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Abstract: Fault detection of machinery systems is a fundamental prerequisite to implementing
condition-based maintenance, which is the most eminent manufacturing equipment system man-
agement strategy. To build the fault detection model, one-class classification algorithms have been
used, which construct the decision boundary only using normal class. For more accurate one-class
classification, signal data have been used recently because the signal data directly reflect the condition
of the machinery system. To analyze the machinery condition effectively with the signal data, features
of signals should be extracted, and then, the one-class classifier is constructed with the features.
However, features separately extracted from one-class classification might not be optimized for the
fault detection tasks, and thus, it leads to unsatisfactory performance. To address this problem, deep
one-class classification methods can be used because the neural network structures can generate
the features specialized to fault detection tasks through the end-to-end learning manner. In this
study, we conducted a comprehensive experimental study with various fault signal datasets. The
experimental results demonstrated that the deep support vector data description model, which is
one of the most prominent deep one-class classification methods, outperforms its competitors and
traditional methods.

Keywords: condition-based maintenance; deep one-class classification; deep support vector data
description; fault signal detection; time series signal

1. Introduction

Modern industrial fields have furnished more complex and sophisticated machinery
systems. However, unexpected faults in these machinery systems bring about significant
losses in productivity and efficiency. To avoid the abrupt faults of machinery systems,
preventive maintenance (PM) has been widely adopted as a maintenance strategy in vari-
ous industrial fields [1,2]. These PM strategies attempt to conduct the maintenance (e.g.,
overhaul, refurbishment, and repair tasks) before the faults occur. In general, PM strategies
can be divided into time-based maintenance (TBM) and condition-based maintenance
(CBM) [3,4]. The TBM strategy periodically executes the maintenance activities in a pre-
defined schedule. However, the TBM strategy often causes expensive maintenance costs
because unnecessary maintenance activities are often performed [5]. Unlike, the CBM
strategy performs maintenance tasks only when machinery fault symptoms are detected.
Thus, it should entail a real-time diagnosis of the machinery status. Owing to its efficiency,
CBM has received considerable attention in various industrial fields in recent years [5,6].

The CBM procedure comprises three main tasks: data acquisition, data processing,
and fault diagnosis. (1) In the first step, sensor data that involve the health status of the
machinery system are collected in real-time. (2) Then, to analyze the sensor data more easily,
the collected raw data are preprocessed through feature engineering techniques. (3) Finally,
using the preprocessed data, the machinery operating status is diagnosed, and maintenance
is performed when the fault symptoms of the machinery systems are detected [1,7,8]. It
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is obvious that appropriately preprocessing the raw sensor data and accurately detecting
the fault symptoms are fundamental prerequisites for a successful CBM strategy [9,10].
Therefore, the main purpose of this study is to propose a fault detection framework with
deep neural network structures in order to implement a more efficient CBM strategy. The
deep neural network structures are specialized to the feature engineering for given learning
tasks [11,12]. Hence, the deep neural network-based approaches might show superior fault
detection performance.

Most of the previous studies on machinery fault detection have used the sensor
data obtained from both normal operating and fault statuses. However, the data from
the fault status are not available in general because the fault rarely occurs in many real
situations [13,14]. In addition, the operating status label information is not easy to obtain
because it requires expensive analytical costs on machinery operating status. Therefore,
in this study, we focus on the unsupervised deep neural network-based fault detection
methods, which only use the sensor data obtained from normal operating status.

In recent years, various time-series signal data, including vibration, acoustic, and
thermometric signals, have been widely used for fault detection [15,16]. These time-series
signal data explicitly reflect machinery operating status, and it helps to more accurately
detect the fault symptoms. Besides, owing to the rapid development of sensing and data
storage techniques, a large amount of time-series signal data can be easily collected in
real-time [8,17]. Therefore, utilizing these time-series signal data for fault detection has
been spotlighted by a number of machinery operators. Then, a fault detection model
can be constructed using one-class classification (OCC) methods. The OCC methods
construct a decision boundary solely using time-series signal data obtained from only
normal status (generally referred to as target signal), and the decision boundary finally
determines whether a newly collected time-series signal was generated from normal status
or not [18–20]. If the time-series signal is located outside the decision boundary, it is rejected
as a fault signal, which is considered that the machinery fault might occur, and appropriate
actions should be rapidly taken. Although the OCC methods have shown satisfactory
performance in fault signal detection, they require an additional procedure that derives
meaningful features from raw time-series signal data. This additional procedure is termed
feature extraction.

The feature extraction attempts to generate several latent variables summarizing in-
trinsic properties of raw time-series signals. In most previous studies, manually created
features (e.g., root mean square (RMS), kurtosis, and crest factor (CF)) have been widely
utilized [21–23]. On the other hand, traditional feature learning techniques, including prin-
cipal component analysis (PCA) [24] and kernel principal component analysis (KPCA) [25],
have also been successfully used as feature extraction methods. The raw time-series signals
are recorded at high sampling resolution and can be treated as high-dimensional data
because individual values of the signal recorded at each time point can be regarded as vari-
ables. Thus, these traditional feature learning techniques entail dimensionality reduction to
summarize the raw time-series signals of high dimensionality into smaller useful features.
In spite of its simplicity, the manually crafted features simply summarize information of
raw time-series signal data into a small number of values, and thus, it is difficult to reflect
various characteristics of complex and noisy signals having nonstationary and nonlinear
patterns [26,27]. For this reason, the manual feature creation may not be suitable for fault
signal detection tasks. In addition, several traditional feature-learning techniques cannot
accommodate the nonlinearity of target time-series signals, and kernel-based methods tend
to be sensitive to the kernel function settings [28]. Finally, the feature creation or feature
learning procedure is separately performed before fault detection model construction, and
hence, the generated features may not be specialized for fault detection tasks [29].

To address these limitations, in recent years, deep neural network structures have
been incorporated into OCC methods. In the deep neural network-based OCC methods
(referred to as deep OCC methods), the feature extraction procedure is simultaneously
performed with fault signal detection tasks in an end-to-end manner [11,12]. Thus, the
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deep neural network is basically designed to generate features optimized to a specified
loss function of its corresponding task. Owing to the end-to-end manner’s advantage,
deep neural network structures have been successfully used in OCC methods in recent
years. Among various OCC methods, the boundary-based OCC methods (e.g., support
vector data description (SVDD [30]) and one-class support vector machine (OCSVM [31]))
have been the most widely combined with the deep neural network because their objective
function can be easily reformulated for a loss function of the deep neural network. In
the boundary-based methods, the objective function is formulated to construct a compact
hypersphere enclosing the target class, and the hyperspheres can be used as a decision
boundary to discriminate the fault signals from target signals. By doing so, optimized
features through the deep neural network structure help build more sophisticated decision
boundaries by accommodating the inherent patterns of target signals.

The following are the main contributions of this study:

• The deep OCC methods can achieve superior fault detection performance, although
raw time-series signals are directly used as input data. In general, for more effectively
analyzing the time-series signals, signal processing techniques (e.g., short-time Fourier
transform (STFT [32,33]) or wavelet transform [34]) are used to transform the raw
signals. However, these signal-processing techniques require additional user-specified
hyperparameters, which should be carefully determined. In contrast, the deep OCC
methods do not need any signal processing techniques. This implies the efficiency of
the deep OCC methods in handling the raw time-series signal data.

