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Abstract: Adenophora remotiflora is a wild perennial plant used as oriental medicine and ornamental
flowers in East Asia. The haploid genome size of A. remotiflora was estimated at 3.9 Gb with a
2.42% heterozygosity ratio. The chloroplast genome of 174,455 base pairs (bp) shows a circular map
structure, and has four conserved regions consisting of a large single-copy region of 108,423 bp, a
small single-copy region of 10,444 bp, and a pair of inverted repeats (each 27,794 bp). A total of
108 unique genes were annotated, comprising 74 protein-coding genes, 4 ribosomal RNA genes, and
30 transfer RNA genes. A total of 155 repeat sequences were identified, and comparative genome
structures were characterized among the Adenophora species. Phylogenetic diversity showed that A.
remotiflora is in a close position within the Adenophora genus, and Adenophora erecta is in the closest
evolutionary position.
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1. Introduction

The scattered-flower ladybell (Adenophora remotiflora Miq.) of the Campanulaceae
family is a perennial herbaceous plant that inhabits East Asia. A. remotiflora is a traditional
oriental medicine, and its flowers are cultivated for ornamental purposes. Its extract
has been reported to have health promotion effects, including antioxidant functions for
improving skin conditions, managing chills, and clearing coughs [1]. The Campanulaceae
family consists of more than 1000 species [2], and Adenophora is a large genus with a complex
taxonomic history. The Adenophora species are important medicinal and horticultural plants,
and there is an increasing demand for various cultivars with high medicinal herb content
and disease resistance [3].

Chloroplasts play a major role in the photosynthesis metabolic pathway, pathway
signaling, and the production of multiple compounds, such as flavonoids [4,5]. The plants’
chloroplast genome has a circular map structure with four conserved regions: a large
single-copy region (LSC), a small single-copy region (SSC), and two separated inverted
repeats (IRs) [6]. Chloroplast genome sequences are widely used in genome evolution
studies and phylogenetic classification [7,8].

The Adenophora genus species have very different genomic structures due to many
sequence inversions [9]. Although previous studies focused on the Adenophora species,
their taxonomic and evolutionary positions are unclear, because of the recombination of
many genes [10]. Therefore, chloroplast genome assembling of A. remotiflora is useful for
clarifying the phylogenetic diversity and evolutionary tendencies.
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Here, we estimate the genome size in A. remotiflora for the first time, and the chloro-
plast genome was assembled using de novo sequencing (NCBI accession no. OP920648).
Comparative genome structure analyses with phylogenetic diversity were performed for
the Adenophora genus clade.

2. Materials and Methods
2.1. Plant Material, Sequencing, and Genome Size Estimation

A. remotiflora was collected from Yeongyang County, Gyeongsangbukdo, Republic of
Korea (1085 m, N 36◦48′23.87′′, E 129◦05′22.78′′). Genomic DNA was isolated from fresh
leaves. DNA integrity, purity, and concentration were confirmed using a NanoDrop 2000
(Thermo, Waltham, MA, USA) with 1% agarose gel. Illumina paired-end (PE) libraries with
two 125 bp read lengths were constructed, and sequenced on an Illumina HiSeq X platform
(Illumina, San Diego, CA, USA) according to the Illumina manual protocol. Among the
sequenced raw reads, poor-quality reads (PHRED score < 20) were filtered via the trimming
check of the CLC Assembly Cell (CLC, Aarhus, Denmark). The estimation of genome size
was performed using two genome estimation tools (Jellyfish, GenomeScope) [11,12]. The
optimal k-mer value was calculated by changing the k-mer distribution (17, 19, 21, 23, 25,
27, 29, and 31). According to the optimal k-mer value, the genome size was estimated using
two genome estimation tools.

2.2. Chloroplast Genome Assembly, Gene Annotation, and Characteristic Visualization

Using quality-filtered Illumina PE reads, de novo assembly was performed using
the CLC genomic assembler (CLC, Aarhus, Denmark) after read preprocessing. The
primary assembled contigs were aligned to the chloroplast sequences of Adenophora erecta
(NC_036222) downloaded from Organelle Genome Resources of the NCBI (https://www.
ncbi.nlm.nih.gov/, accessed on 20 July 2023). The primary aligned contigs were manually
curated (i.e., base correction, circularization, and gap-filling) using the reference function of
the CLC Assembler (CLC, Aarhus, Denmark). Filtered sequences were annotated using the
GeSeq [13], and predicted genes were manually curated and confirmed using Artemis [14].
The multilayer structure of the chloroplast map was visualized using CPGView [15].

