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Abstract: Microbial communities are known to contribute deeply to geochemical cycles, includ-
ing weathering, protection from erosion and mineral precipitation. Studies aiming to understand
mining areas’ microbiomes are of high relevance since they can help pinpoint the occurrence of
environmental shifts, key bioremediation species, environmental metals recovery strategies, and
microorganisms with relevant industrial properties. Nonetheless, so far, the study of Portuguese
gold-rich areas’ microbiomes has been largely neglected. The main goal of this study was to apply
high-throughput sequencing methods to study the microbiome (Bacteria and Fungi) and predict
their functional/metabolic profiles in an abandoned Portuguese gold mining area (considering zones
without a history of mining, the tailings and the flooded mine interior). The results obtained revealed
high bacterial and fungal diversities at these sites while also pinpointing the presence of relative
homogenous bacterial and heterogenous fungal communities. Areas without mining history were
mainly dominated by WD2101 soil groups, Sphingomonas, Candidatus Solibacter, Helotiales, unclassi-
fied Fungi and Arxotrichum. The tailings were mainly colonized by Bryobacter, WD2101 soil groups,
WPS-2 genera, Starmerella, Helotiales and Mollisia. On the other hand, the mine area displayed a domi-
nance of Crossiella, Gemmataceae, Acidobacteriaceae (Subgroup 1), Acidiphilium, Mortierella, unclassified
Fungi and Chaetothyriales. Furthermore, we verified that contrary to bacteria, the fungal structural
diversity is somewhat more restricted to each site. In addition, metabolic, functional and ecological
profiles revealed a strong distinction for both bacterial and fungal communities while also revealing
the presence of well-adapted communities to each of the particular microenvironments considered.

Keywords: gold mine; metabarcoding; microbiome; bacteria; fungi; tailings

1. Introduction

Despite its somewhat limited mainland territorial area, Portugal holds various im-
portant inorganic hotspots, mainly congregated in three large and distinct mineralogical
clusters present across the country [1,2]. When focusing on gold (Au)-rich areas/ores,
multiple interesting sites have been identified, with some of them being known since the
Roman occupation period [3,4]. However, for the past thirty years, solely the Panasqueira
(mostly Tungsten (W)), Aljustrel (mostly Copper (Cu) and Zinc (Zn)) and Neves Corvo
(mostly Cu and Zn) mines have been actively operating. Thus, Portuguese gold mines or
even interest presumed prospection areas, while explored and studied in the past, have
now become largely forgotten. Throughout the ages, gold has served as a critical economic
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currency, shaping human civilization, society, history and development. Nonetheless, aurif-
erous mining is known to contribute to the increase of toxic elements, heavy metals and
metalloids in the environment [5–7]. Due to the high level of waste resulting from drilling
and the consequent creation of dumps and tailings containing the ensuing waste stream,
this activity is known for having serious detrimental environmental impacts. Arsenic (As),
Zn, Cu and lead (Pb) are known to be released and accumulated during gold extraction
processes, contributing to soil and water contamination and, consequently, posing several
human health risks [8]. These include various skin disorders, respiratory issues and other
long-term health effects (e.g., cancer) due to arsenic, mercury and cyanide food, water and
land contamination, and human exposure. Moreover, these elements can also affect the
microbiome of these areas and their various ecosystem functions/services.

Microbial communities are known to be key players in geochemical cycles [9–14].
Their presence, proliferation and activity contribute to various natural geomorphic roles,
including weathering, protection from erosion and precipitation of particles and miner-
als [11–13]. Diverse microbial communities can act on fundamental geological processes,
since they are able to conduct organic and inorganic transformations, element cycling, rock
and mineral transformations, bioweathering, neo-mineral formation and metal/clay inter-
actions [11,15]. In fact, a large fraction of the microorganisms at the surface and subsurface
biosphere constitutes a key component of biogeochemical cycles.