• In the deep OCC methods, more useful features for fault signal detection can be
simultaneously extracted along with minimizing loss function on anomaly detection
tasks. By doing so, the fault signal detection performance can be improved.

• Finally, we applied the deep OCC methods to the widely used benchmark fault signal
datasets and the signal dataset collected from our own rolling element experimental
platform. By doing so, the effectiveness and applicability of the deep neural network-
based methods to real fault signal detection problems can be confirmed.

The remainder of this paper is organized as follows. Section 2 presents the related
works on the proposed study. In Section 3, we present a deep neural network-based fault
signal detection framework. The experimental settings, baseline of the comparison method,
and results are reported in Section 4. The concluding remarks are provided in Section 5.

2. Related Works

This section deals with the details of existing OCC methods. Most of them are closely
related to this study in that they can be used to fault signal detection problems. Later, we
will consider most of the OCC methods introduced in this section for the various fault
signal detection problems.

2.1. One-Class Classification Methods

Up to now, a number of OCC methods have been proposed, and they can be cat-
egorized according to the way to utilize the information on target signals, including
density-based, ensemble-based, and boundary-based methods [19,20]. Among them, we
focus on the boundary-based methods because they can generate more flexible decision
boundaries through a nonlinear feature mapping function, and an objective function to
build the optimal decision boundary can be explicitly formulated.

The SVDD is one of the most well-known boundary-based OCC methods. The SVDD
attempts to find the most compact hypersphere to enclose as many target signal data as
possible [30]. Then, if a signal falls outside of the hypersphere, it is rejected as a fault signal,
and vice versa for the signal located inside of the hypersphere. However, if the hypersphere
is constructed to involve all training target signals, the radius of the hypersphere might be
too large, and too many fault signals are accepted as normal ones. To avoid the hypersphere
being excessively large, the SVDD adopts slack variables, which allow a few training target
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signals to be located on the outer side of the hypersphere [30]. On the SVDD algorithm, the
optimal hypersphere can be obtained as follows:

minmize
R,a,ξi

R2 + C
n

∑
i=1

ξi

s.t. ∥ϕ(xi)− a∥2
Fk
≤ R2 + ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n,

(1)

where R2 is the radius of the hypersphere, a is the center of the hypersphere, and ξi
denotes the slack variable of the i-th training target signal. In addition, C is a regularization
parameter controlling the trade-off between the hypersphere’s volume and false positive
error that rejects the target signal as fault signals, and ϕ is a nonlinear feature mapping
function. The dual problem of Equation (1) can be formulated as follows:

maximize
α

n

∑
i=1

αi⟨xi, xi⟩ −
n

∑
i=1

n

∑
j=1

αiαj⟨xi, xj⟩

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n
∑N

i=1 αi = 1, i = 1, . . . , n,

(2)

where αi represents a Lagrange multiplier of the object xi and K⟨ , ⟩ denotes the kernel
function corresponding to its own feature mapping function ϕ. After solving the dual
problem presented in Equation (2), the new time-series signal (xnew) is classified as a normal
or fault signal by calculating the distance between the new signal and the hypersphere
center, ∥ϕ(xnew) − a ∥2 [30]. If this distance is larger than R (i.e., the new signal falls outside
the hypersphere), it is finally rejected as a fault signal.

Although the support vector-based methods are the most popular OCC methods,
they are sensitive to the noisy patterns around the target class, and thus, when there are
several noises in training data, the support vector-based methods cannot capture target
class structures [19,20,35]. Moreover, they are still quite vulnerable to the model settings,
including the kernel function choice or regularization hyperparameters [36,37].

In addition to boundary-based methods, density-based and ensemble-based methods
have also been widely used for fault signal detection. The density-based methods estimate
a density that quantifies the representativeness of the target signal, and a signal having a
small density value is rejected as a fault signal. Generally, the density can be defined with
a probability function, and thus, the density-based methods involve probability function
estimation procedures. The kernel-density estimation (KDE [38]) is widely used to estimate
the probability function along with target class structures, and this method defines the
probability function as a weighted sum of the kernel function values centered at each
training target signal. The contribution of each signal to the probability function is denoted
by its kernel function value. This kernel function is computed by dividing the distance
between signals with the bandwidth. In the KDE method, the bandwidth determines
the shape of the kernel function and affects the smoothness of the estimated probability
function. For small bandwidth, the kernel function has a high peak and narrow width, and
the estimated probability function leads to a complicated decision boundary. Conversely,
if the bandwidth value is too large, the kernel function may have a broad width, and the
estimated probability function tends to generate a simple decision boundary.

On the other hand, ensemble-based methods have recently been proposed to overcome
the fundamental limitations of the single-one class classifier. These methods construct
multiple weak single one-class classifiers and aggregate them. By doing so, they help
reflect various characteristics of the target signal using smaller subsets. Isolation forest
(IsoForest [39]) is one of the most well-known ensemble-based methods, which builds
many random isolation trees. Isolation trees recursively partition the target signals using
random split conditions until the target signals are isolated in the individual isolation trees.
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IsoForest assumes that the fault signals require a small number of splits to be isolated
because they have a different pattern than the target signal. By employing this approach,
the anomaly score of IsoForest can be defined as the sum of the number of splits until it is
isolated, and if the new signal has a small average number of splits, it is determined as a
fault signal.

Although these traditional OCC methods have been well performed in the structured
tabular data, for the unstructured data (e.g., time-series signal, image and video, and text-
formatted data), appropriate features should be derived to apply them. However, these
features obtained from independent feature extraction procedures to the OCC methods
may not be specialized to detect anomalous patterns [40]. Hence, conventional OCC
methods might not produce satisfactory fault signal detection performance in that the
signal-typed data are the most representative unstructured data and require a careful
feature extraction procedure.

2.2. Deep Neural Network-Based One-Class Classification Methods

As mentioned earlier, for more successful fault signal detection, features specialized
for the fault signal detection tasks should be extracted. To this end, deep neural network
structures, which are designed to generate optimized features for given learning tasks, have
been successfully used for fault signal detection in recent years [11,12]. The deep neural
network structure is composed of multiple intermediate layers (referred to as hidden layers)
between input and output layers. These hidden layers generate features to minimize a loss
function corresponding to the learning task without additional preprocessing or feature
extraction procedures. Owing to this end-to-end learning manner, the deep neural network
structure used for fault signal detection helps to achieve superior performance in that it
can produce a specialized feature for anomalous signal detection tasks.

The deep neural network has been usually used for supervised learning tasks with
numerous labeled data. However, in many real situations, fault signals obtained from
machinery system faults or malfunctions rarely exist compared to the signals obtained from
normal operating status, and thus, label information on the machinery operating condition
might not be available [13,14]. Thus, these supervised deep neural networks cannot be used
for fault signal detection tasks. For the unsupervised fault detection problem settings, un-
supervised deep neural network-based OCC methods can be used. The unsupervised deep
neural network-based OCC methods can be categorized as reconstruction-based [19,20],
generative adversarial network (GAN)-based [41], and boundary-based methods, according
to the way to generate the features of input signals.