2.3. Repeat Sequences of A. remotiflora

Three repeat types of the chloroplast sequences were analyzed as simple sequence
repeats (SSRs): dispersed and tandem repeats. For the short-repeat sequences (repeat
units < 7 bp), SSRs and short tandem repeats were identified using the MIcroSAtellite
(MISA) identification tool [16]. The unit size/minimum repeat parameters were set as
10/mono-nucleotides, 6/di-, 5/tri-, and 4/multi-. For the long-repeat sequences (repeat
units ≥ 7 bp), dispersed repetitive sequences were distinguished using VMATCH [17]
based on the following setting: repeat distance (3); the repeat length (30) was specified. The
long tandem repeats were detected using Tandem Repeats Finder [18] with the following
settings: matching ratio (80%), indel ratio (10%), matches (2), mismatches (7), size (500),
and score (50).

2.4. Chloroplast Sequence Comparison among the Adenophora Species

Eight chloroplast sequences of the Adenophora species were downloaded from Or-
ganelle Genome Resources of the NCBI (https://www.ncbi.nlm.nih.gov/, accessed on
20 July 2023) as reference sequences: A. remotiflora (KP889213), A. remotiflora (OP920648),
A. erecta (NC_036222), A. divaricate (NC_036221), A. kayasanensis (MZ365443), A. racemose
(MT012303), A. stricta (NC_036223), and A. triphylla (MT649408). To compare the structural
differences, multiple layer alignments were performed to detect the deletion, inversion, and
re-arrangement events using Mauve [19]. Gene content similarities were displayed using
mVISTA [20], and junction genes of boundary regions were evaluated using IRScope [21].

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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2.5. Phylogenetic Diversity among the Campanulaceae Family

To clarify the phylogenetic diversity, a total of 15 genome sequences were downloaded
from Organelle Genome Resources of the NCBI (https://www.ncbi.nlm.nih.gov/, accessed
on 20 July 2023). These sequences were eight Adenophora species, namely Hanabusaya asiatica
(NC_024732), Trachelium caeruleum (NC_010442), Codonopsis lanceolate (MH251613), Platy-
codon grandifloras (NC_035624), Viburnum carlesii (MN985820), Sambucus nigra (NC_045061),
and Helianthus annuus (NC_007977), with the last three species used as the outgroup. The
62 protein-coding genes commonly shared among 15 chloroplast sequences were subjected
to evolutionary position and phylogeny relationship analysis. The commonly shared
genes were multi-aligned using MAFFT [22], and phylogenetic diversity was shown using
MEGA11 with the employment of a maximum likelihood (ML) method [23]. The ML trees
were reconstructed using the GTR-GAMMA model, as it is the best substitution model,
and bootstrap iteration was set to 1000.

3. Results and Discussion
3.1. Genome Size Estimation of A. remotiflora

A. remotiflora was sequenced using an Illumina HiSeq X platform (Illumina, San Diego,
CA, USA), resulting in 1680 million reads and 253.7 Gb raw sequence length. After filtering
and correction, trimmed 188.2 Gb sequences were derived with a 139 bp average read
length and 41.5% GC content. For whole-genome size estimation, two genome estimation
tools (GenomeScope and Jellyfish) were used based on the trimmed sequences. Because the
estimated efficiency of the genome size is affected by changing k-mer values, we evaluated
the optimal genome size via varying the k-mer frequency values in both methods. Using
the GenomeScope method, the genome size was predicted to be between 3.7 Gb and 3.9 Gb.
The optimal k-mer value for the highest predicted model fit was 23; then, haploid genome
size was estimated to be 3.9 Gb (Figure 1a). Using the Jellyfish method, the genome size was
predicted to be between 3.7 Gb and 3.8 Gb. The genome size using the optimal k-mer value
(k = 23) was 3.8 Gb (Figure 1b). The haploid genome size was estimated to be 3.8–3.9 Gb
with a 2.42% heterozygosity ratio, and only 541.9 Mb unique genome sequences (13.9%)
were detected. It is assumed that A. remotiflora (2n = 2x = 36) has many heterogeneous parts
between the haplotypes in the parent genome.
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Figure 1. Genome size estimation of A. remotiflora (a) Whole-genome size with optimal k-mer
frequency values were measured using GenomeScope profile plots. (b) Whole-genome sizes were
measured using Jellyfish.

3.2. Chloroplast Genome Assembly of A. remotiflora

For the assembly construction of the chloroplast genome, 1.5 Gb sequences were re-
extracted from the trimmed 188.2 Gb sequence dataset. The assembled genome presented
a circular-shaped structure with 174,455 bp. The circular structure had four conserved
regions consisting of LSC (108,423 bp), SSC (10,444 bp), and a pair of IRs (IRa and IRb; each

https://www.ncbi.nlm.nih.gov/
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27,794 bp). A total of 131 genes were functionally predicted including 23 multicopy genes
(Table 1). The 23 duplicated genes were excluded from the 131 gene dataset, resulting in
108 unique genes being annotated (Table 1, Figure 2).

