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Abstract: The paper evaluates the effect of spruce wood density on the parameters of mass loss and
mass loss rate during exposure to thermal load. The intention was to determine whether the effect
of density is still evident after the application of flame retardants to the test samples. Groups of
samples with different densities under the same retardant treatment were compared. The differences
in densities of the compared groups of samples were different for each flame retardant. Water-soluble
flame retardants based on inorganic salts were used. For testing, a simple test method was used in
which the samples were exposed to direct flame from a Bunsen burner. The results of the study are the
findings of how wood density affects the burning process of the samples treated with flame retardants.
Statistical evaluation of the experimental results shows a significant effect of wood density on the
monitored parameters even when flame retardants are used. For a difference in sample densities of
244 kg·m−3, there was a density dependence of the mass loss rate, with the lower density samples
having a higher mass loss rate (0.158%·s−1) over the whole experimental period compared to the
higher density samples (0.077%·s−1). The ANOVA test also demonstrated the influence of density on
the mass loss of the samples at the above density difference. At lower density differences (51 kg·m−3

and below), the effect of sample density on the observed parameters was no longer evident. The
fire spread rate parameter was also investigated. Here, a linear correlation between the difference in
sample densities and the difference in the values of the above parameter at high and low densities is
observed with a reliability coefficient R2 = 0.99.

Keywords: spruce wood; density; mass loss; mass loss rate; flame retardant

1. Introduction

Wood is a widely used construction material for both exterior and interior applica-
tions [1], and its global production has been steadily increasing, surpassing 800 million
tonnes per year in 2015. In Europe, the wood industry comprises approximately 400,000 en-
terprises, representing approximately one fifth of all manufacturing businesses [2]. One of
the main drawbacks of wood and other wood-based materials in all forms, when used as a
building material, is its flammability [3–10], limiting its fire resistance [11–13].

To address this concern, efforts are being made to develop protective measures and
flame retardants [14]. However, accurately testing these flame retardants is crucial to detect
even minor differences in their effectiveness. In Europe, several testing methods [15–19] are
applied to classify products into reaction-to-fire classes [20]. However, these are insufficient
for assessing flame retardants. Therefore, other, much more sensitive methods are also used
to compare the effects of flame retardants. Thermal analysis methods are used to study the
properties of materials as temperature changes. Of these, differential scanning calorimetry
(DSC), which measures the heat released or absorbed during the heating process, is used
in particular. Differential thermal analysis (DTA) can be used to determine the oxidation
process. Thermo-gravimetric analysis (TGA) can be used to measure the change in mass
of the sample during the heating or cooling process [21–23]. For the analysis of gases
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produced under heat load, the determination of heat release and mass loss rate can be
performed using the cone calorimeter method [24]. There are other non-normal methods for
the evaluation of flame retardants that are sensitive enough to investigate the combustion
behaviour of these materials. Several authors [25–32] have already evaluated some flame
retardants using different methods [9,33].

Among the suitable test methods, one involves exposing test samples to direct flame [34,35].
In this procedure, actual sample masses are recorded over time, and subsequently, the mass
loss rate can be calculated. It is one of the most significant fire engineering parameters used in
the past in mathematical models of forest fire spread [36] or in modelling the fire resistance of
wooden structures [7,37]. It is also possible to determine the heat release rate HRR from this
parameter under certain conditions [38]. The specific testing conditions were already set by the
researchers according to the type and kind of material. To compare the effectiveness of different
wood retardant treatments with sufficient accuracy, it is necessary to minimise other factors that
affect wood combustion. These are mainly the chemical composition, structure, density, material
surface, moisture content and geometric shape of the wood [39–42]. Chemical composition and
structure are mainly determined by the type of wood. Experimental tests are always conducted
on the same species of wood when the retardation effects are compared. Also, the shape of
the samples (dimensions), the moisture content of the wood and the material treatment must
be identical. The above factors (species, moisture content, dimensions and treatment of the
samples) shall be minimised in the experiments.