Among them, the reconstruction-based OCC methods are based on autoencoder (AE)-
based neural network structures. The AE-based neural network structures (e.g., stacked
AE [11] and convolutional autoencoder (CAE [42,43])) attempt to generate meaningful
features by reconstruction of the input signal data in the output layer. In the AE neural
network, the input signals are embedded into smaller dimensions of latent features (re-
ferred to as encoding), and the latent features reconstruct the input signals (referred to as
decoding). For a more accurate reconstruction of input signals into the output layer, the
latent features should retain the intrinsic properties of input signals as much as possible.
The stacked AE neural network [11] and CAE neural network [42,43] are the most widely
used reconstruction neural network structures. These neural network structures can be
used as OCC models by learning the neural network structures with only target signals (i.e.,
signals obtained from normal machinery status). Then, the errors between input signals and
reconstructed outcomes can be used to calculate anomaly scores, quantifying the chances
that the input signals are fault signals. That is to say; the target signals tend to have small
reconstruction errors because the AE structures are constructed only using the training
target signals. Conversely, the fault signals have larger reconstruction errors because the
encoding structures are trained with no information on the fault signals, and the latent
features cannot properly reconstruct the fault signals. In addition, the GAN-based OCC
methods, which utilize neural network structures composed of both generator and discrim-
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inator, have recently been proposed. The generator attempts to create artificial signals as
similar to input signals as possible, whereas the discriminator attempts to distinguish the
artificial signals produced by the generator from the input signal as accurately as possible.
Through an adversarial training scheme between the generator and discriminator, the GAN
can produce artificial signals that have characteristics similar to target signals. Anomaly
generative adversarial network (AnoGAN [44]), which is the most well-known GAN-based
OCC method, is trained only using target signals, and thus, the generator produces a
signal having similar patterns of normal operating status. Therefore, the generator can
only generate an artificial signal similar to the training target signals, and the anomaly
score of the newly collected signal is defined as the difference between the new signal and
the generated signal from the generator of the AnoGAN. Finally, a signal having a large
anomaly score is rejected as a fault signal. In addition to these methods, more recently,
deep neural network structures have been successfully used for unsupervised anomaly
detection problems in various unstructured datasets. For instance, Luo et al. proposed
a sparse recurrent neural network (sRNN [45]) method to detect anomalous patterns in
video datasets. Furthermore, self-supervised learning-based OCC methods have also been
used for anomaly detection problems in image-formatted datasets [46,47].

Although these existing deep neural network-based OCC methods render reasonable
results within the situations for which they were designed, no consensus exists regarding
the best all-around performer in real situations. Firstly, reconstruction-based methods
are designed to reproduce the original signal data simply by minimizing reconstruction
errors. However, the reconstruction of the input signal might not be directly associated
with the classification between target and fault signals [20,48]. Therefore, the reconstruction
errors cannot be properly used as anomaly scores. Moreover, the GAN-based methods
often generate inappropriate artificial signals because they often suffer from mode collapse
problems [49]. The mode collapse problem is that the generator part tends to be trained to
create only artificial signals with patterns that are almost similar to the most representative
training target signal in order to minimize the discriminator’s loss. The mode collapse
problem causes a lack of diversity of generated signals, and it eventually yields poor fault
signal detection performance of the GAN-based OCC methods. Finally, the most recently
proposed deep neural network-based OCC methods are designed for specific domains,
such as anomaly video detection (sRNN) or unusual image detection (self-supervised
approach-based methods). Therefore, these methods might not be properly utilized for
fault signal detection problems.

To overcome the above limitations, we propose to use deep support vector data
description (deep SVDD), the most well-known boundary-based method, for fault signal
detection problems. The deep SVDD method has shown superior anomaly detection
performance in various cases, only using the target class. Please note that Ruff et al. [50]
have extended the deep SVDD methods as deep semi-supervised anomaly detection (deep
SAD) methods, which use a limited number of anomaly samples. This deep neural network-
based OCC method encourages the anomaly samples to be located outside the hypersphere
as much as possible. By doing so, the decision boundary can be improved to discriminate
between target class and anomaly. However, this method cannot be applied to the problem
setting considered in this study, in which only the target class (i.e., time series signals
collected from normal status) is available in the training phase. Therefore, we propose to
use the deep SVDD as a fault signal detection method.

3. Fault Signal Detection with Deep Support Vector Data Description

In this study, we propose to utilize the deep SVDD method for the fault signal de-
tection framework. Hence, this section presents a more detailed description of the deep
SVDD method.

The deep SVDD [12] builds a hypersphere enclosing as many target signals as possible
in the latent feature space generated by deep neural network structures. In the deep SVDD,
the input time-series signal X ⊆ Rd (d denotes the dimension of time-series signal (i.e., the
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number of time points of the raw signal)) is mapped into the latent feature space F ⊆ Rp (p
is the length of latent feature vector) as ϕ(·;W) : X → F , the neural network structures
whose set of weights are W =

{
W1, . . . ,WL}. The Wl denotes the weights of l-th hidden

layer l ∈ {1, . . . , L} (L represents the number of total hidden layers). In the deep SVDD,
the latent feature space is analogous to the feature mapping function used in the traditional
SVDD model, and the features obtained from training the deep SVDD model comprise the
latent feature space. Thus, the deep SVDD attempts to generate better latent feature vectors
where the optimal hypersphere can be constructed. The overall training procedure on the
deep SVDD is illustrated in Figure 1.
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As shown in Figure 1, the deep SVDD is trained by both pre-training and fine-tuning
procedures. In order to more appropriately find the optimal latent feature space, deep
SVDD first learns a stacked AE network as a pre-training procedure. The stacked AE
network is composed of both encoding and decoding parts. The encoding part attempts
to summarize the input time-series signal into smaller latent feature vectors, whereas the
decoding part is used to reconstruct the input signals from the encoded latent feature
vectors. The encoding part of the stacked AE is used as the initial network structure of the
deep SVDD, and it helps the latent feature space can accommodate the intrinsic properties
of the input time-series signal. By doing so, the initial weights of the neural network
structure for the deep SVDD can be used to construct the hypersphere with a more accurate
fault detection performance.