The study of mining areas’ soils microbiomes can contribute to (1) identifying en-
vironmental shifts; (2) recognizing key bioremediation species; (3) highlighting novel
environmental metals biorecovery strategies; (4) identifying microorganisms with rele-
vant industrial physiological properties; (5) contributing to the development of circular
economies; (6) and as for the case of fungi, acting as possible geological proxies for gold
prospection [16–25]. Thus, understanding the diversity and structure of microbial com-
munities in rich metal areas, such as gold mines, is currently of high scientific, industrial
and applied relevance. Nonetheless, microbial studies in such settings are still scarce,
and while a considerable amount of information is available for prokaryotes, much less is
known for fungal communities [6,22,26–38]. Commonly, the study of bacteria and archaea
in gold mining environments focuses on their uniqueness and phylogenetic diversity in
these settings [6,26,27,30,32–34,36–38]. Some physiological peculiarities have also been
explored, including bacteria contribution to the sulfur cycle, the identification of mercury-
resistant strains, the evaluation of heavy metal immobilization potential, and the effects
of toxic metals and plant diversity on the communities’ organization [6,27,30,34–36]. As
for fungi, studies have mainly focused on the community structure associated with soil,
boreal species colonizing mine tailings, the arsenic impact on the molecular diversity of
arbuscular mycorrhizal and filamentous fungi, and some heavy metal tolerance traits (e.g.,
arsenic resistance) [28,29,31,34]. Nonetheless, there is still a lack of studies simultaneously
focusing on prokaryotic and fungal communities in these settings. Furthermore, given that
numerous mines experience flooding during and after operations, the knowledge in these
cases is notably much more constrained [39]. Additionally, the settings in these areas can
also lead to the formation of acid mine drainage (AMD) ecosystems. These are a result
of the slow oxidation of pyrite and other sulfide minerals exposed to air and oxygenated
water, being often accelerated by microorganisms with oxidation abilities [40,41]. When
these minerals are exposed to oxygen and water through mining activities, they can un-
dergo chemical reactions (oxidation and hydrolysis) that produce sulfuric acid. Similarly to
general gold mine scenarios, while numerous studies on AMD bacteria and archaea are
available, few have been conducted focusing on fungi, particularly with modern molecular
biology techniques [40,41].

During the past years, the development, optimization and implementation of DNA-
based methods to study microbial communities has revolutionized modern microbiology
and microbiome analysis. The application of high-throughput sequencing (HTS) next-
generation sequencing (NGS) approaches has deeply expanded the possibility to extensively
characterize microbial communities [42–48] while also contributing to understanding their
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metabolic functions and their active byproducts in a particular environmental context.
During the last decade, Portuguese areas long known to be rich in Au, silver (Ag), Cu Zn,
iron (Fe), W and lithium (Li) have been the focus of a fresh wave of interest. Nonetheless, so
far, the study of the structural and functional microbiomes of Portuguese gold-rich areas has
been largely neglected. Abandoned mining areas are recognized as extreme environments
due to the consequences of auriferous removal, including increased concentrations of heavy
metals, metalloids and other toxic elements. Flooded mines also pose additional challenges
for microbial proliferation since the availability of organic matter, oxygen and light in these
settings is often limited [39]. As there is still no record of the structural and functional
microbiomes of Portuguese gold-rich areas, the aim of this work was to gather information
regarding the bacterial and fungal communities in an abandoned gold mining area across
areas without a history of mining activities, the mine tailings and the flooded mine interior.
For that, we employed culture-independent methodologies (Illumina MiSeq® (Illumina,
San Diego, CA, USA) 16S rRNA gene and Internal Transcribed Spacer 2 subregion targeted
metabarcoding sequencing) coupled with differential bioinformatic analysis to profile
these communities and their functional/ecological traits at various locations of the Escádia
Grande mining complex (Góis, Portugal).

2. Materials and Methods
2.1. Sampling Site Description, Sample Collection and Processing

Located at circa 11 km south of Góis (Coimbra, Portugal), the Escádia Grande mine
is the most important mining site in the 252 km2 homonymous exploration area (Au-Ag
metallogenic belt). In general, the area’s steep slope is covered by dense vegetation, mainly
from Eucalyptus globulus and Pinus pinaster. The exploitation of mineralogical resources
has been dated back to the Roman period, although recently, the mine is known to have
operated from 1940 to 1952. During this period of active exploitation, it is known that
prospection occurred underground on seven levels and that circa 42,878 tons of material
were handled [49]. Ore deposits are composed of tabular quartz veins consisting of quartz,
arsenopyrite, pyrite, rare chalcopyrite, galena, sphalerite, gold and argentite [3,50]. Au-Ag
bearing quartz veins are 70 cm thick, up to 300 m long, with an average of 8 g/t of Au and
33 g/t of Ag [49,50]. Mine dumps and tailings are mainly composed of quartz and other
rock pieces with various sulfides (mainly arsenopyrite and galena). Moreover, mine wastes
contain up to 8090 mg/kg of As and 70.1 mg/kg of Sb with arsenic, thus being the main
human health concern trace element present in the Escádia Grande mining area [51].