However, a significant, frequently neglected, factor is the density of the wood. Wood
density indicates the mass per unit volume of wood [43], usually given at a specific moisture
content because this directly influences it [44,45]. It is calculated as the ratio of the mass
and the volume of wood at the same moisture content. According to several authors,
wood density influences the combustion process in addition to physical and mechanical
properties [46,47]. Wood with a higher density is more difficult to ignite than wood
with a lower density because it has better thermal conductivity and more intense heat
dissipation from the material surface to the internal zones. This effect on ignitability is
particularly pronounced in large wood-based materials [48,49]. In order to achieve better
fire-resistant properties in the wood, wood densification is carried out, which removes
the intercellular space. Delignification, i.e., the reduction in lignin and hemicellulose
content, is also part of the densification process [50,51]. According to several studies, wood
densification significantly increases fire retardation [52–54]. The use of flame retardants in
the densification process further increases the flame resistance of wood [55–57]. However,
there are no scientific studies yet that provide relevant evidence on the extent to which wood
density affects the combustion process of undensified wood treated with flame retardants.

This paper aims to investigate how the density of spruce wood influences the burning
process of wood samples treated with flame retardants. In particular, the study is applicable
in the evaluation of the effectiveness of different wood retardant treatments. As already
indicated, the experiments are performed by a test method in which the samples are exposed
to a direct flame. The criteria evaluated will be mainly the rate of flame retardancy, mass
loss and other additional parameters. We also chose this method because of the simplicity
of the test equipment, and we designed the test procedure to reflect the conditions of a real
fire. The samples for the experiment will be selected from spruce wood, as it is the most
widely used wood species in the construction industry [58,59].

2. Materials and Methods
2.1. Materials

The samples of spruce wood (Picea abies) with dimensions 200 × 100 × 10 mm were
used for the experiment. They were selected to be free of lumps, resins and other defects
that could affect the combustion process. Before the experiment and the application of
flame retardants, all samples were placed in the laboratory for two weeks at a temperature
of 21 ◦C and a humidity of approximately 40% to ensure that the samples’ moisture content
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matched the end-use conditions. The final moisture content of the samples before applying
the flame retardants was approximately 12%.

For the first experiment, untreated samples were first used. Due to the high variability
in the measured data caused by the samples being burnt through, samples treated with
flame retardants were used for further experiments to see if the wood density would affect
the experimental results with such samples.

Three different wood flame retardants were applied to three groups of samples. The
applied retardants were transparent, water-soluble, colourless coatings based on inorganic
salts. Their specific composition is not specified here as the aim of this paper is not to
evaluate the retardants themselves. They were applied to all sides of the samples, including
their edges, in one coat using a brush. The average amount of coating varied between
60 and 80 g·m−2 depending on the specific retardant (according to the instructions of the
manufacturers of the individual flame retardants). The retardants on the samples were
dried for two months in a room with a temperature of 21 ◦C and a humidity of about 40%.

The samples were supplied by an external contractor. When measuring the densities
of the individual samples, we found a very large variability. The aim was to take advantage
of this variability and create groups of samples with various density differences. To
investigate the effect of density on the mass loss rate and mass loss, each studied sample
group included ten higher- and ten lower-density samples when one type of flame retardant
was applied. The designations of each sample group are specified in Table 1. The average
sample densities used in the experiment and the range of variation of the densities of the
individual samples within a test set are depicted in Table 2.

Table 1. Designation of individual sample groups.

Samples High-Density Wood Samples
(ρ > 450 kg·m−3)

Low-Density Wood Samples
(ρ < 450 kg·m−3)

Samples treated with Retardant 1 R1-HD R1-LD
Samples treated with Retardant 2 R2-HD R2-LD
Samples treated with Retardant 3 R3-HD R3-LD
Untreated samples U-HD U-LD

Table 2. Average sample densities and their variation range before flame retardant application.