However, the stacked AE might not be localized characteristics of the time-series
signal in that the hidden layers of the stacked AE are fully connected to each other. Hence,
in this study, we propose to employ the one-dimensional CAE network instead of stacked
AE because the one-dimensional CAE (1D-CAE) structures can successfully handle the
time-series signal data owing to the convolutional layer and pooling layers [51,52]. In the
1D-CAE, the fully connected layers of the stacked AE are substituted as one-dimensional
convolutional layers and pooling layers. The convolutional layer helps to consider localized
properties within adjacent time points of input signals by using a convolutional kernel
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filter, and these convolutional kernel filters share weights across all regions of the input
time-series signals. The output feature map of the j-th channel in the l-th convolutional
layer, f lj , is calculated as follows:

f lj = σ


Cl−1

∑
m=1

f l−1
m ∗Wl

m, c + blc

, c = 1, 2, . . . , Cl , l = 1, 2 . . . , L, (3)

where f l−1
m is the output feature map of the m-th channel in the (l-1)-th layer transformed by

the kernel filter Wl
m,c of the c-th channel in the l-th layer. Cl is the number of convolutional

channels in l layer and blc is the bias of c-th channel in the l-th layer. In addition, * is
the convolutional operator, and σ(·) denotes the nonlinear activation function. Hence,
the output feature map having Cl number of convolutional channels is computed. In
general, each of the convolutional layers is followed by a pooling layer, which integrates
adjacent values within the feature map into one value. Among various pooling manners,
max-pooling, which picks the maximum value within a local region of the input feature
map, is the most widely used. By employing the pooling layer, the size of the feature map
and computational burden can be reduced. Both convolutional and max-pooling layer pairs
(referred to as a convolutional block) can be repeated multiple times in the encoding part.
At the end of the encoding part, the feature maps obtained by multiple convolutional blocks
are flattened into a one-dimensional vector, and the flattened vector is finally mapped to a
smaller latent features vector (dimension of latent feature vector (i.e., the number of latent
features) is denoted as q) by the fully connected layer.

Then, in the decoding part, the input time-series signals are reconstructed from the
latent variables of input time-series signals. The decoding part of the 1D-CAE comprises
symmetrically arranged layers to the encoding part. In other words, the q-dimensional
latent features vector is connected to a fully connected layer and reshaped into a one-
dimensional feature map, and they are inversely reconstructed by transposed convolutional
layers and up-sampling layers, which substitute the convolutional layers and max-pooling
layers, respectively. The transposed convolutional layer expands the input feature map,
conversely to the convolutional layer in the encoding part. The input feature map of the
decoding part (i.e., the latent features vector) is transformed by a transposed convolutional
layer as follows:

∼
f
l

m = σ


Cl−1

∑
m=1

∼
f
l−1

m ⊛
∼
W

l

m,c +
∼
b
l

c

, c = 1, 2, 3, . . . , Cl , l = 1, 2 . . . , L, (4)

where ⊛ denotes the transposed convolutional operator which enlarges the input feature

map, and
∼
f
l−1

m and
∼
f
l

m represent the output feature map of the k-th channel in the (l-1)-th

layer and the c-th channel in the l-th layer, respectively. Further,
∼
W

l

m,c denotes the transpose

convolutional kernel filter of the c-th channel in the l-th layer and
∼
b
l

c is the bias of the c-th
channel in the l-th layer. All the weights of the 1D-CAE are obtained by minimizing the
reconstruction errors between the input time-series signal and its reconstructed ones. The

reconstruction error between input time-series signal, X, and reconstructed signals,
∼
X,

L
(
X,

∼
X

)
, as follows:

L
(
X,

∼
X

)
=

1
n

n

∑
i=1

(
Xi −

∼
Xi

)2
, (5)
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where Xi and
∼
Xi are the i-th input time-series signal and its reconstructed outcomes,

respectively, and n is the number of total input time-series signals. By the encoding part
of the 1D-CAE, the initial latent feature vectors can retain the intrinsic properties of input
time-series signals. Hence, the weight set in the encoding part, denoted as W, obtained
from the 1D-CAE training procedure are used as initial weights of the deep support vector
data description model ϕ(·;W).

Although the latent feature vector of the encoding part of the 1D-CAE neural network
structure can accommodate intrinsic properties of training target time-series signals, it
might not be optimized to detect anomalous signals. Thus, the deep neural network
structure should be improved for fault signal detection tasks. To this end, the weight set W
obtained from pre-training is updated to be optimized for the fault signal detection task.
The deep SVDD performs subsequent fine-tuning procedures to minimize a loss function
formulated for the fault signal detection task. The deep SVDD models can be divided into
soft-boundary deep SVDD and one-class deep SVDD, according to how the loss function
is defined.

(1) Soft-boundary deep SVDD

In the Soft-boundary deep SVDD model, the loss function is defined as follows:

minimize
R,W

R2 +
1

νn

n

∑
i=1

max{0, ∥ϕ(xi;W)− c∥2−R2}+ λ

2

L

∑
l=1

∥∥∥Wl
∥∥∥2

F
, (6)

R represents the radius of hypersphere in the latent feature space, and ϕ(xi;W) denotes the
mapped signal to the q-dimensional latent feature space by neural network structures. In
addition, c is the center of the hypersphere, and W represents the weight set of the neural
network structures,

{
W1, . . . ,WL}. In this loss function, the first term minimizes R2 to find

the smallest volume of the hypersphere that can enclose most of the target signal data. The
second term is a slack term that allows for a few false positive errors that some mapped
signals can be located outside the hypersphere. By adding the second term, the deep SVDD
encourages the exclusion of a couple of anomalous target signals and prevents too many
fault signals from being accepted as target signals. In this term, the slack hyperparameter
ν ∈ (0, 1] controls the trade-off between the size of the hypersphere and errors of the deep
SVDD model. Finally, the third term is a weight decay regularizer for neural network
weights W with the hyperparameter λ > 0, where ∥·∥2

F indicates the Frobenius norm. By
adopting the third term, the overfitting problem of the deep neural network structures can
be alleviated.

(2) One-class deep SVDD

Under the assumption that the training data comprise only target signals, minimizing
the size of the hypersphere enclosing most of the target signals in the latent feature space
can be regarded as minimizing the average distances from the center of the hypersphere to
the target signals. Thus, the first and second terms in the soft-boundary deep SVDD can
be integrated as the sum of the average distance between the center and all training target
signals in the latent feature space. Then, the one-class deep SVDD model can be formulated
as follows:

minimize
R,W

1
n

n

∑
i=1

∥ϕ(xi;W)− c∥2 +
λ

2

L

∑
l=1

∥∥∥Wl
∥∥∥2

F
. (7)

In the above equation, the first term attempts to minimize the average distance between
the center and all training target signals in the q-dimensional latent feature space. Through
this term, the neural network weights W can be updated to find latent feature space more
specialized for fault signal detection in that it encourages the building of a compact decision
boundary on the target signals. Compared with the soft-boundary deep SVDD, one-class
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deep SVDD can build ma more compact decision boundary by ignoring the slacks in
Equation (5). Besides, the second term helps to prevent the overfitting risk, the same
as the soft-boundary deep SVDD formulation. Finally, one-class deep SVDD does not
require hyperparameter in that the first and second terms of the soft-boundary deep SVDD
are integrated.

Please note that in the deep SVDD, the hypersphere center c should not be a free
variable to prevent trivial solutions from having all zero values. That is to say, if the
hypersphere center c is allowed to update during training of deep SVDD, c is estimated at
zero values, and the hypersphere radius also nearly converges into zero. This problem is
referred to as hypersphere collapse [12]. To avoid this problem, the hypersphere center c
is calculated as the mean vector of the mapped signal ϕ(xi;W) into the initial latent space
obtained from the pre-training procedure for the encoding part of 1D-CAE. Once it is
calculated, the hypersphere center c is then fixed during the fine-tuning procedure. In
addition, we also do not employ bias terms and bounded activation functions to prevent
the hypersphere collapse problem, as suggested by Ruff et al. [12].

