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Abstract: Presented herein is the free vibration analysis of functionally graded beams (FGMs) via
higher-order shear deformation theory and an artificial neural network method (ANN). The transverse
displacement (w) is expressed as bending (wb) and shear (ws) components to define the deformation
of the beam. The higher-order variation of the transverse shear strains is accounted for through the
thickness direction of the FGM beam, and satisfies boundary conditions. The governing equations
are derived with the help of Hamilton’s principle. Non-dimensional frequencies are obtained using
Navier’s solution. To validate and enrich the proposed research, an artificial neural network method
(ANN) was developed in order to predict the dimensionless frequencies. Material properties and
previous studies were used to generate the ANN dataset. The obtained frequency values from the
analytical solution and ANN method were compared and discussed with respect to the mean error.
In conclusion, the solutions were demonstrated for various deformation theories, and all of the results
were thereupon tabularized and visualized using 2D and 3D plots.

Keywords: functionally graded material; composite beam; artificial neural network; free vibration

1. Introduction

Functionally graded materials (FGMs) are composite materials with advanced and
programmable structures whose physical and mechanical properties can vary in different
directions. Recently, with the major technological breakthroughs made in fields such as
materials engineering and artificial intelligence (AI), the design and optimization of FGMs
have come into prominence with great momentum. Substantial investments made in the
past few decades, especially in areas such as materials and software engineering, have
recently begun to bear fruit. In this context, the importance of functional materials created
using smart materials has increased considerably in fields such as energy, electronics, air-
craft and space engineering, construction, and defense. To be more precise, a good analysis
of such functional materials will maximize the efficiency of the designed engineering struc-
ture. Undoubtedly, functionally graded materials (FGMs) have an important place among
the mentioned materials.

FGMs have significant potential in the analysis of composite materials, with their
unique physical and mechanical properties. Functional materials are generally obtained
by combining two different materials that have a certain harmony between them. These
are often composite structures designed in ceramic–metal or ceramic–polymer forms, with
smooth transitions from one surface to another.

Although there are many different methods for analyzing functional materials, the
most prominent are Euler–Bernoulli beam theory (CBT), Timoshenko beam theory (first-order
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shear deformation theory), higher-order shear deformation theories, and nonlocal ap-
proaches. First-order shear deformation theory takes into account the shear effect, which is
ineffective in CBT. The existence of advanced theories that consider shape factor, which
arises depending on the geometry of the composite material and allows us to calculate the
deformation most accurately, has turned research towards higher-order theories. Hence,
the need for enhanced theories has become inescapable. To avoid the use of the shear
correction factor and to better predict the behavior of FGM beams, third-order shear defor-
mation theories [1,2], sinusoidal theory [3], and hyperbolic deformation theory [4] have
been proposed. Using various higher-order shear deformation beam theories, bending and
free vibration analyses of functionally graded beams are developed [5].

In the present study, the free vibration behavior of an FG beam is analyzed via both
higher-order shear deformation theory and artificial neural network (ANN) methods. The
ANN method is a kind of AI method that allows advanced algorithms to accurately predict
material behavior. Owing to this cutting-edge method, the computational time is also
considerably reduced. Looking back over the past decade, machine learning, the latest
trend in computer systems, has attracted great attention. The main reason for this is that
thanks to this system, dynamic data can be stored, interpreted, and, most importantly, easily
integrated into science and industry. Moreover, current studies have shown that thanks to
this technology, engineering applications and problems can be tested and interpreted very
quickly. In this way, free vibration frequencies can easily be tested for different deformation
theories in research.

First, a mathematical model is proposed using higher-order shear deformation theory
(HSDT). Then, kinematic relations and constitutive equations are obtained using Hamilton’s
law. The analytical solution is performed for simply supported boundary conditions. Then
dimensionless frequencies are attained using Navier’s solution procedure. To validate and
enrich the present research, an ANN method was developed and trained using material
properties data obtained from previous studies. Recently, the researchers of [6] studied
nonlocal FGM nanoplates using higher-order isogeometric analysis and the ANN method
to predict free vibration behavior. They demonstrated that the obtained values from the
ANN converged with a considerable margin of error compared to the analytical solution.