Samples Average Density (ρ)
[kg·m−3]

Variation Range
[kg·m−3]

Difference in Density
(HD-LD) (∆ρ)

[kg·m−3]

R1-HD 560.69 47.86 560.69 − 317.00 = 243.69
* (218.92–281.51)R1-LD 317.00 14.72

R2-HD 462.12 5.79 462.12 − 411.47 = 50.65
* (44.87–57.32)R2-LD 411.47 6.66

R3-HD 455.58 4.62 455.58 − 447.14 = 8.44
* (4.62–12.48)R3-LD 447.14 12.48

U-HD 480.20 8.75 480.20 − 378.54 = 101.66
* (84.79–115.02)U-LD 378.54 21.47

* Variation range of density difference.

As demonstrated in Tables 1 and 2, the samples were intentionally selected to exhibit
varying mean densities within each group. For each retardant coating, the samples com-
prised both higher (>450 kg·m−3) and lower (<450 kg·m−3) densities, with the magnitude
of density differences differing for each coating. The boundary between high and low
densities was determined approximately as the median of the densities of all samples used
for the research. This design enabled us to establish the relationship between the difference
in sample densities and the resulting testing parameters.
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The densities of each sample were calculated based on the exact masses and volumes
of the samples. The volume of the samples was calculated based on the exact dimensions
of the samples. The length of the samples was measured in mm at the centre of the sample
to the nearest 0.5 mm. Width was measured with a calliper to hundredths of millimetres at
both ends and then averaged. Thickness was measured with a calliper at three points of
the specimen to hundredths of a millimetre and then averaged.

2.2. Test Equipment and the Procedure

The test apparatus consists of a gas cylinder, a flow valve, a flow regulator, a burner, a
burner holder, a sample holder, precision scales weighing in grams to two decimal places
and a computer. Figure 1 demonstrates a schematic diagram with the actual elements of
the apparatus.
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was stopped. Figure 2 is a real photo of the main part of the test equipment during the 

Figure 1. Schematic diagram of the test equipment (description: 1—gas cylinder, 2—shut-off valve,
3—flow regulator, 4—gas intake tube, 5—burner holder, 6—burner, 7—gas flow regulator on the
burner, 8—scales, 9—sample holder, 10—sample, 11—connection between scales and computer,
12—computer).

The flow regulator on the cylinder (3) ensures a constant flow of 30 mbar, without
interruptions and fluctuations. The burner also has a gas flow regulator (7) to allow precise
adjustment of the flame height, which in our case is 10 cm. The samples (10) are fixed in
the holder (9) at an angle of 45◦ to the horizontal plane. With this setup, we also captured
the flame propagation. During the experiment, the samples were exposed to a flame heat
source applied from the underside, with 1 cm of flame in direct contact with the sample.
Propane–butane gas was used as the fuel. The flame temperature of the propane–butane
used is 1950 ◦C, and its calorific value is 44 MJ·kg−1 [60]. Scales (8) recorded the actual
sample mass at 10 s intervals. Measurement accuracy was ensured by a Mettler Toledo
MS1602S/M01 scale (Greifensee, Switzerland) weighing hundredths of grams. Automatic
mass recording at set intervals was provided by the BalanceLink 4.2.0.1 programme (Mettler
Toledo, Switzerland). The total testing time per sample (exposure to the flame heat source
and mass recording) was 10 min. After this time, the mass recording was stopped. Figure 2
is a real photo of the main part of the test equipment during the experiment. The variability
of the average values did not exceed the values that were characteristic of untreated wood.
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The study [34] confirms the suitability of this method for testing spruce wood and its
treatments. The variability of the values of the parameters tested by this method does not
exceed the characteristic variability values for untreated spruce wood.