Three representative samples were selected for analysis: (P1) a control sample in
an area located outside of the main mine zone, known to be deprived of relevant gold
concentrations and without any history of past mining activities; (P2) a sample from the
tailings located on the mining area hill, circa 25 m in front of the mine entrance (surrounded
by dense fern vegetation); and (P3) a sample from the mine interior, collected at about
1 m next to the entrance (on one of the few lateral wall dry spots found, due to the mine
being flooded) (Figure 1). Soil samples (circa 25 g) were collected to a depth of 5 to 10 cm
after removal of the surface soil (±5 cm). Samples were properly conditioned to prevent
contamination in individual sealed sterilized bags, cooled at 4 ◦C for transportation and
maintained in sterile conditions (unopened and undisturbed) until further laboratory
analysis. In the laboratory, samples were air-dried for 24 h and then sieved to remove the
presence of plant material before environmental DNA extraction.
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2.2. DNA Extraction, High-Throughput Sequencing

The air-dried and sieved soil samples DNA was extracted using a combination of
the Nucleospin Soil Kit (Macherey Nagel, Düren, Germany), Buffer SL1 and the Enhancer
SX according to the manufacturer’s instructions. Samples were then prepared for Il-
lumina Sequencing by amplification of the 16S rRNA gene V3/V4 hypervariable regions
and the Internal Transcribed Spacer 2 (ITS2) sub-regions of the microbial communities. For
this purpose, the hypervariable DNA regions were initially amplified with specific primers
and further reamplified with a limited-cycle PCR reaction aiming to add the sequencing
adapters and dual indexes. The initial PCR reactions were individually performed using
the KAPA HiFi HotStart PCR Kit (according to manufacturer suggestions), 0.3 µM of each
PCR primer and 2.5 µL of template DNA in a total volume of 25 µL. The primers consid-
ered consisted of the forward primer Bakt 341F 5′–CCTACGGGNGGCWGCAG–3′ and the
reverse primer Bakt 805R 5′–GACTACHVGGGTATCTAATCC–3′ for bacteria [52,53]; and a
pool of forward primers ITS3NGS1 F 5′–CATCGATGAAGAACGCAG–3′, ITS3NGS2 F 5′–
CAACGATGAAGAACGCAG–3′, ITS3NGS3 F 5′–CACCGATGAAGAACGCAG–3′, ITS3NGS4
F 5′–CATCGATGAAGAACGTAG–3′, ITS3NGS5 F 5′–CATCGATGAAGAACGTGG–3′ and
ITS3NGS10 F 5′–CATCGATGAAGAACGCTG–3′ and the reverse primer ITS4NGS001 R
5′–TCCTSCGCTTATTGATATGC–3′ for fungi [54]. The conducted PCR reactions entailed
a 3 min denaturation at 95 ◦C, 35 cycles of 98 ◦C for 20 s, 55 ◦C (bacterial region)/60 ◦C
(fungal region) annealing for 30 s, extension at 72 ◦C for 30 s and a final extension step
at 72 ◦C for 5 min. Indexes and sequencing adapters to both ends of the amplified target
regions were added through a second PCR reaction according to the manufacturer’s recom-
mendations [55]. Negative PCR controls were considered for all amplification procedures.
Amplification was evaluated by electrophoresis on a 1% (w/v) agarose gel and quantified
by the Qubit dsDNA High Sensitivity Assay Kit (Invitrogen Life Technologies, Waltham,
MA, USA) on the Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).
The obtained PCR amplicons were then one-step purified and normalized using the Sequal-
Prep 96-well plate kit (ThermoFisher Scientific, Waltham, MA, USA) [56]. This kit allows
a solid phase, high-throughput amplificon purification and normalization through DNA
binding, washing (to remove contaminants) and elution at predetermined concentrations
(normalization). Purified amplicons were then pooled and pair-end sequenced in the
Illumina MiSeq® sequencer with the MiSeq® Reagent Kit v3, according to manufacturer’s
instructions (Illumina, San Diego, CA, USA) at Genoinseq (Cantanhede, Portugal).

2.3. Bioinformatic Data Processing

The initial sequence data was processed at Genoinseq (Cantanhede, Portugal). The
obtained raw sequencing reads were extracted from the Illumina MiSeq® System in fastq
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format and quality-filtered. Filtering was performed with PRINSEQ v.0.20.4 [57] and aimed
to remove sequencing adapters; trimming was based on an average quality lower than 25
in a window of 5 bases and reads with less than 100 bases for the ITS2 region and 150 bases
for the 16S rRNA gene were removed. Forward and reverse reads were then merged with
AdapterRemoval v.2.1.5 [58] using default parameters. For bacteria, further treatment of
the obtained metabarcoding data, clustering and taxonomic analyses were performed with
the mothur package v.1.46.1 [59,60]. The obtained bacterial reads were subjected to quality
control measures, with chimeras being detected and removed from the datasets with the
VSEARCH software v.2.16.0 [61]. The remaining high-quality sequences were clustered
into operational taxonomic units (OTUs) at 97% similarity with OptiClust [62] and then
taxonomically annotated against the ARB-Silva taxonomic database v.138.1 [63] with the
RDP classifier [64]. For fungi, the metabarcoding data treatment was performed with the
SEED 2 bioinformatics package [65]. The obtained fungal reads were subjected to quality
control measures, the enclosed ITSx software v.1.0.11 [66] was applied to extract the ITS2
sub-region (for all organisms) with default settings, chimeric sequences were detected and
removed from the dataset, with the remaining reads being clustered into OTUs at 97%
similarity applying the USEARCH/UPARSE (v.8.1.1861) approach [67]. Fungal OTUs were
first BLAST-queried against the UNITE database v.8 [68]. Taxonomically unidentified OTUs
were then further analyzed against the UNITE + INSD database in the PlutoF platform [69]
through massBLASTer analysis.