Reddy [7] carried out studies involving linear and nonlinear theories to examine
the deformations and stresses of functionally graded plates. Vel and Batra [8] studied
the deformations of an FGM plate pinned from both ends in a mechanical and thermal
environment by comparing different deformation theories. Ferreira et al. [9] analyzed
the behavior of a simply supported functionally graded plate using a third-order shear
deformation theory. Neves et al. [10] presented the sinusoidal shear deformation theory
for vibration analysis of a functionally graded element. Taj et al. [11] conducted a series of
analyses of FG plates with an effective ◦C iso-parametric Lagrangian finite element with
multiple degrees of freedom for each node, using higher-order deformation theory.

Li [12] investigated the static bending and free vibration behaviors of Timoshenko
and Euler–Bernoulli FGM beams using shear deformation and Timoshenko beam theories.
Huang and Li [13] studied the free vibration model of axially graded non-uniform beam
cross-sections with the help of Fredholm integral equations. Aydoğdu and Taşkın [14]
analyzed the free vibration behavior of a simply-supported FGM beam for different de-
formation theories using a Navier-type solution method. Mahi et al. [15] studied the free
vibration behavior of temperature-dependent FGM beams.

Sankar [16] presented elasticity solutions to the bending of Euler–Bernoulli FGM
beams. Zhang and Yu [17] studied an analytical solution that analyzes the behavior of
beams subjected to mechanical loading with the Airy stress function. Shahrjerdi et al. [18]
studied the behavior of functionally graded solar panels under stress using a second-order
shear deformation theory. Bending and buckling behaviors of bi-directional Euler–Bernoulli
and Timoshenko beams using the strain gradient elasticity and nonlocal elasticity methods
were presented in studies [19–21].



Appl. Sci. 2024, 14, 217 3 of 15

Although the analytical solutions of functionally graded composites converge very
precisely, the mechanical calculations of such advanced composite structures impose a
significant computational load. However, in cases where thermal change and other dynamic
effects occur together, the solution to the problem becomes more difficult. ANN methods
provide us with a significant guide at this point. The ANN model converges to an outcome
with a tolerance of 10−4 within a second. This computational efficiency outperforms
analytical solutions in terms of time, and with a low tolerance.

There are very few studies in the literature that analyze free vibration, post-buckling
behavior, etc. Other effects of advanced composite structures are under different mechanical
and environmental conditions. In such situations, validating the research becomes grueling.
When artificial intelligence is well-trained, it can be a crucial source for us to check the
accuracy of the analysis, and also allows the development of advanced methods by other
researchers. In addition, the ANN method offers us many advantages such as optimization
of composite structures and estimating appropriate dimensions and material parameters
for minimum deformation of the structure in the problem.

The present study offers a new perspective and approach to the traditional methods
used in solving such problems in the literature. In view of the current research, recent
breakthroughs made in computer engineering and their applied science studies with other
disciplines have shown that the machine learning approach is shaping our future daily in
terms of material optimization and advanced structural analysis. From this point on, it
is noticeable that there is a deficiency in the literature on machine learning-based studies
such as ANN approaches.

2. Theory and Formulation
2.1. Material Properties

For a ceramic–metal FGM beam (see Figure 1) having a length L, width b, and thickness
h, the geometry of the beam, its material properties, and volume fraction are expressed in
Equations (1)–(3). Considering the rule of mixture, the effective material properties P can
be written in terms of volume fraction, as shown below:

P(z) = PmVm + PcVc (1)

where Pm, Pc, Vm, and Vc denote the material properties of the metal and ceramic associated
with the given subindices, respectively.

Vm + Vc = 1 (2)
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Figure 1. FGM beam.

Note that the distribution of the power law for the volume fraction of ceramic material
can be expressed as follows:

Vc =

(
z
h
+

1
2

)p
(3)

where p, which is a number greater than zero, takes a value in the range 0 ≤ p ≤ ∞ and
is called the power law index. In the case of p = 0, the material becomes fully ceramic.
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Considering the above relationship, the material properties in terms of Young’s modulus
and mass density, as shown below:

E(z) = Em + (Ec − Em)Vc

ρ(z) = ρm + (ρc − ρm)Vc
(4)

Poisson’s ratio is assumed to be constant in our study.