2.3. Evaluation and Calculation

The main evaluation criterion was the relative mass loss rate, calculated from the
measured mass data over time according to the Formula (1).

vr =
m(τ)− m(τ + ∆τ)

m(τ)·∆τ
·100, (1)

where vr is the relative mass loss rate [%·s−1], m(τ) is the mass of the sample at a time (τ)
[g], m(τ + ∆τ) is the sample mass at a time (τ + ∆τ) [g] and ∆τ is the time interval at which
the mass is read [s]. The time interval for reading the mass was 10 s in our case.
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Another datum significant for the statistical detection of the dependence of different
average sample densities on the experimental results is the mass loss calculated by the
Formula (2).

δmp(τ) =
m − m(τ)

m
·100, (2)

where δmp(τ) is the mass loss at time (τ) [%], m is the original mass of the sample before the
experiment [g] and m(τ) is the mass of the sample at time (τ) [g].

Next, we investigated the fire spread rate parameter, which is the ratio of the maximum
value of the mass loss rate and the time to reach this value. This value is determined as the
average for the first peak of the mass loss rate according to Formula (3) [61].

R f s =
vr

τ(vr)
, (3)

where Rfs is the fire spread rate [%·s−2], vr is the relative mass loss rate [%·s−1] and τ(vr) is
the time to reach the first peak of the maximum mass loss rate [s].

As this value increases, the fire spread rate also increases [61].
The results presented below are specified as average values.
The dependence of mass loss on sample density was verified by one-factor analy-

sis of variance (ANOVA) using the statistical software “R” (The R Project for Statistical
Computing) version 4.1.2.

3. Results and Discussion

In our case, the fundamental parameters for monitoring the influence of the density
of spruce wood samples on the combustion process are the mass loss and the mass loss
rate. The tested samples were carefully selected to ensure consistency, free of knots, visible
resins and any visible deformations or cracks. They displayed identical wood texture
and moisture content before coating and were processed by the same method—smooth
planning. However, during the experiment, it was observed that some samples burned
through from the sides to the top, resulting in a significant increase in the mass loss and,
consequently, the mass loss rate. The flame retardants used dilute the combustible gases
released from the wood by heat and thus make it more difficult to ignite. In the above
cases, the effect of the retardants was apparently insufficient, which may have caused
the spontaneous combustion of the samples. This may be due to the application of less
retardant to the samples or an overall lower concentration of active substance in the
individual retardants combined with a higher flame intensity on the samples, where after
a certain time the retardant failed to produce sufficient non-flammable gases to prevent
spontaneous combustion. Why this was the case for only some samples is not entirely clear.
It may be due to the different properties of the individual samples (chemical composition,
resin, porosity, etc.) or possible variations in the testing.

To prevent these outliers from significantly affecting the average values, they were
excluded from the overall evaluation. The identification of these extremes was performed
statistically using box plots displaying the values of the total mass loss over the 600 s testing
time for each group of samples. These box plots were constructed using the statistical
software “R” (The R Project for Statistical Computing) version 4.1.2 and are presented in
Figure 3.
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From the plot in Figure 3, we can see that there were outliers in the total mass loss for
each group of samples. The highest number of outliers (three) occurred in the lower-density
samples with the application of retardant 3 (R3-LD). It was mainly due to the low variability
in the other measured data from that group. The number of outliers for each group of
samples was random and did not depend on the treatment applied or the sample density.
We then excluded the extreme values (marked by red dots) from further evaluations to
minimise their undesired influence on the overall evaluation of the experiment.

The mean values of the mass loss of the samples after the experiment, including the
standard deviation, and the maximum mass loss rate are given in Table 3.

Table 3. Average values of mass loss of samples after the experiment and the maximum mass loss
rate achieved (indicating the standard deviation).