Table 1. Chloroplast genome features and identified genes in A. remotiflora.

Category Group Name of Genes

Photosynthesis

Photosystem I psaA, psaB, psaC, psaI, psaJ

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbK, psbL,
psbM, psbN, psbT, psbZ, ycf3, psbJ *

Cytochrome 1 petA, petB, petD, petL, petN, petG *
ATP synthase atpA, atpB, atpE, atpF, atpH, atpI

NADH 2 ndhC, ndhD, ndhE, ndhF, ndhJ, ndhK, ndhA *, ndhG *,
ndhH *, ndhI *

Rubisco 3 rbcL

Self-replication

SSU ribosome 4 rps2, rps3, rps4, rps7, rps8, rps11, rps14, rps16, rps18, rps19,
rps12 *, rps15 *

LSU ribosome 5 rpl2, rpl14, rpl16, rpl20, rpl22, rpl32, rpl33, rpl36
Polymerase 6 rpoA, rpoB, rpoC1, rpoC2
rRNA genes rrn16 *, rrn23 *, rrn4.5 *, rrn5 *

tRNA genes

trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU,
trnG-GCC, trnG-UCC, trnH-GUG, trnK-UUU, trnL-UAA,
trnL-UAG, trnM-CAU, trnQ-UUG, trnR-UCU, trnS-GCU,
trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-UAC,
trnY-GUA, trnA-UGC *, trnR-AGC *, trnI-GAU *,
trnL-CAA *, trnN-GUU *, trnP-UGG *, trnV-GAC *,
trnW-CCA *, trnI-CAU **

Other genes Cytochrome 7 ccsA,
Envelope 8 cemA,
Maturase matK
ORFs 9 ycf2, ycf4, ycf1 *

1 chloroplast cytochrome b6f complex, 2 NADH dehydrogenase (quinone), 3 subunit of rubisco, 4 small subunits,
5 large subunits, 6 RNA polymerase, 7 C-type cytochromes genes, 8 envelope membrane proteins, 9 open reading
frames, multicopy genes (* two, ** three copies).

This genome has 19 intron-containing genes consisting of 11 protein-coding genes and
8 transfer RNA genes (trnG-UCC, trnK-UUU, trnL-UAA, trnV-UAC, trnA-UGC (×2), and
trnI-GAU (×2)). Among these genes, three genes (rps12 (×2) and ycf3) contain two introns,
and sixteen genes have one intron. In particular, three genes (trnA-UGC, trnI-GAU and
rps12) have two copies. In the RNA splicing, we identified nine splicing genes consisting of
eight cis-splicing and one trans-splicing (rps12) gene (Figure S1). The ycf3 cis-splicing gene
has two introns, which is important in photosynthesis [9].

Chloroplast genome genes were categorized into three functional groups: photosyn-
thesis, self-replication, and “other genes” [24]. The annotated 108 genes of A. remotiflora
were categorized into 44 genes in the photosynthesis metabolism, 58 expression genes
in the self-replication, and 6 genes in the “other genes” category. Among the classified
genes, the photosynthesis category was functionally divided into six groups (Table 1). This
category had two dominant gene families, such as five genes of the photosystem I group
and sixteen genes of the photosystem II group. The self-replication category comprised
five groups, including 34 encoded genes from ribosomal and transfer RNAs. The “other
genes” category was divided into four groups, and three genes (ycf1, ycf2, and ycf4) as open
reading frames, whose gene functions are unclear, were identified.
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3.3. Identification of Repeat Sequences in A. remotiflora

The genome size and structural changes are mainly affected by length differences
in repetitive sequences. The repeat sequences are a major cause of gene recombination,
sequence divergence, and genomic rearrangement [25]. Three types of repetitive sequences
were identified to reveal the structural changes. In total, 155 repeat sequences were detected,
covering 25 SSRs, 49 dispersed repeats, and 81 tandem repeats.

In the short-repeat sequences (repeat units < 7 bp), detected SSRs were composed
of 22 mono-nucleotides, two di-nucleotides, and one tri-nucleotide (Table S1). All SSRs
were 10–15 bp long, and the A/T repeat units of mono-nucleotides showed a 90.1% ratio.
Generally, SSRs are used to evaluate molecular markers, genetic diversity, and evolutionary
position [26,27].