For both taxonomic groups, the final tables were screened to remove from the datasets
OTUs assigned to non-target taxonomic groups with less than three reads.

Relative abundance plots were obtained in R/R Studio v.4.1.1 with the microeco
package v.0.17.0 [70] and Krona v.2.4 [71]. To evaluate individual shared OTUs between
the distinct samples, Venn diagrams were constructed online with the Van de Peer Lab
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 1 January 2023).
Complementarily, the diversity indexes and the coverage values were calculated with the
mothur package v.1.46.1 [59,60]. Additionally, the past3 statistical package v.3.20 [72] was
also employed to plot a principal component analysis (PCA) based on a correlation matrix
(Biplot approach) for each taxonomic group. Both datasets were independently uploaded
to MicrobiomeAnalyst v.1.0 [73,74] (https://www.microbiomeanalyst.ca/, accessed on 1
January 2023) for heat map and core microbiome analysis. Since many bacterial OTUs
shared a similar “uncultured” classification at various taxonomic levels (leading to the
merging of differential taxonomic groups and possible analysis incongruences), the dataset
was manually adjusted by adding the last taxonomic level identified. Hierarchical clustering
heat maps were conducted reflecting Pearson distance measures with Ward clustering
algorithms, and the core microbiome analysis was obtained at the family level based on
a 20% sample prevalence and 0.01 relative abundance. Bacterial functional profiles were
obtained with the Tax4Fun tool v.1.0.0 [75] (for this case, using the original OTU table), while
fungal functional traits were evaluated by screening the FungalTraits database v.1.2 [76]
focusing mainly on primary lifestyle and decay substrate types. The results obtained for
both the bacterial functional profiles and fungal ecological traits identified were also plotted
as a heat map using ClustVis v.1.0 [77] (https://biit.cs.ut.ee/clustvis, accessed on 1 January
2023), as previously described.

3. Results and Discussion
3.1. Microbiome Diversity and Community Structural Organization

The microbiome analysis was achieved by sequencing the V3/V4 hypervariable re-
gions and the ITS2 subregion with the Illumina MiSeq® sequencing platform. Tables 1 and 2
highlight the metabarcoding statistical data obtained and the diversity indexes calculated
for each sample considered during the course of this study.

http://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.microbiomeanalyst.ca/
https://biit.cs.ut.ee/clustvis
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Table 1. Metabarcoding statistical data and biodiversity indexes obtained for bacteria.

Sample nseqs Coverage Chao1 Sobs Shannon Shannoneven Simpson Simpsoneven

Control (P1) 28,226 0.994 1,785,009 1679 6282 0.846 0.006 0.099
Tailings (P2) 15,845 0.988 1,366,039 1256 5911 0.828 0.009 0.084

Mine (P3) 26,614 0.995 1,018,000 889 5244 0.772 0.015 0.073

Table 2. Metabarcoding statistical data and biodiversity indexes obtained for fungi.

Sample nseqs Coverage Chao1 Sobs Shannon Shannoneven Simpson Simpsoneven

Control (P1) 46,115 0.999 7,055,769 684 44,333 0.6791 0.034 0.043
Tailings (P2) 91,776 1.000 2,707,143 254 24,392 0.4405 0.172 0.023

Mine (P3) 47,849 0.999 383,625 369 36,553 0.6184 0.061 0.044

For bacteria, a total of 70,685 reads were obtained, with the OTU number determined
for each sample fluctuating between 889 (mine) and 1679 (control). Complementarily, for
fungi, 185,740 reads were obtained, with the OTU number determined for each sample
fluctuating between 254 (tailings) and 684 (control). Based on the aforementioned results, it
was evident that fungi constituted the most abundant group at these sites. By examining
the obtained Chao1, sobs and the coverage values, it can be verified that for both taxonomic
groups, their diversity was successfully recovered and analyzed. Complementarily, when
considering the results obtained for the biodiversity indexes, the values demonstrated the
existence of a relatively high bacterial and fungal diversity in all sites. For both cases, the
uppermost diversity values were verified in the control, while the lowest were verified in
the mine for bacteria and in the tailings for fungi. High evenness levels were observed
for bacteria and intermediary for fungi, pointing towards the presence of a relatively
homogenous bacterial taxa distribution and the presence of some dominant fungal taxa
among the studied areas.