After the deep SVDD structures are trained, they are finally used to determine whether
newly collected signals are faulty or not. To this end, the anomaly score for the new signal
xnew, denoted as s(xnew) and quantified as follows:

s(xnew) =
∥∥∥ϕ

(
xnew;W*

)
− c

∥∥∥2
, (8)

where W* are the optimal parameter derived from training deep SVDD, ϕ
(

xnew;W*) is the
mapped signal xnew into the q-dimensional latent feature space. If new signal xnew having
large anomaly score is deemed as a fault signals, and an appropriate action should be taken
to cope with abnormality on the machinery status. Conversely, for the new signal having a
small score, it is classified as a target signal, and any actions are not taken.

4. Experimental Study
4.1. Experimental Settings

To demonstrate the superiority of the deep SVDD model for the fault signal detection
problems, we performed an experimental study with signal datasets in three cases. First,
we utilized the two datasets provided by Case Western Reserve University (CWRU) and
Paderborn University (PU), which are the most widely used benchmark fault signals
used in a number of previous studies. In addition to these two benchmark datasets, we
collected both vibration and acoustic signal datasets collected from our own rolling element
experiment platform. In this study, we used the time series signals collected from rolling
element bearing because the it is the most representative rotating machinery. Hence,
through this experimental study, we demonstrated the applicability of the deep SVDD in
real world machinery fault detection problems. More detailed description of each signal
datasets are presented as follows:

Case 1: Case Western Reserve University (CWRU) dataset—Vibration signal (The
CWRU benchmark dataset is available at: https://engineering.case.edu/bearingdatacenter/
download-data-file (accessed on: 20 December 2023)).

The CWRU bearing dataset was collected from the accelerometer sensor attached to
the bearing installed in fan end side of the test rig, as depicted in Figure 2.

https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
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Figure 2. Test rig for the CWRU dataset (This figure is available at: https://engineering.case.edu/
bearingdatacenter/download-data-file (accessed on 20 December 2023)).

In this study, we used the signal datasets collected by the accelerometer sensor attached
in the fan end side. These benchmark signals are collected from various operating scenarios
by changing the rotating speeds and vertical loads because vibration signals collected from
different operating settings have different patterns. Table 1 shows the operating settings of
four scenarios in the CWRU dataset.

Table 1. Operating scenarios in CWRU benchmark signal datasets.

Rotating Speed Vertical Load

Scenario 1 1797 RPM 0 HP (No pressure)
Scenario 2 1772 RPM 1 HP
Scenario 3 1750 RPM 2 HP
Scenario 4 1730 RPM 3 HP

The raw signals in this benchmark dataset were recorded at a sampling rate of
12,000 Hz per second (i.e., each raw signal was recorded as 12,000 time points per second).
In addition, the dataset includes vibration signals from four types of bearing conditions:
normal, inner race fault, outer race fault, and ball element fault. In these benchmark
datasets, each fault type has four intensities corresponding fault diameters (e.g., 7 inch
(weak fault), 14 inch (medium fault), 21 inch (strong fault)). Therefore, the CWRU dataset
has ten bearing condition types, and signals from the normal condition are considered as
target signals for OCC methods.

In this benchmark dataset, the ten vibration signals corresponding to each condition
type were collected in approximately 10 to 20 s. In order to comprise the datasets having
a sufficient number of signals to train the fault signal detection model, we segmented
each raw signal into smaller ones. To this end, each raw signal is sliced in order for
individual signals to have 1024 time points, and the sliced signals are overlapped each
other with 768 time points. Then, the final fault signal detection model is constructed with
the segmented signals. An example of these segmented signals to each bearing type is
presented in Figure 3. As shown, the signals generated by the fault-bearing conditions have
different patterns compared to the signals obtained from normal conditions. In addition,
fault signal detection datasets of four scenarios in CWRU benchmark signal datasets are
summarized in Table 2.

https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
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Table 2. The number of target and fault signals in CWRU benchmark signal datasets.

The Number of
Target Signals

(Normal Signals)

The Number of
All Fault Signals

Scenario 1 952 6108
Scenario 2 1888 5160
Scenario 3 1892 5172
Scenario 4 1896 5180

Case 2: Paderborn University (PU) dataset—Vibration signal (The PD benchmark
dataset is available at: https://mb.uni-paderborn.de/kat/forschung/kat-datacenter/bearing-
datacenter/data-sets-and-download (accessed on 20 December 2023)).

https://mb.uni-paderborn.de/kat/forschung/kat-datacenter/bearing-datacenter/data-sets-and-download
https://mb.uni-paderborn.de/kat/forschung/kat-datacenter/bearing-datacenter/data-sets-and-download
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The Paderborn University dataset was collected by Lessmeier et al. [53]. This dataset
is comprised of both vibration and current time series signals collected from the rolling
bearing test rig shown in Figure 4.
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Figure 4. Test rig for the PU dataset. It consists of five modules: (1) electric motor, (2) torque-
measurement shaft, (3) rolling bearing test module, (4) flywheel, and (5) load motor [53].

The vibration signals are collected by the accelerometer sensor installed at the top
end of the rolling bearing module. These benchmark signals are collected from various
operating scenarios by changing (1) rotating speed, (2) radial force onto the bearing, and (3)
load torque in the drive train because vibration signals collected from different operating
settings have different patterns. Table 3 shows the operating settings of four scenarios in
the PU dataset.

Table 3. Operating scenarios in PU benchmark signal datasets.

Rotating Speed Radial Force Load Torque

Scenario 1 1500 RPM 1000 N 0.7 Nm
Scenario 2 900 RPM 1000 N 0.7 Nm
Scenario 3 1500 RPM 1000 N 0.1 Nm
Scenario 4 1500 RPM 400 N 0.7 Nm

The dataset includes vibration signals from various types of bearing conditions: nor-
mal (Healthy), artificial inner race fault (AIR), artificial outer race fault (AOR), real inner
race fault (RIR), and real outer race fault (ROR). In addition, the artificial fault types (AIR
and AOR) are generated by electrical discharge machining (EDM), drilling, or electric en-
graver pitting, whereas real fault types (RIR and ROR) are made by accelerated life testing.
Finally, among the six normal condition bearings having different operation times (bearing
codes are K001, K002, K003, K004, K005, and K006), we employed the K003 bearing, which
is operated for one hour. Hence, the normal signals obtained from K003 are used as target
signals for OCC methods.

The raw signals in the PU dataset were collected for approximately 4 s at a sampling
rate of 64,000 Hz per second (i.e., each raw signal was recorded 256,000 times). Thus,
similar to the CWRU dataset, each raw signal is sliced in order for individual signals
to have 2048 time points (no overlap between signals) to comprise the datasets having
sufficient signals to train the fault signal detection model. Then, the final fault signal
detection model is constructed with the segmented signals. An example of these segmented
signals to each bearing condition type is presented in Figure 5.