Specimens Total Mass Loss (δ)
[%]

Standard Deviation of
Total Mass Loss (σδ)

[%]

Max Mass Loss Rate
(vr max)
[%·s−1]

Standard Deviation of
Max Mass Loss Rate

(σvr max)
[%·s−1]

R1-HD 19.47 ±1.16 0.0816 ±0.0072
R1-LD 23.88 ±2.06 0.1650 ±0.0196
R2-HD 19.05 ±1.50 0.0953 ±0.0081
R2-LD 19.09 ±1.10 0.1016 ±0.0148
R3-HD 20.62 ±1.63 0.1173 ±0.0182
R3-LD 20.10 ±0.53 0.1262 ±0.0088
U-HD 28.32 ±6.40 0.1699 ±0.3986
U-LD 44.12 ±24.80 0.4036 ±0.2933

The untreated samples exhibited a variability of up to 18% mass loss for the higher-
density samples and approximately 55% mass loss for the lower-density samples. This
is because the untreated samples experienced spontaneous combustion, with some cases
even burning through the side edges to their top.
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From the beginning of the experiment to the testing time of 300 s, we monitored
significant differences in the mass loss rate of the samples as a function of their density.
This can be seen in Figure 4. The lower-density samples displayed a higher mass loss rate
than the higher-density samples from the beginning of testing. The highest mass loss rate
of the U-LD samples (up to a time of 300 s) was 0.130%·s−1, reached in 60 s. The U-HD
samples had the highest mass loss rate (up to a time of 300 s) of 0.100%·s−1, reached in
70 s. The highest mass loss rate of the U-LD samples during the whole testing period was
0.22%·s−1 at a testing time of 450 s due to spontaneous sample combustion.

Appl. Sci. 2024, 14, 170 8 of 16 
 

From the beginning of the experiment to the testing time of 300 s, we monitored sig-
nificant differences in the mass loss rate of the samples as a function of their density. This 
can be seen in Figure 4. The lower-density samples displayed a higher mass loss rate than 
the higher-density samples from the beginning of testing. The highest mass loss rate of 
the U-LD samples (up to a time of 300 s) was 0.130%·s−1, reached in 60 s. The U-HD samples 
had the highest mass loss rate (up to a time of 300 s) of 0.100%·s−1, reached in 70 s. The 
highest mass loss rate of the U-LD samples during the whole testing period was 0.22%·s−1 
at a testing time of 450 s due to spontaneous sample combustion. 

 
Figure 4. Average mass loss rate of untreated samples over time. 

The sudden increase in the mass loss rate of untreated samples occurs at a testing 
time of about 300 s. In this case, it was the second peak of the maximum mass loss rate, 
which, according to several authors [62–64], occurred in untreated wood. It caused spon-
taneous combustion or ignition of the samples. It had a significant telling value. The later 
the ignition occurs, the safer the material is from a fire protection point of view. 

In contrast, untreated samples with higher density (480 kg·m−3) did not exhibit a sec-
ond peak in the mass loss rate during the experiment. If the testing time were extended, 
it would probably appear since, from a testing time of 540 s, mass loss rate started to in-
crease significantly until the end of the experiment. However, the second peak in the max-
imum mass loss rate would occur much later than for the lower-density samples. Thus, it 
can be argued that the lower-density samples are easier to ignite, in line with [48,49]. Ad-
ditionally, throughout the experiment, lower-density samples consistently displayed 
higher mass loss rates compared to higher-density samples. 

It was also because of the significant variability in the measured mass loss due to the 
combustion of untreated samples that we decided to perform experiments using flame 
retardants on the samples. The assumption was that the retarding effect would prevent 
overburning of the samples, which would contribute to an objective evaluation of the in-
fluence of sample density on the experimental results. 

We can conclude that for all groups of flame retardant-treated samples, the variability 
of the final mass loss over the 600 s experiment time is relatively low (up to 5% mass loss) 
(see Figure 3). The retardant treatment had a significant retarding effect on the combustion 
process and, in most cases, prevented their spontaneous combustion. 

A one-factor analysis of variance (ANOVA) was performed to determine the mass 
loss dependence on the density of the wood samples. The analysis was always performed 
between two sample groups with the same retardant treatment but different densities. The 
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The sudden increase in the mass loss rate of untreated samples occurs at a testing time
of about 300 s. In this case, it was the second peak of the maximum mass loss rate, which,
according to several authors [62–64], occurred in untreated wood. It caused spontaneous
combustion or ignition of the samples. It had a significant telling value. The later the
ignition occurs, the safer the material is from a fire protection point of view.