In parallel, the results also revealed the detection of 2575 OTUs for bacteria and 1039
for fungi across all samples. For bacteria, 262 OTUs were common to all sites, with the
largest unique OTU number being found in the control (829), followed by the tailings (426)
and the mine (333) (Figure 2). On the other hand, for fungi, 31 OTUs were found in all
samples, with the largest unique OTU number being found in the control (468), followed
by the mine (210) and the tailings (124) (Figure 2).
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The results obtained for the PCA analysis can be verified in Supplementary Figures S1
and S2. For bacteria, the control and tailings samples clustered somewhat closer together,
thus indicating a more similar composition and distribution while also implying that their
structural diversity is less exclusive to either of these sites. Additionally, it could also be
verified that the majority of the OTUs clustered in a somewhat dispersed pattern when
taking into account the different samples. In contrast, for fungi, all the samples clustered
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in a more heterogeneous manner, indicating a dissimilar composition and distribution
and pointing out that their structural diversity is somewhat more restricted to each site.
Furthermore, it should be noted that various distinct OTUs clustered in a more assembled
pattern with each of the considered samples for this taxonomic group. Taken together,
these results highlight that the overall microbiome diversity of the Escádia Grande mining
area decreases inside the mine itself and at the tailings. However, bacterial and fungal
diversity and distribution are affected differently, as prokaryotes displayed a relatively
homogeneous taxa distribution with the lowest diversity found in the mine interior, while
fungi exhibited the presence of some dominant taxa, with the lower diversity found at the
tailings. Moreover, despite some commonality and the recognition that each site harbors a
distinct microbial community, the data also underscores a further notorious site-specific
nature of the fungal communities. In general, As, aluminum (Al), potassium (K), silicon
(Si), chromium (Cr), mercury (Hg) and Pb concentrations, soil pH and total organic carbon,
as well as vegetation density and the specific plant species, have been pinpointed as
critical factors influencing the prokaryotic community diversity and structure in similar
environments [27,30,32–36]. Moreover, it is also known that less-polluted soils exhibit
increased microbial diversities and more complex community structures [30,32]. On the
other hand, fungal communities’ structures are known to be more similar across tailings
deposits regardless of vegetation density. Moreover, fungal richness increases in a tailor-
made trend with contamination level, and biodiversity is not related to the concentrations
of inorganic toxicants [29]. As such, the results obtained during the course of this work
are in accordance with the literature, showing that the polluted soils from the mining area
shape the microbiome diversity. Additionally, our findings suggest that the presence of
highly dense fern vegetation in the tailings (see Section 3.2 below for details) and the higher
humidity in the mine interior may contribute to the contrasting lower fungal and bacterial
diversities verified, respectively. Conversely, the lower diversities observed for a specific
group of organisms at these sites might result from the documented increase in the other
group, influenced by the specific settings of the location. In other words, the increase
in bacterial richness in tailings was likely influenced by the presence of vegetation [35],
coupled with a decrease in fungal diversity. Similarly, the observed increase in fungal
diversity in the mine is likely influenced by factors such as mine settings (e.g., darkness,
acidic environment) and the impact of flooding water, coupled with a decrease in bacterial
abundance and richness [39].