2.2. Constitutive Equations

The displacement field for the higher-order deformation theory can be written in a
general form. In this analysis, the transverse displacement w is expressed as the summation
of bending (wb) and transverse (ws) displacements, as shown below:

u(x, z, t) = u0(x, t)− z
∂wb
∂x

− f (z)
∂ws

∂x
(5)

w(x, z, t) = wb(x, t) + ws(x, t) (6)

In the present study, the following shape function f(z) is chosen based on the hyperbolic
function proposed by Soldatos [4]:

f (z) = z −
[

h
(

sinh
( z

h

))
+ z

(
cosh

(
1
2

))]
, g(z) = 1 − f ′(z) (7)

The non-zero linear strains derived from Equations (5) and (6) are the following:

εx = ∂u0
∂x − z ∂2wb

∂x2 − f (z) ∂2ws
∂x2

γxz = g(z) ϕ

ϕ = ∂ws
∂x

(8)

Assuming that the material of the FG beam conforms to Hooke’s law, the stresses in
the beam are expressed as follows:

σx = E(z) εx, τxz =
E(z)

2(1 + υ)
γxz (9)

where

Q11(z) = E(z), Q55(z) =
E(z)

2(1 + υ)
(10)

2.3. Equations of Motion

The equations of motion are attained using Hamilton’s principle and integrating with
respect to the time, as follows [5]:

δ

t2∫
t1

(U + V − K)dt = 0 (11)

Here, δU, δV, and δK show the virtual variations of the strain energy, potential energy,
and kinetic energy, respectively.

The variational strain energy δU can be written as follows:

δU =
L∫

0

h
2∫

− h
2

(σxδεx + τxzδγxz)dz dx

δU =
L∫

0

[
Nx

∂δu0
∂x −Mb

∂2δwb
∂x2 − Ms

∂2δws
∂x2 + (Q δϕ)

]
dx

(12)
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Thus, the stress resultants Nx, Mb, Ms, and Q are given as follows:

{Nx} =

h
2∫

− h
2

σx dz, {Mb} =

h
2∫

− h
2

z σx dz (13)

{Ms} =

h
2∫

− h
2

σx f (z) dz (14)

Q =

h
2∫

− h
2

g(z) τxz dz (15)

The work done by the external vertical load q can be expressed as follows:

δV = −
L∫

0

qδ(wb + ws)dx (16)

The variational kinetic energy δK can be written as follows [22]:

δK =
L∫

0

h
2∫

− h
2

ρ(z)
[ .
u δ

.
u +

.
w δ

.
w
]

dz dx

δK =
L∫

0

h
2∫

− h
2

ρ(z)
[ .
u δ

.
u +

( .
wb +

.
ws

)(
δ

.
wb + δ

.
ws

)]
dz dx

δK =
L∫

0
J1
( .
u0 δ

.
u0 +

( .
wb +

.
ws

)(
δ

.
wb + δ

.
ws

))
− J2

( .
u0

∂δ
.

wb
∂x + ∂

.
wb
∂x δ

.
u0

)
+J3

(
∂

.
wb
∂x

∂δ
.

wb
∂x

)
− J4

( .
u0

∂δ
.

ws
∂x + ∂

.
ws
∂x δ

.
u0

)
+ J5

(
∂

.
wb
∂x

∂δ
.

ws
∂x + ∂

.
ws
∂x

∂δ
.

wb
∂x

)
+ J6

(
∂

.
ws
∂x + ∂δ

.
ws

∂x

)
dx

(17)

If the variational expressions of δU, δV, and δK defined in Equations (12), (16), and (17),
respectively, are rewritten into Equation (11), the following equations of motion for the
functionally graded beam are obtained:

δu0 : N′
x = J1

..
u0 − J4

..
w′

s − J2
..
w′

b

δwb : M′′
b + q = J1

..
wb + J1

..
ws + J2

..
u′

0 − J3
..
w′′

b − J5
..
w′′

s

δws : M′′ s + Q′ + q = J1
..
wb + J1

..
ws + J4

..
u′

0 − J5
..
w′′

b − J6
..
w′′

s

(18)

The inertial coefficients are defined as follows:

{J1, J2 , J3 , J4 , J5 , J6} =

h
2∫

− h
2

ρ(z)
(

1, z, z2, f , z f , f 2
)

dz (19)

By rewriting Equation (18) and considering Equation (19), the equations of motion for
the FGM beam can be written as shown below:

A11
∂2u0

∂x2 − B11
∂3wb
∂x3 − Bs

11
∂3ws

∂x3 = J1
..
u0 − J4

∂
..
ws

∂x
− J2

∂
..
wb
∂x

(20)