In contrast, untreated samples with higher density (480 kg·m−3) did not exhibit a
second peak in the mass loss rate during the experiment. If the testing time were extended,
it would probably appear since, from a testing time of 540 s, mass loss rate started to
increase significantly until the end of the experiment. However, the second peak in the
maximum mass loss rate would occur much later than for the lower-density samples. Thus,
it can be argued that the lower-density samples are easier to ignite, in line with [48,49].
Additionally, throughout the experiment, lower-density samples consistently displayed
higher mass loss rates compared to higher-density samples.

It was also because of the significant variability in the measured mass loss due to the
combustion of untreated samples that we decided to perform experiments using flame
retardants on the samples. The assumption was that the retarding effect would prevent
overburning of the samples, which would contribute to an objective evaluation of the
influence of sample density on the experimental results.

We can conclude that for all groups of flame retardant-treated samples, the variability
of the final mass loss over the 600 s experiment time is relatively low (up to 5% mass loss)
(see Figure 3). The retardant treatment had a significant retarding effect on the combustion
process and, in most cases, prevented their spontaneous combustion.

A one-factor analysis of variance (ANOVA) was performed to determine the mass
loss dependence on the density of the wood samples. The analysis was always performed
between two sample groups with the same retardant treatment but different densities. The
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results are presented in Table 4 for the 300 s test time mass loss and Table 5 for the 600 s test
time mass loss.

Table 4. ANOVA of sample mass loss at 300 s testing time.

Samples Treated with Retardant 1, Difference in Density 243.69 kg·m−3

Df Sum Sq Mean Sq F value Pr (>F) Influence

Density (ρ) 1 107.64 107.64 39.05 1.56 × 10−5 Strong
influence

Residuals 15 41.34 2.76

Samples Treated with Retardant 2, Difference in Density 50.65 kg·m−3

Df Sum Sq Mean Sq F value Pr (>F) Influence
Density (ρ) 1 0.424 0.4245 0.453 0.51 No influence
Residuals 16 14.982 0.9364

Samples Treated with Retardant 3, Difference in Density 8.44 kg·m−3

Df Sum Sq Mean Sq F value Pr (>F) Influence
Density (ρ) 1 0.012 0.0124 0.011 0.919 No influence
Residuals 13 15.175 1.1673

Table 5. ANOVA of sample mass loss at 600 s testing time.

Samples Treated with Retardant 1, Difference in Density 243.69 kg·m−3

Df Sum Sq Mean Sq F value Pr (>F) Influence

Density (ρ) 1 82.23 82.23 28.38 8.46 × 10−5 Strong
influence

Residuals 15 43.46 2.90

Samples Treated with Retardant 2, Difference in Density 50.65 kg·m−3

Df Sum Sq Mean Sq F value Pr (>F) Influence
Density (ρ) 1 0.011 0.0105 0.006 0.939 No influence
Residuals 16 27.743 1.7340

Samples Treated with Retardant 3, Difference in Density 8.44 kg·m−3

Df Sum Sq Mean Sq F value Pr (>F) Influence
Density (ρ) 1 1.011 1.011 0.645 0.436 No influence
Residuals 13 20.372 1.567

The results of the ANOVA test at 300 s test time indicated statistically significant
differences in mass loss as a function of density for retardant 1-treated samples. Sam-
ples with retardant treatment 1 demonstrated a significant dependence with a p-value of
p = 1.56 × 10−5. However, for the sample groups treated with retardants 2 and 3, there
was no longer any mass loss dependence on sample density. For these sample groups, the
average difference in densities was within 50 kg·m−3. Similar results were also found at a
testing time of 600 s (Table 5).