The biodiversity results obtained from the metabarcoding analyses are presented in
Figures 3 and 4 and Supplementary Files S1–S6. In general, at the Phylum level for bacteria,
the control was largely dominated by Proteobacteria (22%), Planctomycetota (15%), Acidobacte-
riota (14%), Bacteroidota (10%) and Actinobacteriota (8%); the tailings were largely dominated
by Acidobacteriota (22%), Chloroflexi (16%), Proteobacteria (15%), Planctomycetota (12%) and
Actinobacteriota (7%); and lastly, the mine was largely dominated by Acidobacteriota (22%),
Chloroflexi (19%), Proteobacteria (18%), Actinobacteriota (15%) and Planctomycetota (13%). At
the family level, the great majority of reads were assigned to families: Sphingomonadaceae
(8%), WD2101 soil group (8%), Chitinophagaceae (7%), Chthoniobacteraceae (5%) and Gem-
matimonadaceae (3%) in the control samples; Bryobacteraceae (10%), Ktedonobacteraceae (6%),
WD2101 soil group (6%), unclassified WPS-2 (Candidatus phylum Eremiobacterota) (6%) and
an additional WPS-2 family (6%) in the tailings; and Gemmataceae (9%), Pseudonocardiaceae
(9%), Ktedonobacteraceae (8%), Acidobacteriaceae (Subgroup 1) (7%) and Acetobacteraceae (6%)
in the mine. Lastly, when considering the diversity at the genus level, a WD2101 soil
group genus (8%), Sphingomonas (6%) and Candidatus Solibacter (4%) were dominant in
the control sample; Bryobacter (10%), a WD2101 soil group genus (6%) and a WPS-2 genus
(6%) were dominant in the tailings sample; and Crossiella (8%), uncultured Gemmataceae
(6%), Acidobacteriaceae (Subgroup 1) (4%) genera and Acidiphilium (4%) were dominant in
the mine interior.
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Proteobacteria, Acidobacteria and Actinobacteria are often regarded as the dominant taxa
colonizing mine tailings, a consequence of low environmental pH, poor organic matter
contents and high concentrations of elements such as Pb, Cd and Zn [35]. As such, our
results corroborate and are in accordance with the currently available literature [35,78,79].
Moreover, it was also possible to detect a change in dominance from Proteobacteria to
Acidobacteriota during the transition from the control towards the tailings and the mine
areas, likely mirroring the alterations in soil pH and ion concentrations. Acidobacteria were
also found to be dominant in soils of Linglong Gold Mine (China) [24] and have been
reported as the main prokaryotes in several distinctive acidic environments [80]. As for the
additional genera, the WD2101 soil group and Gemmataceae genus have been previously
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reported in various terrestrial habitats [33,81], while Sphingomonas, Candidatus Solibacter,
Bryobacter and Acidiphilium have frequently been described as present in gold mining ores
and tailings [24,34,35]. Additionally, Crossiella has also been recently pinpointed as an
Actinomycetota genus commonly found in the environment, including in various mineral
mining soils [82].

On the other hand, for fungi, at the Phylum level, the control sample was largely
dominated by Ascomycota (69%), unclassified Fungi (13%) and Basidiomycota (9%); the
tailings were largely dominated by Ascomycota (95%); and lastly, the mine was largely
dominated by Ascomycota (56%), Mortierellomycota (18%) and unclassified Fungi (16%).
Additionally, it could also be verified that unclassified Helotiales (19%), Chaetomiaceae
(12%), unclassified Fungi (13%), unclassified Leotiomycetes (5%) and Aspergillaceae (5%) are
the predominant family level fungal groups in the control samples; Saccharomycetales fam.
Incertae sedis (34%), unclassified Helotiales (17%), Dermateaceae (16%), unclassified Capnodiales
(13%) and Metschnikowiaceae (5%) are predominant in the tailings; and that unclassified
Chaetothyriales (21%), Mortierellaceae (18%), unclassified Fungi (16%), Aspergillaceae (8%)
and Rhizopogonaceae (4%) are predominant in the mine sample. Finally, when considering
the diversity at the genus level, unclassified Helotiales (19%), unclassified Fungi (13%) and
Arxotrichum (12%) were dominant in the control samples; Starmerella (34%), unclassified
Helotiales (17%) and Mollisia (16%) were dominant in the tailings; and Mortierella (18%),
unclassified Fungi (16%) and Chaetothyriales (21%) genera were dominant in the mine.

These results also point to a change in dominance for fungal phyla across samples,
namely a strong decrease from Basidiomycota from the control towards the tailings and the
mine. Moreover, an interesting and sharp increase of Mortierellomycota inside the mine
was also registered. The dominance of Mortierellomycota (marked as Zygomycota) has been
previously identified in highly contaminated gold mining sites, likely due to their ability to
withstand significant arsenic concentrations [29]. Nonetheless, considering our differential
results across different areas, they are, thus, distinct from the ones found by Crognale and
colleagues [29] and Gagnon and colleagues [35], where somewhat persistent dominances
of Zygomycota and Basidiomycota were verified (i.e., frequently, the fungal biodiversity is
not related to the concentrations of inorganic toxicants) [29], respectively. Nonetheless, the
verified Ascomycota dominance is in accordance (at least to some degree) with the data
obtained by Gagnon and colleagues [34] while studying bulk soil, the rhizosphere and plant
roots from mine tailings in Québec (Canada). As for the additional most representative
genera, Helotiales are common in soils, fallen leaves, decaying wood and other organic
matter [83], while Arxotrichum are common in soils [84], and their presence (in addition
to dominance in the control sample) can be considered somewhat expected. Furthermore,
Mollisia and Mortierella have been commonly found in gold mining ores and tailings [29,35],
Starmerella has been highlighted to contain sophorolipids able of Cd and Pb removal [85]
(that putatively can help their survival at these sites), while Chaetothyriales are sapro-
phytes commonly found in monuments and polluted environments, being able to degrade
pollutants and hydrocarbons (e.g., [86]). These are physiological characteristics that may
help explain their presence and dominance at these sites. Additionally, the high verified
levels of Helotiales, in particular Mollisia, in the tailings sample could also be a result of
their known ability to withstand high metal concentrations and being able to proliferate in
environments with auriferous mining history [35].

