [SEP] and [CLS], wherein the former is used
for the separations of segments, and the latter performs the classifications. The classifier
from the first input token represented the whole sentence sequence, and the hidden layer
of size (H) had the same size as the output vector [48]. Thus, the output of the transformed
one was the closing hidden layer state used as an input for the first token. The vector
was C ∈ RH, wherein the output is utilized as input for the full-connected classification
layer. The layer matrix parameters for the classifier were W ∈ RKxH, where K signifies
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the category number. The likelihood of every category was calculated using the softmax
function, which can be calculated by the probability of each category and presented by the
following equations [49].

p = so f
(

CWT
)

(15)

where p is the probability of each category, and sof is the softmax function.

Table 4. The values of the fine-tuned Hyperparameters.

Hyperparameter Value

Maximum sequence length 128
Parameters 110 M
Hidden size 768

Learning rate 0.00003
Epochs 8

Gradient accumulation steps 16
Attention heads 12
Hidden layers 12

However, the transformer is the BERT base. The word sequence is taken from two
different sentences, presented by y and x. [SEP], After x and y, the token is located, while
[CLS], before x, the token is located. The embedding function presented by E and the
normalization layer shown by NL, the embedding function is given below;

ĥ0
i = E(xi) + E(i) + E(1x) (16)

ĥ0
j+|x| = E

(
yj
)
+ E (j + |x|) + E

(
1y
)

(17)

ĥ0
. = Dro

(
NL

(
ĥ0

.

))
(18)

where is the dropout layer [50].
The embedding techniques are passed through blocks of transformer M. Applying the

activation function of Element-Wise Gaussian Error Linear Units (GELU), the function of
Multi-Heads Self-Attention (MHSA), and Feed-Forward Layer (FFL) [51], by each block of
transformer it is calculated as follows:

ĥi+1
. = Skip (FFL, Skip

(
MHSA, hi

)
(19)

Skip( f , h) = NL (h + Dro( f (h))) (20)

FF(h) = GELU
(
h W⊺

1 + b1
)

W⊺
2 + b2 (21)

where hi ∈ R(|y|+|x|)∗dh , W1 ∈ R4dh∗dh , W2 ∈ R4dh∗dh , b1 ∈ R4dh , b2 ∈ R4dh and each new
ĥi the position is equivalent to the following:[

. . . , ĥi, . . .
]
= MHSA

([
h1, . . . , h|y|+|x|

])
= W0 Concat

(
h1

i , . . . , hN
i

)
+ b0 (22)

Instead, it is true in each head of attention that:

hj
i = ∑|y|+|x|

k=1 Dro
(

∝(i,j)
k

)
W j

vhk
(23)

a(i,j)k =
exp

(
W J

Qhi

)⊺

W J

khk√
dh/N

∑
|y|+|x|
k1=1 exp

(
W J

Qhi

)⊺

W J

khk√
dh/N

(24)
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where hj
i ∈ R(dh/N), W0 ∈ R(dh∗dh), b0 ∈ Rdh and W j

Q, W j
K, W j

V ∈ Rdh/N∗dh), with N
equal to the attention head’s number [52].

Figure 4 displays the word clouds of frequently occurring sentiment terms in med-
ical documents. The world or text cloud is an illustration of the textual data. The text
mining approaches enable highlighting of the texts of high-frequency terms as sentences,
paragraphs, or documents, making more visual engagement than the ones represented
manually. Four health documents’ sentiment (terms) word cloud (Figure 4) clearly shows
the text cloud results. It was observed that most of the arrangements of sentiment terms in
the medical documents are connected to the status, improve, stable, failure, etc. In general,
these terminologies play a fundamental role in evaluating the treatment quality.
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4.4. Lexicon Generation

This section presents one of the novelties of this work. The lexicon limitation is one
of the most significant challenges in the medical domain. The novel mechanisms to build
and integrate the lexicon-based sentimental scores have been introduced into the learning
process of beep learning through an attention mechanism to address SA tasks. This section
was separated into two sections, as follows:

(i) This section compares the proposed BOW approach with SentWordNet [53] and
UMLS [54], VADER [55], and TextBlob lexicon [56], relying on the semantic SA method
that suffers from the issue of neglecting a neutral score. This problem is solved by
applying the POS (PENN) tagging techniques like (JJ.* |NN.* |RB.* |VB.*) retrieved
from www.cs.nyu.edu/grishman/jet/guide/PennPOS.html) (15 May 2023). Next,
two lists of the terms were generated, wherein BOW is the first, and four lexicons are
fused as the second list that relied on the hypernym’s procedure.