Regarding the long-repeat sequences (repeat units ≥ 7 bp), we detected 49 dispersed
repeats and 81 tandem repeats. The dispersed repeats comprised two types: 22 palindromic
matches and 27 direct-forward matches (Table S2). The tandem repeats had a period size
(repeat unit size) ranging from 9 to 114 bp per copy, and repeat copy numbers ranged
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from 1.9 to 25.0 copies (Table S3). Dispersed and tandem repeats are the main cause of
sequence variation, recombination, and rearrangement [28,29]. Therefore, 155 detected
repeat sequences could be used to distinguish genetic diversity and identify potential
molecular markers for the Adenophora species.

3.4. Comparison of Chloroplast Genome Sequences

Multiple genome alignments are widely used to analyze complex gene structures
and genome collinearity [30]. We aligned local collinear blocks (LCBs) to characterize the
genome structure of A. remotiflora. The nine LCBs were identified among eight Adenophora
species, and these LCBs had small structural rearrangements except A. triphylla (Figure 3).
In particular, A. triphylla differed from that of the other Adenophora species. This chloroplast
genome is presumed to be highly variable, because it has extensive morphological variation,
and a large chloroplast genome size [31].
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In the chloroplast genome, rearrangement/recombination of sequences is a cause
of adaptive evolution and advantageous mutation [32]. The multilayer alignment was
performed in the eight Adenophora species using mVISTA. The sequence alignment results
were unclear because of the many layers of genes. To clarify, we compared the alignment
results using only two A. remotiflora, i.e., A. remotiflora from this study (NCBI accession No.
OP920648), and another from a previous report (NCBI accession no. KP889213). These
alignment results showed that the chloroplast genome size differed by 2731 bp, and both
A. remotiflora have many highly conserved sequences, except the petG gene (Figure 4). We
assumed that the petG gene, known as components of the cytochrome complex subunit,
was the gene variation point between the two A. remotiflora specimens.
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Figure 4. Chloroplast nucleotide sequence alignments between A. remotiflora (this study, NCBI
accession no. OP920648) and another A. remotiflora sequence (NCBI accession no. KP889213) using
the mVISTA program. Red arrow indicates the location of the petG gene, and gray arrows show the
direction and position of each gene. The white areas indicate the dissimilar regions, and gene name is
shown at the top.

3.5. Comparison of Inverted Repeats Region

Inverted repeats (IR) contraction and expansion events are a major source of chloro-
plast sequence variation [33]. IR boundary comparison was performed between two A.
remotiflora (OP920648 and KP889213). Both IR region sizes ranged from 27,437 to 27,794 base
pairs (bp). In the LSC/IR border region, five genes (trnL, trnH, psbA, rrn16, and ycf2) were
found, and four genes (psaC, ndhF, ndhE, and ndhG) were found in the SSC/IR border
(Figure 5). Among the 10 ndh family genes identified in A. remotiflora (Table 1), only the
ndhE gene (303 bp length) was found in the SSC/IRa (JSA). In particular, a ndhE pseudogene
fragment of 157 bp size was found in the SSC/IRb (JSB) of A. remotiflora (KP889213). This
pseudogene moved by one base pair from the SSC to the IRb. Therefore, we assumed that
the two A. remotiflora had sequences for plant species distinction in the JSB border regions.
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3.6. Phylogenetic Diversity in the Campanulaceae Family

In the plant chloroplast genome, phylogenetic trees were used in the determination
of evolutionary positions, and phylogeny construction was employed at different taxo-
nomic levels [34]. To better evaluate the Phylogenetic diversity among the Campanulaceae
family, a ML tree was reconstructed using 62 commonly shared genes, with the closely
related three species of Viburnum carlesii, Sambucus nigra, and Helianthus annuus as an
outgroup. All phylogenetic relationships were consistent with traditional taxonomy based
on morphology-based classification in the Campanulaceae family [35]. Eight Adenophora
species were clustered in the closest position, and most species showed high bootstrap sup-
port values. The phylogeny results indicated that A. remotiflora was within the Adenophora
clade and was the closest relative of A. erecta (Figure 6).
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remotiflora used in this study.

4. Conclusions

Genome size and chloroplast genome were estimated in A. remotiflora. The com-
plete chloroplast genome features were compared among eight Adenophora species. The
chloroplast genome was characterized based on multilayered alignments, repeat sequences,
comparative divergence, and boundary regions. The genome structure is well conserved
throughout the Adenophora genus, except for A. triphylla. These data will increase the
available sequences for the Campanulaceae family, and 155 identified repeats have the
potential to be used as molecular markers for the Adenophora species.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app14010275/s1, Figure S1. Schematic representation of the eight
cis-splicing genes in A. remotiflora. Table S1. Characteristics of simple sequence repeats in A. remotiflora,
Table S2. Characteristics of the dispersed repeats in A. remotiflora. Table S3. Characteristics of the
tandem repeats in A. remotiflora.
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