In an attempt to further shed light on the structural characteristics of both fungi and
bacteria in these areas, a core microbiome (Figures 5A and 6A) and heatmap analyses at the
family level were also constructed (Figures 5B and 6B).
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These results further confirm the previously verified notorious site-specific nature of
the fungal communities. For bacteria, particular relevant core microbiome results are related
to the families Bryobacteraceae, Acidobacteriaceae (Subgroup 1), Acetobacteraceae, Sphingomon-
adaceae, an unclassified family WPS-2, Solibacteraceae, an Acidobacteriales uncultured family,
Sphingobacteriaceae, Gemmataceae, an unclassified Acidimicrobiia family and Xanthobacteraceae,
since they denoted high prevalence and often high abundance across all samples.

On the other hand, for fungi, the most relevant core microbiome results concerned
families related to unclassified Helotiales, unclassified Leotiomycetes and unclassified Fungi
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since they were prevalent across all samples (although with somewhat lower relative abun-
dances). Regarding the heatmaps, the results revealed that for bacteria, various families
were often strongly and positively correlated with more than one location. Complementar-
ily, for fungi, the heatmap results revealed that a more distinctive pattern was present, with
multiple families being only positively and strongly correlated with one sample. More-
over, only a few families showed positive correlations in more than one sample. Overall,
these results reinforce the findings previously reported and discussed for the biodiversity
indexes and community structural organization while also pinpointing the presence of a
more prevalent and diversified prokaryotic core microbiome rather than fungi.

3.2. Microbiome Functional/Ecological Traits Characteristics

The bacterial functional predictions obtained with the Tax4fun tool can be verified in
Figure 7.
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When considering the KEGG metabolism classes, the most relatively abundant were
related to amino acid metabolism, carbohydrate metabolism, energy metabolism and the
metabolism of cofactors and vitamins. Complementarily, when considering the results ob-
tained for the COG functional categories, gene families related to metabolism were the most
abundant, followed by information storage and processing and then cellular processes and
signaling. Moreover, when considering the KEGG metabolism classes heatmaps obtained,
the results revealed that mostly (Figure 7A) (1) lipids metabolism was strongly correlated
with the control sample; (2) nucleotide and energy metabolism were sturdily correlated with
the tailings sample; and that (3) the biosynthesis of other secondary metabolites and the
glycan biosynthesis and metabolism were stalwartly correlated with the mine sample. For
the COG functional categories heatmaps obtained, the results revealed that (Figure 7B) the
[G] Carbohydrate transport and metabolism, [K] Transcription, [E] Amino acid transport
and metabolism, [P] Inorganic ion transport and metabolism, [W] Extracellular structures
and [A] RNA processing and modification gene families were strongly correlated with the
control sample. Complementarily, gene families related to [L] Replication, recombination
and repair; [U] Intracellular trafficking, secretion and vesicular transport; and [C] Energy
production and conversion were strongly correlated with the tailings sample. On the other
hand, the gene families connected with [M] Cell wall/membrane/envelope biogenesis, [T]
Signal transduction mechanisms, [Q] Secondary metabolites biosynthesis, transport, and
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catabolism, [B] Chromatin structure and dynamics, [N] Cell motility; and [I] Lipid transport
and metabolism were sturdily correlated with the mine sample. Overall, from these results,
it was possible to verify that the control displayed a strong association with bacteria further
related to carbon metabolism (presence of carbohydrate transport and metabolism, and
lignin degradation), while the tailings and the mine areas have metabolic profiles more
closely associated with cell cycle maintenance and repair, energy production, xenobiotics
biodegradation and various additional second-ary metabolic pathways. As such, these
results point out that defense pathways and responses to environmental stress (e.g., [87–89])
are crucial for the survival of prokaryotes in metal-polluted environments [36] and thus
also help explain the small variations verified for the bacterial populations.