(ii) In the second section, the sentiment-specific word embedding models are proposed
to learn the sentimental orientation of features in the existing language models, like
GloVe, Word2Vec, FastText, BERT, and TF-IDF, from the global context in a specific
domain. Inspired by this intuition, this paper introduces a weak supervised solution to
build a domain-specific sentiment lexicon. Specifically, this paper proposes leveraging
a small seed of sentiment words with the feature distribution in the embedding space
of a specific domain to associate each word with a domain-specific sentiment score.

www.cs.nyu.edu/grishman/jet/guide/PennPOS.html


Appl. Sci. 2024, 14, 300 15 of 24

The key idea is to learn a set of cluster embeddings used to build the lexicon by
looking at their neighbors in the latent space. To achieve this, this paper introduces
an unsupervised neural network trained to minimize the error reconstruction, i.e.,
analogous to autoencoder, of a given input as a linear combination from the cluster’s
matrix. The model does not require labeled data for training purposes, so constructing
a sentiment lexicon in the low-resource language is possible. Finally, the obtained
results were applied to assign the training dataset relying on the medical documents.
The input to the model is a list of sentence indexes in the vocabulary, which is
modeled by simply averaging its corresponding features’ vectors. The modeled
input dimension is reduced to k clusters to compute the relatedness probability to
each cluster. The model is trained to approximate the modeled input as a linear
combination of cluster embeddings from C. An example of the proposed model is
shown in Figure 5. The sentiment polarity was estimated via the:

Polarity of text sentiment = (neg − pos)/(pos + neg + neu) (25)

mt =
1
n ∑n

i=1 li
w, (26)

where li
w denotes the feature vector of the word wi. Hence, mt denotes the sentence

representation that captures the input sentence’s global sentiment representation.

rt = CT . vt, (27)

where rt denotes the reconstructed vector, and vt is a weighted vector over k clusters.
Particularly, vt can be read as the probability that the input belongs to the clusters. It is
computed by reducing the sentence representation mt from d dimension to k dimension
and then applying a so f tmax nonlinearity to yield nonnegative weights:

vtso f tmax(W. mtb), (28)

where W is the projection parameter, and b is the bias, which is learned during the train-
ing process.

C ∈ Rk×d. (29)

where C denotes the cluster matrix.
In the next stage, the numerical representation for each sentence was obtained. The

processed dataset was submitted words-wise to an embedding pre-trained model BERT.
After that, SentiWordNet, TextBlob, VADER, UMLS, and statistical techniques were used to
develop a specialized vocabulary (medical domain) that determined the polarity of each
sentence. Various sizes of the lexicon (number of terms) were also examined to test this
method’s reliability [57]. The lexicon’s capacities were also evaluated with different sizes
of lexicons to investigate whether the largest or smallest lexicon of sentiment can produce
better results [58]. The largest lexicon produced the highest performance, and the smallest
lexicon resulted poorly. Figure 6 compares the obtained results relying on the number
of words in each lexicon, indicating the values of lexicons 1,2, 3, 4, 5, 6, and 7 are 10.000,
20.000, 30.000, 40.000, 50.000, 60.000, and 70.000, respectively.
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Figure 6. The size-dependent performance of each sentiment lexicon.