For the samples treated with retardant 1, we observed a significant difference in the mass
loss rates among the higher- and lower-density samples (Figure 5). The average difference in
densities here was approximately 244 kg·m−3. We also saw the highest difference in the mass
loss rate in the first few seconds of the experiment (up to a testing time of about 90 s), where
the lower density samples (R1-LD) displayed twice the maximum mass loss rate as the higher
density samples. Although this phenomenon only occurred in the first 90 s of the experiment,
it resulted in a significant difference in the final mass loss, as indicated by the dependence of
the mass loss on the density of the samples in Tables 4 and 5. The maximum mass loss rate
of the R1-LD samples was reached at a testing time of 50 s with a value of 0.158%·s−1, while
the R1-HD samples had their highest mass loss rate at a testing time of 70 s with a value of
0.077%·s−1. However, differences in the mass loss rates were still observed up to a testing
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time of about 300 s (R1-LD samples had a noticeably higher one). After this time, the mass
loss rates of both the higher- and lower-density samples were virtually identical due to the
retardant treatment of the samples, which prevented them from spontaneous combustion and
had a significant effect on the mass loss rate.
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Samples treated with retardant 2, which had a difference in densities of approximately
50 kg·m−3, and samples treated with retardant 3, with a difference in densities of about
8.5 kg·m−3, showed significantly lower variations in the mass loss rates (Figures 6 and 7),
which were negligible. The differences primarily occurred in the maximum mass loss
rate within the initial seconds, with a difference of 0.002%·s−1 for samples treated with
retardant 2 and 0.010%·s−1 for samples treated with retardant 3. Consequently, the average
mass loss rate of the higher- and lower-density samples was virtually identical throughout
the experiment. These differences also had no significant effect on the total mass loss, as
confirmed by Tables 4 and 5, where the dependence of the mass loss on the sample density
was not evident for samples R2 and R3.
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From the point of view of fire spread, not only the maximum value of the mass loss
rate was significant, but also the time to reach this value. The ratio of these two parameters
(Equation (3)) provided us with the rate of fire spread. The higher the value, the more the
material contributed to the fire spread [61]. Table 6 demonstrates the fire spread rate (Rfs)
values for each group of samples. These values were averaged for the first peak of the
mass loss rate (up to a time of 100 s). Here, we observed that as the difference in densities
between the sample groups increased, the difference in Rfs values also increased. The fire
spread rate between two sample groups with identical treatment was always higher for the
lower-density (LD) samples. For example, the samples with the highest density difference
R1 exhibited a fire spread rate Rfs difference of 0.00206, whereas the samples with the lowest
density difference (R3) had a difference in Rfs values of 0.00014.

Table 6. Fire spread rate (proportion of the maximum value of the first peak mass loss rate and the
time to reach this).

Samples R1-HD R1-LD R2-HD R2-LD R3-HD R3-LD

Rfs [%·s−2] 0.00109 0.00316 0.00153 0.00189 0.00160 0.00174

Difference in Rfs [%·s−2] 0.00206 0.00036 0.00014

Higher differences in densities are logically associated with the higher differences in
fire spread rates, as demonstrated by the graph in Figure 8. The strong linear dependence
of the difference in fire spread rate on the difference in sample densities with a reliability
coefficient of R2 = 0.99 supports this assumption. Based on the above results in Figure 8
and Table 6, it is evident that spruce wood with lower density exhibits a higher fire spread
rate, which has significant implications for testing wood flame retardants.
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The above experimental findings demonstrate the significant impact of spruce wood
sample density on test results, specifically the evaluation criteria of mass loss rate, mass
loss and fire spread rate.

For samples treated with retardants, the experimental outcomes were likewise in-
fluenced by sample density, depending on the density difference. Samples with an ap-
proximate density difference of 244 kg·m−3 exhibited significantly different maximum
mass loss rates, with lower-density samples showing higher rates. However, when flame
retardants were applied, there was no second peak in the mass loss rate, confirming the
retardants’ effect in prolonging ignition time, as reported by [62], effectively preventing
combustion initiation.