B11
∂3u0

∂x3 − D11
∂4wb
∂x4 − Ds

11
∂4ws

∂x4 + q = J1
( ..
wb +

..
ws

)
+ J2

∂
..
u0

∂x
− J3

∂2 ..
wb

∂x2 − J5
∂2 ..

ws

∂x2 (21)

BS
11

∂3u0

∂x3 − DS
11

∂4wb
∂x4 − Hs

11
∂4ws

∂x4 + A55
∂2ws

∂x2 + q = J1
( ..
wb +

..
ws

)
+ J4

∂
..
u0

∂x
− J5

∂2 ..
wb

∂x2 − J6
∂2 ..

ws

∂x2 (22)
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where

{
A11, B11, D11, BS

11, DS
11, HS

11

}
=

h
2∫

− h
2

Q11

(
1, z, z2, f , z f , f 2

)
dz (23)

A55 =

h
2∫

− h
2

Q55 (g(z))2 dz (24)

3. Solution Procedure
3.1. Analytical Part of Solution

The purpose of Navier’s approach is to determine the natural frequency (w) of the
FG beam that is simply supported from both ends. The parameters u0, wb, and ws can be
expressed by assuming the following expressions [22]:

u0
wb
ws

 =
∞

∑
m=1


Um ei ω t cos(λx)
Wbm ei ω t sin(λx)
Wsm ei ω t sin(λx)

 (25)

where the unknown coefficients Um, Wbm, and Wsm should be determined; w is the eigen-
frequency associated with mth eigenmode, and λ = mπ

L .
For the simply supported beam, the boundary conditions are given as shown

below [14]:

Nxδu0|L0 = 0

(M′
s + Q)δws|L0 = 0

(M′
b)δwb|

L
0 = 0

u = w = Mb = 0 at x = 0, L

(26)

The following q load is considered as in study [5]:

q(x) =
∞

∑
m=1

qm sin(αx) (27)

qm =
2
L

L∫
0

q(x) sin(αx) dx (28)

qm =

{
q0 (m = 1) for sin usoidal load q0
4q0
mπ (m = 1, 3, 5, . . .) for uniform load q0

(29)

Substituting the variables u0, wb, and ws from Equation (25) into the equations of
motion, Equations (20)–(22), the solutions can be obtained analytically by taking the de-
terminant of the given matrix associated with the components of Kij and mij [22]. In the
present study, qm is assumed to be zero (qm = 0).K11 K12 K13

K12 K22 K23
K13 K23 K33

− ω2

m11 m12 m13
m12 m22 m23
m13 m23 m33


Um
Wbm
Wsm

 =


0
qm
qm

 (30)
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where

K11 = A11λ2, K12 = −B11λ3, K13 = −Bs
11λ3,

K22 = D11λ4, K23 = Ds
11λ4, K33 = Hs

11λ4 + A55λ2,

m11 = J1, m12 = −λJ2, m13 = −λJ4,
m22 = J1 + λ2 J3, m23 = J1 + λ2 J5, m33 = J1 + λ2 J6

(31)

3.2. Artificial Neural Network (ANN) Method

An artificial neural network (ANN) is a computational model that is inspired by the
structure and function of biological neural networks in the human brain. It comprises
interconnected nodes, known as neurons, organized systematically into layers. These
neurons work in harmony to process and transform input data into meaningful output. The
configuration of an ANN, in terms of the number of neurons within each layer (i.e., height)
and the number of layers (i.e., depth), is a critical factor that influences the network’s
capacity to perform a given task. In an ANN, data are typically fed into the input layer,
and information flows through the network’s hidden layers to the output layer. Each
connection between neurons is associated with a weight w, which influences the strength
of the signal transmitted between neurons. These weights are adjusted during the training
process where the network learns to map input data to the desired output. In the present
research, it is a supervised learning approach, since we have access to the corresponding
outputs for the inputs.

Specifically, all neurons in an ANN receive one or more input values from the previous
layer, which are each associated with weights, denoted as {x1, x2,. . ., xn} and {w1, w2,. . .,
wn}, respectively. Then, a neuron performs g(∑n

i=1 wixi + b) with bias b and activation
function g(·). Here, the g(·) function introduces nonlinearity into the model, for example,
widely used activation functions are sigmoid, tanh, ReLU, and leaky ReLU.