After creating the lexicons, the ratio of the sentiments in assigning the polarity was
non-equivalent, indicating the model over-fit on the unbalanced dataset. To solve these
issues, SMOTE-OSS-CNN (One-Side-Selection) and (Condensed Nearest Neighbors) were
proposed for the imbalanced datasets following the balance of the number of samples
for all classes in the dataset. Balancing was accomplished by generating the synthetic
minority samples so that the number of samples for the minority class was almost equal to
that of the majority class. Consequently, the models achieved a high accuracy using the
SMOTE-OSS-CNN approach, producing synthetic samples of the minority class [59]. In
brief, the proposed models achieved a high level of accuracy when the SMOTE-OSS-CNN
approach was employed to produce the artificial samples of the minority class. The binary
classification was performed as the first experiment of the proposed method, which was
achieved for four cases of illness: asthma with neutral and positive labels, asthma with
neutral and negative labels, obesity with neutral and positive labels, and obesity with
neutral and negative labels.
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5. Baselines

To validate the performance of the proposed solution, this paper compares it with state-
of-the-art techniques; all the basslines have been experimented on based on the datasets
that were applied in this paper.

• IMN-GloVe is a collaborating MTL method for SE, ASC, and ATE, which can be applied
at both the token word and document levels. IMN proposed a message transfer system
that may change across tasks via shared latent variables. MMS compares their findings
utilizing BERT-large for a pre-trained linguistic model for a fair comparison.

• BERT-single, BERT is a primary component of our BERT-based proposed solution. To
illustrate the effectiveness of the auxiliary sentence, this paper also compared it with
BERT-single, where ACSA is regarded as a text classification problem.

• AEN-BERT is an attentional encoder network for the ATSA task, which models context
and target through an attention-based encoder. AEN-BERT is the pre-trained model
BERT fine-tuning to tackle ATSA tasks. In our experiment, this paper adopts it to
tackle the ACSA task.

• BERT-SPC, a BERT-based approach, introduced concatenating the aspect and sentence
in one long text, then fine-tuned BERT to address the ATSA task. In our experiment,
this paper adopts it to tackle the ACSA task.

• LCF-BERT proposed a local context focus mechanism that used the context features
mask and context dynamic weight layer to capture the local aspect context. An
addition layer based on BERT is applied to exploit the connection between the local
and global context.

• BERT-Pair, a BERT-based fine-tuning model that considered the aspect category man-
ually annotated as an auxiliary sentence. It introduced different variants to convert
ACSA to sentence-pair classification tasks, such as question answering and natural
language inference.

6. Evaluation Metrics

The suggested model in this work has been evaluated using recall, precision, accuracy,
and F-measure (F1). The performance and efficacy of a given approach model are assessed
using a variety of measures. Because not all measures are appropriate for a particular
problem, a model is crucial in this last stage of development. Sometimes, a new assessment
metric can be offered to assess the final approach. The measurements chosen may impact
how a model’s effectiveness and performance are compared and evaluated. A simple
confusion matrix is a two-by-two that lists all incorrect and correct patterns predicted by
a classifier model [60]. For instance, True Negative (TN) shows the number of negative
samples that the classifier correctly predicted as negative, False Positive (FP) shows the
number of negative samples that the classifier incorrectly predicted as positive, and so on.
False Negative (FN) shows how many positive samples the classifier incorrectly identified
as negative, and True Positive (TP) shows how many positive samples the classifier correctly
predicted as positive [61].

MMS applies BERT-large with 1024 hidden dimensions. The maximum number of
sentences that may be entered is 100. To update MMS, Adam Optimizer is utilized. The
batch size is 64. The learning rate λStu of the linear layers and BERT-large on the maximum
of BERT-large is equal to 8 × 10−5 and 4 × 10−5, respectively. The 8 × 10−5 is referred
to λMix. The method applied a threshold βtag, lower (L%) and upper (U%), and limits of
doubts for the objects brought to the student model by MMS are presented in Table 3. In
Algorithm 1, the total training epoch is 500, and Naug is set to 2.
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7. Results