As shown, the signals generated by the fault-bearing conditions have different patterns
and scales compared to the signal obtained from normal conditions. In addition, fault
signal detection datasets of four scenarios in PU benchmark signal datasets are summarized
in Table 4.
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Table 4. The number of target and fault signals in PD benchmark signal datasets.

The Number of
Target Signals

(Normal Signals)

The Number of
All Fault Signals

Scenario 1

2500 51,660
Scenario 2
Scenario 3
Scenario 4

Case 3: Rolling element experiment platform dataset—Vibration and acoustic signal
In addition to the benchmark datasets, we also collected both vibration and acoustic

signals from our own rolling element-bearing experimental platform, presented in Figure 6.
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Figure 6. Rolling element experimental platform.

In this bearing experimental platform, both the vibration and acoustic signals were
simultaneously collected from the accelerometer sensor and preamplifier sensor, respec-
tively, with a sampling frequency of 10,240 Hz per unit second. In this case, individual
vibration and acoustic signals are collected per unit second. Hence, individual signals have
10,240-time points. In this experimental platform, a deep groove ball bearing is installed
in the bearing housing of the simulator, and its sizes of inner side diameter, outer side
diameter, and width are 35 mm, 72 mm, and 17 mm, respectively. In addition, the rotating
speed of the bearing is 1200 RPM (revolutions per minute), and the vertical loader presses
a bearing housing 150 kg (kilogram-force).
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Similar to the CWRU dataset, the signals are collected from normal, inner race fault,
outer race fault, and ball element fault conditions because these three faults are the most
representative fault types [54,55]. These three faults in the bearing were generated by an
electrical discharge machine. Furthermore, we also considered two fault intensity levels
(i.e., strong and weak) by different defect diameters for each fault type because the signal
patterns and amplitude scales differ from fault intensities. The examples of the vibration
and acoustic signals collected from various bearing conditions are presented in Figure 7
and Figure 8, respectively.
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The number of signals collected from both normal and all fault conditions is presented
in Table 5.

Table 5. The number of target and fault signals obtained from our own rolling element experiment
platform.

Signal Types
The Number of
Target Signals

(Normal Signals)

The Number of
All Fault Signals

Vibration
4850 21,050Acoustic
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In this study, we considered the traditional OCC methods as follows: SVDD, KDE,
and IsoForest, which are the most representative boundary-based, probability distribution-
based, and ensemble-based methods. For these traditional OCC methods, additional
feature extraction procedures should be performed beforehand. To this end, we used
three feature learning methods, principal component analysis (PCA), stacked autoencoder
(stacked AE), and convolutional autoencoder (CAE). Then, we applied the SVDD, KDE,
and IsoForest to the latent features obtained from those three methods. For the SVDD, we
used the radius basis function (RBF) kernel having a parameter γ. In addition to γ, the
traditional SVDD model requires other regularization hyperparameter C. In this study, we
explored the hyperparameter pair (γ, C) within the given range: γ ∈

{
2−10, 2−9, . . . , 2−1}

and C ∈ {0.01, 0.02, 0.03, . . . , 0.1}, respectively. For KDE, we also used a Gaussian kernel as
the kernel function having bandwidth h, and the hyperparameter h was chosen within the
range of h ∈

{
20.5, 21, . . . , 25}. Finally, for the IsoForest, we empirically selected the number

of isolation trees, B, within the range of B ∈ {50, 100, 200, 500, 1000}. For these traditional
OCC methods, we chose the optimal hyperparameter achieving the best performance
within these candidate sets. The hyperparameter optimization for the OCC methods is
not easy tasks because, as mentioned earlier, the fault detection is basically unsupervised
problem settings [36,37]. In other words, in these problem settings, the label information is
not available. To the best of our knowledge, there is lack of systematic ways to optimize
the hyperparameters in fault detection problems. Hence, as in previous studies [35,56], we
also picked the hyperparameters showing the highest AUROC values.

We also considered the following deep OCC methods for fault signal detection:
reconstruction-based, GAN-based, and boundary-based methods. For the reconstruction-
based methods, we trained stacked AE and CAE and computed the reconstruction error,
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∥x − x̂∥2, between the input signal (x) and reconstructed outcome (x̂) as an anomaly score.
In this study, we refer to these reconstruction-based OCC methods as anomaly scores with
reconstruction errors of the stacked AE (ReSAE) and the CAE (ReCAE), respectively. For
the GAN-based method, we utilized an AnoGAN-based convolutional neural network
structure to more effectively handle the signal-formatted data. We set the number of la-
tent features of the AnoGAN model as 256, as suggested by Schlegl et al. [44]. Finally,
we applied the two deep SVDD models, soft-boundary deep SVDD and one-class deep
SVDD, as boundary-based methods. In this study, we tried both stacked AE or CAE in
the pre-training procedure of the deep SVDD model, in order to indicate the efficacy of
convolutional blocks in order to analyze the signal data. In addition, to avoid the hyper-
sphere collapse problem, we removed the bias term and used the leaky rectified linear unit
activation function (Leaky ReLU). For the soft-boundary deep SVDD, we varied the hy-
perparameter ν within the range of ν ∈ {0.01, 0.02, 0.03, . . . , 0.1}, and selected one showed
the best performance. The architecture details of the neural network structure for the deep
SVDD are summarized in Table 6.

Table 6. Details of deep SVDD architecture.

Case Architecture Batch Size Optimizer
(Learning Rate)

CWRU dataset
(Case 1)

8 × (5 × 1)-filters + max pooling + Leaky ReLU
4 × (5 × 1)-filters + max pooling + Leaky ReLU
Dense layer of 16 units
(i.e., the number of latent features (q) is 16)

32

Adam optimizer
(η = 0.005)

PU dataset
(Case 2)

8 × (5 × 1)-filters + max pooling + Leaky ReLU
4 × (5 × 1)-filters + max pooling + Leaky ReLU
Dense layer of 16 units
(i.e., the number of latent features (q) is 16)

128

Rolling element experiment
platform dataset

(Case 3)

8 × (5 × 1)-filters + max pooling + Leaky ReLU
4 × (5 × 1)-filters + max pooling + Leaky ReLU
Dense layer of 16 units
(i.e., the number of latent features (q) is 16)

128

In the current study, the neural network hierarchy structures, such as the number
of convolutional and pooling layers and the sizes of filters, are specified the same as in
the original deep SVDD literature [12]. As suggested in [12], these network structures
have shown reasonable results in various cases. Accordingly, we also adopted the same
network hierarchy structures as [12]. Please note that the bounded activation functions,
including the sigmoid and hyperbolic tangent functions, tend to cause the hypersphere
collapse problem [12]. Therefore, we employed the Leaky ReLU, which is the most well-
known unbounded activation function. As for the deep SVDD, this method is imple-
mented by using open source code released to the public (The deep SVDD by using open
source code available at: https://github.com/lukasruff/Deep-SVDD-PyTorch (accessed
on 20 December 2023)). Finally, to conduct all experiments, we utilized an Intel® Core(TM)
i5-9400F CPU @ 2.90 GHZ and NVIDIA GeForce RTX 2060 with 32 GB of RAM. All the
DNN-based OCC methods were implemented with the GPU-accelerated Pytorch library
(version 1.12.1) in Python (version 3.9.13).