In this study, we aimed to predict ω (i.e., dimensionless frequency) from 4 inputs,
which are the beam theory, beam type, L/h, and p, as shown in Figure 2. Since the
first three variables represent categorical values, for instance, L/h is drawn from a finite set
of {5, 10, 20, 30, 100}, we are encouraged to use a categorization technique. One commonly
used approach is one-hot encoding, which transforms a categorical input denoted as xcat,

with d distinct categories, into a one-hot encoded vector

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 16 
 

with d distinct categories, into a one-hot encoded vector ohe
catx ∈Rdx𝟙. In this encoding, the 

corresponding category is assigned the value 1, while all other categories are assigned the 
value 0 in ohe

catx . Moreover, the final variable, denoted as p, represents a numerical value of 

numx . Consequently, we use a normalization procedure with the objective of centering its 
mean at 0 and standardizing its deviation to 1, shown as norm

numx . This normalization step’s 
purpose is to enhance training stability and accelerate the convergence of neural networks 
towards optimal solutions. 

 
Figure 2. Input pre-processing for the ANN model. 

Prior to training, the dataset is partitioned into two distinct subsets: the training da-
taset and the test dataset. Given the inherent susceptibility of datasets in this domain to 
overfit ANN models, we use dropout [23] with a rate of {0.1}. The dropout technique is 
commonly used for its efficacy in addressing overfitting by randomly dropping out a frac-
tion of neurons during each training iteration. 

During the training process, the model is trained on the training dataset by optimiz-
ing the model weights W, using a loss function f(W) that is the expected loss over the 
training dataset: 

( ) ( );f fξ ξ =  W W  (32)

where ξ is a random data sample from the training dataset and ( );Wf ξ  is the loss func-
tion for this sample. To calculate the loss function, we use the following mean square error 
(MSE): 

( ) ( )( )
2

1

1 ;X
i ii

f X
X

ω θ
=

= −W W  (33)

where X is the training dataset, iω  is the ground truth value for the input Xi, and θ(Xi; 
W) denotes the predicted output of the ANN model θ( ⋅ ), given weights W and the input 
Xi. The optimal solution of the problem is the following: 

( ) ( )* arg min fθ = WW W  (34)

To reach this optimal solution, we optimize our model at each iteration using the 
following stochastic gradient descent with momentum (SGDM): 

( ) 1tθ αυ += −W W  (35)

( ) ( )1 1t t fυ βυ β+ = + − ∇W W  (36)

where v0 = 0, α is the learning rate, and β is the momentum weight. 
However, the performance of an ANN model is significantly influenced by the selec-

tion of the activation function, the number of hidden layers, their respective layer sizes, 
the learning rate, and the momentum weight. In order to optimize these architectural as-
pects, we use a grid search-based approach, systematically exploring various combina-
tions of these hyperparameters. Our results indicate that using ReLU as the activation 
function, with a network depth of 3 and 35 neurons for each hidden layer, α as 0.01, and 
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corresponding category is assigned the value 1, while all other categories are assigned the
value 0 in xohe

cat . Moreover, the final variable, denoted as p, represents a numerical value of
xnum. Consequently, we use a normalization procedure with the objective of centering its
mean at 0 and standardizing its deviation to 1, shown as xnorm

num . This normalization step’s
purpose is to enhance training stability and accelerate the convergence of neural networks
towards optimal solutions.
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Prior to training, the dataset is partitioned into two distinct subsets: the training
dataset and the test dataset. Given the inherent susceptibility of datasets in this domain
to overfit ANN models, we use dropout [23] with a rate of {0.1}. The dropout technique
is commonly used for its efficacy in addressing overfitting by randomly dropping out a
fraction of neurons during each training iteration.
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During the training process, the model is trained on the training dataset by optimizing
the model weights W, using a loss function f (W) that is the expected loss over the training
dataset:

f (W) = Eξ

[
f̃ (W; ξ)

]
(32)

where ξ is a random data sample from the training dataset and f̃ (W; ξ) is the loss function
for this sample. To calculate the loss function, we use the following mean square error
(MSE):

f (W) =
1
|X|∑

|X|
i=1(ωi − θ(Xi; W))

2
(33)

where X is the training dataset, ωi is the ground truth value for the input Xi, and θ(Xi; W)
denotes the predicted output of the ANN model θ(·), given weights W and the input Xi.
The optimal solution of the problem is the following:

θ(W∗) = argWmin f (W) (34)

To reach this optimal solution, we optimize our model at each iteration using the
following stochastic gradient descent with momentum (SGDM):

θ(W) = W − αυt+1 (35)