The mass loss parameter, which is dependent on sample density, was also significantly
affected (confirmed by ANOVA tests in Tables 4 and 5). As the density difference de-
creased, the dependence of mass loss rate and mass loss on sample density also decreased.
Figures 6 and 7 reveal that with density differences up to approx. 50 kg·m−3, there were no
significant differences in the mass loss rate, and the dependence of mass loss on sample
density was also not confirmed (Tables 4 and 5).

These findings underscore the vital role of sample density in wood testing and the effective-
ness of wood retardant treatments. However, the results are subject to the variability of sample
densities selected for testing. Experiments revealed that lower variability in sample densities
minimised the impact on test results. For precise testing, a difference in sample densities of
up to 50 kg·m−3 is optimal, as supported by ANOVA tests (Tables 4 and 5) and fire spread
rate versus time plots (Figures 5–7). Nevertheless, it is challenging, if not impossible, to select
samples with identical density. In addition, other properties (e.g., material processing) and
defects or deformations (excessive resin content, bulges, cracks, etc.) that can also affect testing
results should be considered when selecting samples [65].

4. Conclusions

The study evaluated various fire-technical parameters of spruce wood with different
densities, including some samples treated with wood flame retardants. The spruce wood
samples were divided into several groups with identical treatments (or no treatment) but
different average densities, gradually reducing the density difference to establish a limit
for the dependence of experimental results on the difference in sample densities. The
experiment utilized a simple method where the samples were exposed to a direct flame
at a 45◦ angle. The monitored parameters were mass loss and mass loss rate, with an
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additional parameter being the fire spread rate. The conclusions from the experiment can
be summarised as follows:

• Untreated samples exhibited significant variability in the measured data (mass loss
variability of untreated samples with low density was 55%, with higher-density sam-
ples at 18%), unlike samples treated with retardants, which showed a lower variability
of mass loss, approximately 5%. This significant variability in mass loss for untreated
samples is mainly attributed to their ignition after a specific time, resulting in a subse-
quent rapid increase in the mass loss rate. The results confirm, among other findings,
that flame retardants significantly prolong the ignition time.

• Untreated samples with a density difference of about 100 kg·m−3 displayed a clear
density dependence on the mass loss. Samples with a lower density have a significantly
higher average mass loss rate over the entire duration of the experiment.

• For samples treated with retardant 1 with a density difference of approximately
244 kg·m−3, a dependence of the mass loss rate on the sample density was observed.
The most significant difference was in achieving the maximum mass loss rate, which
was twice as high for the lower-density samples compared to the higher-density
samples. Also, the mass loss dependence on the sample density was statistically
confirmed by the ANOVA test (p-value = 8.46 × 10−5 at a testing time of 600 s).

• Lower-density samples exhibited higher mass loss and mass loss rate. The study
results further indicated that the sample density also affected the fire spread rate
parameter (Rfs). As the sample density decreased, the value of Rfs increased, showing
a linear relationship between the difference in Rfs values and sample densities with a
reliability coefficient of R2 = 0.99.

• For samples treated with retardants with a density difference of up to 50 kg·m−3,
no dependence of the mass loss rate on sample density was observed. The ANOVA
statistical analysis did not confirm the mass loss dependence on the sample density.
Therefore, the difference in densities of up to 50 kg·m−3 no longer significantly affected
experimental results, particularly parameters such as the mass loss rate and mass loss.
Consequently, selecting the test samples with such a variation range of densities can
be considered optimal without impacting the test results.

The research was aimed at investigating the influence of spruce wood density on mass
loss and mass loss rate when using flame retardants. The research was carried out on
groups of samples with different densities using three flame retardants. In order to refine
the research, it would be advisable to complement the experiments so that several flame
retardants were applied for each density respective of the difference in densities. However,
such research would be very challenging, especially due to the selection of samples with
different densities. In our case of “simplified research”, we had hundreds of samples
available to us, from which we selected only 80 suitable for testing.
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