As mentioned earlier, the training dataset consists of only normal signals, and the
testing dataset is composed of the signals both in normal operating conditions and all
fault types. To this end, we composed the training dataset as randomly selected 80%
of the normal signals, and the testing dataset is composed of both all fault signals and
the remaining 20% of the normal signals. Then, we evaluate the fault signal detection
performance of each method through the area under the receiver operating characteristic
curve (AUROC) on the testing dataset. The ROC (receiver operating characteristic) curve
represents the trade-off between two types of errors, true positive and false positive, in fault

https://github.com/lukasruff/Deep-SVDD-PyTorch
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signal detection problems. The true positive is the accuracy of classifying target signals as
normal signals correctly, whereas the false positive is the error of classifying target signals
as fault signals. It should be noted that a high true positive rate with a low false positive
rate results under the large threshold values, while a low true positive rate with a high
false positive rate results if the thresholds are set as small values. The ROC curve can be
obtained by changing the threshold to make a false positive rate from zero to one. The
AUROC is the area under the ROC curve, and the larger AUROC value indicates better
fault signal detection performance.

4.2. Experimental Results

Table 7 shows the comparative results of the AUROC values of all OCC methods
considered in the current study. We reported the averages and standard deviations of the
AUROCs from 10 repetitions of random splitting of training/testing datasets. In this table,
the highest average AUROC values are highlighted in bold.

Table 7. Average AUROC values of all OCC methods over ten time-series signal datasets (Scenario 1
to 4 of Case 1, Scenario 1 to 4 of Case 2, and vibration and acoustic signals of Case 3).

Methods

CWRU Dataset
(Case 1)

PU Dataset
(Case 2)

Rolling Element
Experiment Platform

Dataset
(Case 3)

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Vibration
Signals

Acoustic
Signals

PCA + KDE 1.000
(0.000)

0.986
(0.005)

0.992
(0.005)

0.993
(0.001)

0.340
(0.006)

0.790
(0.005)

0.780
(0.005)

0.827
(0.004)

0.665
(0.005)

0.603
(0.009)

PCA + IF 0.995
(0.002)

0.994
(0.000)

0.994
(0.000)

0.994
(0.000)

0.349
(0.036)

0.782
(0.007)

0.778
(0.013)

0.822
(0.004)

0.722
(0.003)

0.618
(0.004)

PCA + SVDD 1.000
(0.000)

0.994
(0.000)

0.994
(0.000)

0.994
(0.000)

0.393
(0.101)

0.791
(0.005)

0.776
(0.017)

0.825
(0.004)

0.735
(0.003)

0.637
(0.005)

AE + KDE 0.883
(0.172)

0.548
(0.047)

0.524
(0.031)

0.391
(0.054)

0.681
(0.015)

0.730
(0.036)

0.733
(0.024)

0.748
(0.023)

0.519
(0.113)

0.534
(0.023)

AE + IF 0.870
(0.168)

0.084
(0.097)

0.092
(0.102)

0.122
(0.044)

0.707
(0.009)

0.748
(0.012)

0.749
(0.013)

0.746
(0.008)

0.264
(0.124)

0.551
(0.025)

AE + SVDD 0.858
(0.159)

0.286
(0.118)

0.530
(0.085)

0.535
(0.084)

0.717
(0.011)

0.684
(0.057)

0.650
(0.082)

0.700
(0.042)

0.412
(0.165)

0.530
(0.038)

CAE + KDE 0.978
(0.028)

0.993
(0.001)

0.993
(0.001)

0.993
(0.002)

0.987
(0.001)

0.847
(0.054)

0.869
(0.015)

0.867
(0.054)

0.921
(0.009)

0.801
(0.042)

CAE + IsoForest 0.962
(0.072)

0.998
(0.036)

0.988
(0.036)

0.974
(0.072)

0.980
(0.002)

0.860
(0.046)

0.883
(0.026)

0.870
(0.061)

0.924
(0.009)

0.819
(0.061)

CAE + SVDD 0.976
(0.047)

0.985
(0.042)

0.999
(0.001)

0.974
(0.072)

0.980
(0.004)

0.877
(0.038)

0.895
(0.024)

0.882
(0.056)

0.794
(0.048)

0.622
(0.070)

ReSAE 0.992
(0.001)

0.996
(0.002)

0.996
(0.003)

0.994
(0.000)

0.068
(0.011)

0.347
(0.022)

0.320
(0.017)

0.358
(0.024)

0.809
(0.038)

0.569
(0.021)

ReCAE 0.999
(0.002)

0.999
(0.001)

0.998
(0.002)

0.998
(0.001)

0.048
(0.001)

0.327
(0.003)

0.303
(0.002)

0.333
(0.003)

0.732
(0.002)

0.569
(0.007)

AnoGAN 0.765
(0.024)

0.567
(0.036)

0.570
(0.037)

0.604
(0.095)

0.216
(0.116)

0.452
(0.139)

0.399
(0.101)

0.417
(0.207)

0.722
(0.014)

0.691
(0.042)

Soft-boundary
deep SVDD
(AE pre-trained)

0.980
(0.005)

0.994
(0.003)

0.985
(0.002)

0.989
(0.003)

0.792
(0.007)

0.823
(0.007)

0.760
(0.004)

0.791
(0.007)

0.819
(0.079)

0.643
(0.091)

One-class deep
SVDD
(AE pre-trained)

0.980
(0.005)

0.993
(0.003)

0.985
(0.003)

0.988
(0.004)

0.775
(0.005)

0.793
(0.007)

0.762
(0.003)

0.759
(0.006)

0.859
(0.103)

0.683
(0.028)

Soft-boundary
deep SVDD
(CAE pre-trained;
Proposed)

0.985
(0.026)

1.000
(0.000)

1.000
(0.000)

1.000
(0.000)

0.991
(0.001)

0.936
(0.007)

0.941
(0.008)

0.940
(0.007)

0.985
(0.002)

0.912
(0.011)

One-class deep
SVDD
(CAE pre-trained;
Proposed)

1.000
(0.000)

1.000
(0.000)

1.000
(0.000)

1.000
(0.000)

0.991
(0.001)

0.939
(0.006)

0.944
(0.002)

0.939
(0.009)

0.985
(0.004)