υt+1 = βυt + (1 − β)∇W f (W) (36)

where v0 = 0, α is the learning rate, and β is the momentum weight.
However, the performance of an ANN model is significantly influenced by the selec-

tion of the activation function, the number of hidden layers, their respective layer sizes,
the learning rate, and the momentum weight. In order to optimize these architectural
aspects, we use a grid search-based approach, systematically exploring various combina-
tions of these hyperparameters. Our results indicate that using ReLU as the activation
function, with a network depth of 3 and 35 neurons for each hidden layer, α as 0.01, and β
as 0.9, yields the best performance on our dataset. For a visual representation of the final
architecture of our ANN model, please refer to Figure 3.
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We implemented the ANN model using PyTorch [24]. Moreover, we designed an
interface for the purpose of input provision and prediction retrieval, as illustrated in
Figure 4. Then, the model was trained by the selected hyperparameters for a maximum of
300 epochs on the dataset collected from [5]. The resulting training and test losses can be
seen in Figure 5. After 300 epochs, the model achieved an MSE of “0.00047” in the training
dataset. Furthermore, Table 1 shows the actual and predicted frequencies for the given
inputs. Through the results, the ANN model demonstrated that it predicts accurately.
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Table 1. Dimensionless frequencies (ϖ) of FG beams for the first mode.

Inputs Ref. [5] Present
ANN Prediction

Error
(%)Beam Type Beam Theory L/h p

S-S HSDT

5

0 5.1527 5.1527 5.1404 0.24
0.5 4.4107 4.4107 4.3784 0.73
1 3.9904 3.9903 3.9163 1.86
2 3.6265 3.6264 3.6419 0.42
5 3.4014 3.4014 3.4209 0.57
10 3.2817 3.2817 3.2072 2.27

20

0 5.4603 5.4603 5.4503 0.18
0.5 4.6511 4.6511 4.5956 1.19
1 4.2051 4.2049 4.1425 1.49
2 3.8361 3.8361 3.7991 0.96
5 3.6485 3.6485 3.6715 0.63
10 3.539 3.5390 3.4599 2.24
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Table 1. Cont.

Inputs Ref. [5] Present
ANN Prediction

Error
(%)Beam Type Beam Theory L/h p

S-S CBT

5

0 5.3953 5.3953 5.3703 0.46
0.5 4.5931 4.5931 4.6144 0.46
1 4.1484 4.1484 4.1775 0.70
2 3.7793 3.7793 3.7545 0.66
5 3.5949 3.5949 3.6508 1.55
10 3.4921 3.4921 3.4816 0.30

20

0 5.4777 5.4777 5.3975 1.46
0.5 4.6641 4.6641 4.5927 1.53
1 4.2163 4.2163 4.1843 0.76
2 3.8472 3.8472 3.8234 0.62
5 3.6628 3.6628 3.6532 0.26
10 3.5547 3.5547 3.4890 1.85

4. Results and Discussion

In this section, the results of several numerical examples for different span-to-height
(L/h) ratios are presented. The specific material properties of the FG beam constructed of
ceramic (Al2O3) and metal (aluminum) in this study are given as follows:

Alumina (Al2O3): Ec = 380 GPa, ρc = 3960 kg/m3, ν = 0.3 -aluminum (Al); Em = 70 GPa,
ρm= 2702 kg/m3, ν = 0.3

The dimensional frequency can be calculated using the following formula [25]:

ω =

(
ωL2

h

)√
ρm

Em
(37)

In the case of the ANN solution, the following parameters are considered as input data:
span-to-height ratio, L/h = 5 and L/h = 20; beam type, simply supported (S-S), clamped-
clamped (C-C), and clamped-fixed (C-F); beam theory, higher-order shear deformation
beam theory or shear deformation theory (HSDBT or HSDT), CBT, TBT, ESDT, etc. (see
Figure 4); and the power law varying for values 0–10. All of the results were calculated and
plotted only for the HSDT and CBT in simply supported FG beams by only considering the
first mode (m = 1). To validate the accuracy of the analytical method and ANN predictions,
the non-dimensional frequencies (ϖ) obtained by the presented approaches were compared
to a reference study conducted by Thai and Vo [5].