The key findings of the suggested MMS are shown in Table 5. Since MMS is a self-
training technique, this paper investigates how well it performs with various quantities
of manually annotated data. It is important to note that while this paper reported MMS
performance using the datasets in 10%, 20%, and 40% with benchmarking baselines, all
labeled data from the corresponding dataset are shown in Table 5. Additionally, MMS has
been evaluated using additional unlabeled dataset augmentation with 70% and 100% of
the data. Between 70% and 100% of labeled data, respectively, have been used in both
settings. The introduction of the unlabeled dataset augmentation is intended to provide
extra pseudo-labeled data to aid in learning the student technique and the meta-weigher.
More labeled data for MMS leads to increases in all MMS F1 metrics of various sub-tasks,
as shown in Table 5. In terms of ABSA-F1, which has just 30% labeled data, this paper
suggested MMS performs better than the state-of-the-art techniques. In addition, MMS
sightly best performs the state-of-the-art method BERT-Pair in the Asthma and Obesity
datasets, with only 40% labeled data. The 40% labeled data of Asthma has been adopted,
and ABSA-F1 of MMS is lower than the results of full-data supervised AEN-BERT. This
conclusion results from the magnitude of the asthma data being less than half that of the
obesity data. The produced pseudo data may be excessively noisy from an unreliable
instructor model, making it insufficient to train a robust instructor model to direct a
student model.

Table 5. The comparative results of the aspect category polarity on Asthma and Obesity datasets
were measured by the F1 metric with multi-sub tasks. Some results of the state-of-the-art methods
are retrieved from the original papers, while the others are our implementation. The best scores are
highlighted in bold.

Model
Asthma Obesity

SE-F1 ASC-F1 ATE-F1 ABSA-F1 SE-F1 ASC-F1 ATE-F1 ABSA-F1

IMN-GloVe 82.0% 84.0% 87.3% 88.67% 86.9% 88.56% 85.5% 93.3%
BERT-Single 85.14% 87.25% 90.14% 90.07% 86.87% 87.98% 86,68% 92.06%
AEN-BERT 88.3% 89.9% 93.83% 80.74% 88.08% 90.0% 92.28% 93.93%
BERT-SPC 89.9% 91.6% 93.3% 90.11% 88.83% 88.55% 92.51% 93.89%
LCF-BERT 88.7% 91.1% 92.8% 91.72% 89.3% 89.86% 93.6% 94.4%
BERT-Pair 91.37% 91.1% 92.67% 93.60% 88.7% 86.82% 92.1% 92.4%
MMS (our) 87.85% 89.05% 95.94% 96.4% 94.45% 86.64% 89.35% 93.0%
MMS (10%) 87.92% 84.61% 85.26% 92.74% 91.04% 86.24% 88.58% 86.4%
MMS (20%) 91.82% 89.25% 89.87% 93.76% 92.78% 89.07% 90.89% 89.05%
MMS (40%) 92.07% 90.86% 91.25% 93.39% 92.78% 90.24% 91.54% 89.35%
MMS (70%) 93.78% 91.37% 91.77% 90.07% 93.04% 89.95% 91.47% 93.60%

MMS (100%) 91.37% 91.77% 86.82% 96.90% 93.72% 93.78% 93.43% 94.76%

Next, MMS uses additional unlabeled data from another dataset for self-training
together with 70% and 100% of the annotated data from the datasets for Obesity and Asthma
as labeled data. The Dataset section describes the extra unlabeled data that was used. The
reductions in Asthma are visible with more labeled data, whereas the improvements in
Obesity begin to be restricted. In Asthma, for example, ABSA-F1 measurements rise by
1.05% (40% vs. 70%) and 1.71% (70% vs. 100%). In Obesity, the equivalent increases are
0.75% (40% vs. 70%) and 0.77% (70% vs. 100%). These findings suggest that MMS can, to
some extent, decrease the need for labeled data.

To summarize, MMS may obtain equivalent outcomes with only 40% labeled data
compared to the strongest baselines in each dataset. MMS uses more stringent data choices
to prevent noise effects when using 70% and 100% labeled data. In such cases, where there
is a lack of data, MMS can obtain equivalent outcomes with only 50% labeled data. MMS
uses more stringent data choices to prevent noise effects when using 70% and 100% labeled
data. Because the issue of inadequate data is not evident in this situation, MMS creates
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fewer pseudo-labels and focuses on re-weighting data instances in Dmix. Then, the final
improvement of MMS is 1.41% compared with the BERT-Pair method in Obesity and 0.84%
with LCF-BERT in Asthma.