0.922
(0.014)
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Table 7 shows that the traditional OCC methods with independently performed
feature extraction yielded lower AUROC values than deep neural network-based OCC
methods. Those results indicate that separate feature extraction procedures might not
generate specialized features for fault signal detection tasks. Conversely, the deep neural
network-based OCC methods generally perform better than traditional OCC methods
owing to their end-to-end learning manners for the fault signal detection tasks. In the deep
neural network structures, latent features are optimized for fault signal detection tasks in
that these features are simultaneously generated to minimize the loss functions for the fault
signal detection tasks. Therefore, it confirms that deep neural network-based methods are
more appropriate for detecting fault signals than traditional OCC methods with separate
feature extraction procedures. However, in the AnoGAN model, the generator part may
poorly generate artificial target signals due to the mode collapse problem, and it results in
undesirable fault signal detection performance. Besides, the reconstruction-based methods,
ReSAE and ReCAE, also cannot perform better than the deep SVDD models because the
reconstruction error of the input signal might not directly quantify the anomalous level
of the input signal. Hence, the weights of the stacked AE or CAE should be updated for
more accurate fault signal detection tasks. Conversely, both one-class deep SVDD and
soft boundary deep SVDD models outperform other deep neural network-based methods
because the more specialized features of fault signal detection can be derived as minimizing
loss functions for anomaly detection tasks. It should be noted that the pre-training with
CAE performs better than those with stacked AE because convolutional layers of the CAE
network help to draw temporal information of time-series signals because they combine the
signal values within adjacent time intervals. Therefore, the initial neural network structures
of the encoding part in CAE can accommodate the intrinsic properties of time-series signal
data, and it eventually helps to build more accurate decision boundaries for detecting
fault signals.

In addition, we conducted a post-analysis on performance differences through a
nonparametric statistical method. We applied the Wilcoxon signed rank test [57] regarding
the statistical difference in AUROC values among all the above 16 methods. Based on
p-values over all methods, the null hypothesis of performance equivalence between CAE
pre-trained one-class deep SVDD (the top-ranked method) and other ones is tested. The
results of the Wilcoxon signed rank test are provided in Table 8.

Table 8. Wilcoxon signed-rank test results.

Methods Average Rank p-Value Hypothesis
(α = 0.01)

One-class deep SVDD (CAE pre-trained;
Proposed) 1.1 - -

Soft-boundary deep SVDD (CAE pre-trained;
Proposed) 1.9 0.1056 Not reject

CAE + IsoForest 5.9 0.0059 Reject
CAE + KDE 6.0 0.0058 Reject
CAE + SVDD 6.7 0.0020 Reject
PCA + SVDD 6.8 0.0089 Reject
Soft-boundary deep SVDD (AE pre-trained) 7.8 0.0020 Reject
PCA + IF 7.9 0.0058 Reject
One-class deep SVDD (AE pre-trained) 8.2 0.0020 Reject
PCA + KDE 8.6 0.0092 Reject
ReSAE 9.9 0.0059 Reject
ReCAE 10.0 0.0059 Reject
AnoGAN 12.7 0.0020 Reject
AE + KDE 13.1 0.0020 Reject
AE + IF 13.5 0.0020 Reject
AE + SVDD 13.6 0.0020 Reject
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As shown in Table 8, both the CAE pre-trained one-class deep SVDD and soft-
boundary deep SVDD methods attained the best or second average rank. In addition,
the null hypothesis of performance equivalence was rejected with a significance level of
α = 0.01, and it implies that there is a significant difference in performance between the
CAE pre-trained deep SVDD (proposed) and other methods. Consequently, these results
denote that the proposed deep SVDD with CAE pre-training significantly outperformed
the others. Finally, there is no statistical difference between the two deep SVDD methods
pre-trained by CAE, which are not significant. In spite of their equivalent performance, we
suggest using the one-class deep SVDD because it alleviates the difficulty of selecting the
hyperparameter ν in the soft-boundary deep SVDD method.

In this study, we also conducted additional experimental studies to examine the effect
of a number of latent features on the fault signal detection performance by varying the
number of latent features from 16 to 256. The AUROC values over different numbers of
latent features in all cases are presented in Figure 9.
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As shown in Figure 9, the fault signal detection performance of the deep SVDD
model rarely differs by changing the number of latent features. Therefore, we specified the
number of latent features as 16 in order to prevent the overfitting problem and mitigate the
computational burden of the deep SVDD model.

Finally, in order to demonstrate the advantage of the deep SVDD method regarding
fault signal detection, we compared it with other feature extraction methods (PCA, AE, and
one-dimensional CAE). To this end, we visualized these 16 latent features extracted from
these four methods by facilitating the t-distributed stochastic neighborhood embedding
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(t-SNE [58]) technique. Figure 10 shows the two-dimensional t-SNE plots of latent features
obtained from four feature extraction methods.

As shown in Figure 10, in the latent features obtained from PCA and AE, normal
and fault signals are quite overlapped each other. The PCA cannot deal with the non-
linear patterns, and thus, it might not properly deal with the complex time series signal
data. Moreover, in the AE, the layers are fully connected to each other, and these fully
connected structures also cannot accommodate the temporal properties of the time series
signals. For these reasons, these two feature extraction methods cannot accurately detect
the fault signals. Conversely, the one-dimensional CAE and deep SVDD pre-trained by
one-dimensional CAE more clearly discriminate the fault signals from normal ones than
PCA and AE. These results indicate that one-dimensional CAE can more properly handle
the time series signals because the convolutional blocks (i.e., convolutional-max pooling
layer pair) in CAE help to consider the temporal properties of the time series signals [51,52].
On the other hand, latent features obtained from the deep SVDD more clearly separate the
fault signals and normal signals than those from one-dimensional CAE. In the fine-tuning
procedure of the deep SVDD, latent features are updated to be specialized for fault signal
detection. Therefore, the deep SVDD method can generate more useful features for fault
signal detection tasks than only using one-dimensional CAE.
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5. Conclusions

In this study, we present a fault signal detection framework based on deep SVDD
for the implementation of an efficient CBM strategy on machinery systems. To this end,
we utilize the raw time-series signal because it directly reveals the health status of the
machinery system. To handle the raw time-series signal data, the deep SVDD model is
trained by one-dimensional CAE as a pre-training procedure, and the encoding part of the
CAE structure is used as the initial network structure of the deep SVDD model.

The pre-training procedure helps to more accurately detect the decision boundary and
the fault signals because intrinsic properties of time-series signal data can be accommodated
to the neural network structures of the encoding part. Then, in the fine-tuning procedure,
the neural network structures for the deep SVDD model are updated to minimize the
loss function for the anomaly detection tasks. Through the fine-tuning procedure, the
latent features specialized to the fault signal detection can be generated, and it eventually
helps the deep SVDD model to achieve superior fault signal detection performance. To
demonstrate the efficacy of the deep SVDD model in fault signal detection, we used
a widely used benchmark signal dataset (CWRU dataset) and both the vibration and
acoustic signal datasets collected from our own rolling element experiment platform. In
this experimental study with these datasets, the deep SVDD model outperforms other OCC
methods, and these results confirm the applicability of the deep SVDD model in real fault
signal detection problems.

In spite of its superiority in fault signal detection problems, the decision boundary
of the deep SVDD model might be corrupted by the noisy or outlying time series signals,
which are generated by incomplete sampling or data transmission error [20,56]. Thus,
in further study, we will address the deep SVDD model’s vulnerability against noisy
or outlying time series signals. To this end, we will improve the deep SVDD model by
incorporating the relative density of individual signals because these noisy or outlying
time series signals tend to be located in sparse regions in feature space.
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