The fungal traits results obtained can be observed in Figure 8. Overall, the results
revealed that when considering primary lifestyles (1) the control was largely dominated by
the categories soil saprotroph, unspecified saprotroph, litter saprotroph, animal parasite
and lichenized forms; (2) the tailings sample was largely dominated by the categories
nectar/tap saprotroph and plant pathogen; and (3) the mine was largely dominated by the
categories, soil saprotroph, unspecified saprotroph, animal parasite, ectomycorrhizal and
litter saprotroph. Moreover, when considering the primary lifestyles heatmaps obtained,
the results revealed that (Figure 8A) the categories (1) lichen parasite, dung saprotroph,
litter saprotroph, lichenized and sooty molds were strongly positively correlated with the
control sample; (2) pollen saprotroph, nectar tap saprotroph and plant pathogen were
strongly positively correlated with the tailings sample; and (3) that mainly ectomycorrhizal,
mycoparasite, animal parasite and soil saprotroph were strongly positively correlated with
the mine sample. On the other hand, when considering decay substrates, (1) the control was
largely dominated by the categories soil, leaf/fruit/seed/soil/animal material and animal
material; (2) the tailings were largely dominated by the categories sugar-rich substrates,
leaf/fruit/seed and pollen; and (3) the mine was largely dominated by the category’s
roots/soil, soil and animal material/fungal material. Moreover, when considering the
heatmaps obtained for decay, the results revealed that (Figure 8B) (1) multiple categories
related to leaf/fruit/seed/animal material and soil were strongly positively correlated
with the control sample; (2) various sugar-rich and pollen-related categories were strongly
positively correlated with the tailings sample; and (3) that categories mainly related to
dung, roots/soil, wood, animal and leaf/fruit/seed were strongly positively correlated
with the mine sample.
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Often, mostly soil and wood saprotrophs, with the presence of a few rock-inhabiting/
sooty molds, have been reported in mine tailings [89]. In fact, both in the control and the
mine samples, strong associations with these ecological groups were detected. Nonetheless,
while multiple saprotrophs were identified, some particular results were also highlighted,
namely the strong associations of nectar/tap fungi with sugar-rich, leaf/fruit/seed, and
pollen decay substrates preferences in the tailings. Due to the dense fern vegetation, we
hypothesize that plant pollens and nectars and, consequently, the presence of a sugar-rich
soil micro-environment can also impact the fungal communities in these areas (e.g., [90]).
Altogether, these results also highlight the diverse ecological fungal functions at each site
and allow to verify that small micro-niches present in the different sites favor further specific
fungal traits based on the available substrates and distinct environmental conditions (e.g.,
soil pH, toxic metal concentrations, presence of plants, animals, roots and water).

4. Conclusions

In summary, we conducted an analysis of the microbiome (bacterial and fungal com-
munities) diversity, structural organization and metabolic/ecological traits in an abandoned
Portuguese gold mining area with metabarcoding and bioinformatic analysis. We found
that the overall microbiome diversity decreases inside the mine and the tailings con-
trastingly for prokaryotic and fungal communities when compared with an area without
previous mining activities. Prokaryotes displayed a relatively homogeneous taxa distribu-
tion, while fungi displayed the presence of some dominant taxa. Moreover, fungi exhibit a
more notorious site-specific nature with a less demarked core microbiome. The predicted
bacterial metabolic profiles exhibited differences when considering the control, the tailings
and mine areas, establishing a shift from carbohydrate metabolism and lignin degradation
towards metabolic profiles closely associated with defense pathways and responses to
environmental stress (cell cycle maintenance and repair, energy production, xenobiotic
biodegradation and other secondary metabolic pathways). Moreover, the fungal commu-
nity’s ecological characteristics were largely dominated by saprobes. Nevertheless, the
tailings also displayed multiple peculiar associations with fungi able to deal with sugar-rich
and pollen substrate preferences. Thus, this work provides an initial picture of the micro-
biomes at these sites, and further research is necessary to gain a deeper insight into their
microbial ecology and the microbiome’s physiological and metabolic characteristics. For
instance, further studies (e.g., cultivation-dependent methodologies) on the extremophilic
consortia could be focused on the identification of metal bioremediation abilities, biosynthe-
sis of gold nanoparticles capacities, or even in gold biorecovery strategies (e.g., [23,91–98]).
On the other hand, further studies employing additional -omics methodologies, such as
metagenomics and metatranscriptomics, would also be advantageous since these could
further allow gaining a deeper knowledge regarding these areas’ microbiome composition,
functional characterization, genomic description, metabolic potential, mobilome, resistome
and community dynamics (e.g., [99]). Lastly, cultivation-dependent methods could also
contribute to the description of novel species since extreme environments have been high-
lighted as requiring further studies in this regard (e.g., [100]). We hope this work can draw
further attention to the study of Portuguese gold mining areas and promote additional
research on microbes thriving in these extreme environments.
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