More labeled data for MMS, all MMS F1 scores of distinct sub-tasks are generally
growing. With only 20% labeled data from ABSA-F1, this paper suggested MMS beats
IMN-GloVe in all sub-tasks. In the same settings, MMS is comparable to the performance
of LCF-BERT in Asthma and Obesity datasets, achieving improved results in Asthma. By
applying the same BERT encoder and 40% labeled data, MMS can attain the enhancements
of around 6% ABSA-F1 for Asthma and approximately 1% ABSA-F1 for Obesity, compared
with the state-of-the-art methods. Following all baselines, this paper considers the first
sentiment label predicted for an aspect phrase to be an ASC result, and this paper excludes
conflicting sentiment labels from the ASC subtask. This exclusion may cause the ratio sum
in ASC to be less than 100%. Additionally, as mentioned earlier, this paper assigns an
enhanced dataset for each dataset to further investigate MMS’s data usage.

On the other hand, the effects of the quantity of data with and without labels. This
paragraph investigates the effects of various amounts of annotated data on MMS. The
impacts of incorporating and removing unlabeled data on model performance are first
contrasted (see Table 5). All models often demonstrate the growing F1 measures by
using additional labeled data. Across all of the used labeled data ratios, MMS (including
unlabeled data) may consistently enhance the ABSA-F1 measurements by 10% to 40%.
The largest discrepancy between MMS labeled data and unlabeled data emerges when
employing 10% labeled data in Asthma, accounting for 4.10%. The greatest noticeable gains
for Obesity are provided by 1.10% with 40% labeled data. MSM with 10% tagged data
shows a modest improvement for the obesity and asthma datasets. The improvement is
visible when utilizing more than 20% tagged data. This is due to the difficulty in managing
a workable instructor model with only 10% labeled data. Effective initialization of the
instructor model is required for MMS to prevent progressive drift.

This paper illustrates the produced weights and contrasts them with different common
weighting techniques since the MMS meta-weigher seeks to automatically learn various
weighting strategies under various scenarios (weighers). Weighers’ inputs are virtual losses
in the range of 0 to 10. The virtual losses are uniformly distributed, automatically created
numbers. These losses replicate all potential inputs to our weighers within a reasonable
range, which helps visualize the learned distribution of weighers. Afterward, several
weighers are fed the losses. For more information, see Figure 7, including four different
cases (a) to (d). The explicit mathematical functions are manually used in the construction
of the weighers. The weigher is this paper’s suggested meta-weigher, which is trained
using various ABSA sub-tasks and datasets. We take advantage of visualization to reveal
certain details about the suggested model. To illustrate the effectiveness of our MMS model,
this paper first shows the confusion matrix as a heat map. Figure 8 displays the MMS heat
maps on the DS dataset. Overall, the sentiment classes and the performance of our model
are balanced. In terms of convergence capability, the quantity of trainable parameters,
and training time, our suggested model outperforms IMN-GloVe. Our models require a
great deal less training time as compared to BERT-Pair. As a result, our model learns more
rapidly than its equivalent, as seen in Figure 9a, where training time is recorded on a single
NVIDIA Quadro M5000. Our MMS model is more parameter-efficient and takes less time
to train, whether the context is global or local. The training curve is displayed with training
and testing losses in Figure 9b. For all the compared models, this paper uses the same loss
function. While LCF-BERT is prone to overfitting, in this paper, MMS converges as quickly
as its competitors.
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8. Conclusions

In conclusion, this research proposes a multi-task approach for aspect-based sentiment
analysis, utilizing deep neural network models for sentiment detection. To address the issue
of insufficient and unbalanced data in the MABSA task, the SMOTE-OSS-CNN, and meta-
based self-training approach MMS are suggested. MMS contains the meta-weightier, the
student model, and the instructor model, and a 3-step meta-updating technique is suggested
to avoid noise in the automatically labeled data. Overall, this study has implications for
discharge summary sentiment analysis.

Future work will involve dealing with numerous sequence labeling jobs under more
challenging low-data conditions. Moreover, this paper intends to explore data augmenta-
tion to address imbalanced data to increase performance stance detection. Additionally,
feature extraction is required for greater contextual information, for example, information
on the aforementioned discharge summary, discharge in the same thread, and disease
connection networks to enhance sentiment stance detection on discharge summary.
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