Table 1 indicates the comparison of non-dimensional frequency values of simply
supported (S-S) FG beams for different span-to-height ratios (L/h), and the power law index
(p) using HSDT and CBT. As can be seen from Table 1, while the value obtained with the
analytical solution yields the same results as the reference study, it also converges with
the ANN prediction values with a very small margin of error. These results show us the
originality and quality of the trained ANN model. However, for p = 10, a higher margin of
error is observed in the ANN estimation of CBT and HSDT compared to other values. The
reason for this margin of error is that dimensionless natural frequency values for p = 10 for
both approaches were not attained in desired level studies in the literature when the ANN
dataset was created.

In order to understand the results clearly, a considerable amount of 3D and 2D dia-
grams (see Figures 4–12) were obtained and visualized from the analytical solution and
ANN method, showing the variations of the non-dimensional frequency value according
to different parameters.
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To comment on the values in the graphs, Figures 5 and 6 indicate the change of ANN
prediction values according to the L/h ratio. As can be seen from the 3D graphics, higher
frequency values were obtained for the same power law index values stemming from the
increase in the span-to-height ratio. Figures 7–11 show the non-dimensional fundamental
natural frequency versus the volume fraction exponent (p) for different values of the span-
to-height ratio L/h. It can be understood that the lowest dimensionless frequencies are
obtained for full metal (p → ∞). In addition, Figure 12 demonstrates the variations in the
dimensionless frequency values attained as a result of the present study that depend on the
projective span-to-height ratio L/h.

5. Conclusions

In the present study, the free vibration of an FGM beam was analyzed via both
analytical and AI approaches. To the best of the researchers’ knowledge, there are limited
studies in the current literature that investigate FG beams from multidisciplinary aspects. In
this research, we proposed an elucidative study to represent a functionally graded material,
in order to understand the vibrational behavior of those structures.

First, the FG beam was analytically solved using higher-order shear deformation
theory. The governing equations were derived with the help of Hamilton’s principle.
The material properties were assumed vary in the thickness direction of the beam. The
dimensionless frequencies for the simply supported beam were calculated by means of
Navier’s solution procedure. Navier’s solution is an advanced solution technique that
provides efficient solutions for mechanical problems. One of the main advantages of this
method is that the Navier method is an important approach in terms of being adapted
to solving all kinds of mechanical problems, regardless of whether 2 or 3 dimensions are
involved. Considering the studies of previous research on the analysis of functionally
graded structures, it has been revealed as one of the most reliable methods. Jha et al. [26]
investigated the free vibration responses of functionally graded (FG) elastic, rectangular,
and simply supported plates using higher-order shear deformation theories. In the study, a
Navier solution technique using the double Fourier series was developed to obtain results
at the desired level of accuracy, and it was emphasized that the Navier method is a suitable
method for calculating the free vibration frequencies of FG plates. However, in mechanical
analyses of nonlocal approaches and nonlinear functionally graded problems, Navier’s
method can be seen as a disadvantage in terms of being difficult to apply and not providing
the desired convergence.

One can readily switch to classical beam theory (CBT) from the higher-order shear
deformation theory by taking the shape function f(z) as zero.
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Second, an artificial neural network method (ANN) was developed in order to predict
the natural frequencies of FGM beams. The material properties, span-to-height ratio (L/h),
power law (p), beam theory, and end conditions were provided to the ANN architecture
as input data. Thus, it can be implied that the ANN method accurately represents the
behavior of FGM beams.

The ANN system was trained through a dataset provided by the results of previous
studies on FG beam vibrations. The analytical solution was analyzed for a higher-order
shear deformation theory that considered only the first mode (m = 1) of the simply sup-
ported FG beam. Based on all of the information above, the following results were obtained:

(a) It was observed that the results obtained with HSDT substantially overlap with other
higher-order shear deformation theories used in the literature.

(b) Non-dimensional frequency values obtained from the ANN converged significantly
to the results obtained with the analytical solution, with a very low margin of error.

(c) The accurate natural frequency values can be attained by taking the shear effect into
account (shear deformation effects lead to a decline in the natural frequencies).

(d) It can be implied that the non-dimensional frequency values obtained by higher-order
shear deformation theory and classical beam theory for the analytical and ANN
solutions converge depending on an increase in the span-to-height ratio.

(e) The ANN algorithm can be improved by providing more datasets to predict deforma-
tion parameters with smaller amounts of error.

The authors believe that the results listed above will be an important resource in the
design of functionally graded materials that are frequently used in many fields such as
energy, construction, mechanical engineering, electronics, biomedicine, aerospace, and
defense.
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