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Abstract: RGB-D cameras provide depth and color information and are widely used in 3D recon-
struction and computer vision. In the majority of existing RGB-D cameras, a considerable portion
of depth values is often lost due to severe occlusion or limited camera coverage, thereby adversely
impacting the precise localization and three-dimensional reconstruction of objects. In this paper, to
address the issue of poor-quality in-depth images captured by RGB-D cameras, a depth image hole
repair algorithm based on non-local means is proposed first, leveraging the structural similarities
between grayscale and depth images. Second, while considering the cumbersome parameter tuning
associated with the non-local means hole repair method for determining the size of structural blocks
for depth image hole repair, an intelligent block factor is introduced, which automatically determines
the optimal search and repair block sizes for various hole sizes, resulting in the development of an
adaptive block-based non-local means algorithm for repairing depth image holes. Furthermore, the
proposed algorithm’s performance are evaluated using both the Middlebury stereo matching dataset
and a self-constructed RGB-D dataset, with performance assessment being carried out by comparing
the algorithm against other methods using five metrics: RMSE, SSIM, PSNR, DE, and ALME. Finally,
experimental results unequivocally demonstrate the innovative resolution of the parameter tuning
complexity inherent in-depth image hole repair, effectively filling the holes, suppressing noise within
depth images, enhancing image quality, and achieving elevated precision and accuracy, as affirmed
by the attained results.
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1. Introduction

In recent years, depth cameras have been widely utilized in various fields, such
as autonomous driving [1–3], robot grasping [4–6], and simultaneous localization and
mapping (SLAM) [7–9]. However, due to object material, specular reflection, or occlusion,
the captured depth data often exhibits holes at the edges where objects come into contact
with the background. Additionally, limitations in-depth sensor accuracy and range, as well
as the influence of optical noise, sometimes result in the reception of ineffective reflection
information, thereby degrading the quality of depth images.

Considerable research efforts have been devoted by researchers both domestically
and internationally to effectively fill the holes in-depth images and obtain high-quality
depth images. CHO et al. [10] estimated the boundaries using color images and converged
from the edges to the target boundary, effectively addressing holes between edges and
multiple edge pixels to achieve seamless inpainting of object boundaries near the camera
through an iterative process of alternating filling directions. Xiang et al. [11] extended
Criminisi’s inpainting approach [12] by incorporating a block matching algorithm for
identifying irregularly shaped voids and a hybrid matching algorithm for selecting optimal
repair patches with minimal differences in hole regions, leading to successful restoration,
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particularly for larger irregular holes. Zhang et al. [13] introduced an object-oriented
segmentation method to segment different objects in color images, locate source regions for
repair patches, and utilize a search algorithm to match missing depth information regions
with suitable objects, ultimately filling depth information gaps through optimal repair
patch selection within the segmented objects. Zhang et al. [14] introduced the statistical
nearest neighbors distance measurement (SNNDM) into the NLM filter (NLM-SNN) to
measure the distance between two patches, thereby enhancing perceived image quality.
Lin et al. [15] introduced a fixing algorithm for the Kinect depth image based on non-
local means (NLM), utilizing weights calculated on the corresponding grayscale image
through a distance factor and a value-consistency factor to fill holes in the depth image.
These methodologies collectively leverage diverse strategies in hole repair techniques to
effectively address challenges in in-depth image repair. However, the methods proposed
in [10,11] are somewhat complex. The ultimate repair outcome in [13] is influenced by
the effectiveness of image segmentation. Additionally, the method in [14] combines the
statistical nearest neighbor distance measurement so that it is more complex. In contrast,
the approach proposed by [15], inspired by [14], integrates distance factors to enhance
restoration efficiency for Kinect cameras but encounters challenges in intricate parameter
adjustments. Drawing inspiration from [15], this paper exploits the structural similarity
between grayscale and depth images. It utilizes joint grayscale images to estimate depth
values within hole regions and applies the non-local means algorithm [14–21] for effective
hole repair. Successful restoration is achieved through the application of structural blocks
and NLM-based hole filling.

However, in the deep image hole repair algorithm based on the NLM, a requisite task
involves the a priori determination of dimensions for both the repair and search blocks.
If the dimensions are excessively large, they will significantly increase the computational
runtime of the algorithm. Conversely, if the sizes are overly small, they may potentially
compromise the quality of the inpainting outcomes. Consequently, a natural question
arises: is there a method that can automatically determine the optimal sizes for the search
and inpainting blocks of varying dimensions in deep missing regions while ensuring
exceptional performance in inpainting quality? It is the motivation for this paper.

The main contributions of this paper can be given as follows:

(1) A depth image inpainting algorithm based on NLM is proposed to address the issue
of depth image hole repair. The utilization of the NLM algorithm for mitigating noise
and speckle artifacts through filtering operations is discussed in [18–21]. However,
the investigations highlighted above primarily concentrate on the realm of filtering
procedures and have not encompassed the integration of the NLM algorithm within
the context of depth image for hole restoration.

(2) By introducing intelligent block factors, we enable the automatic determination of
optimal search and repair patch sizes for voids of different dimensions, resulting in a
significant reduction of the intricate debugging efforts in engineering applications.
The strategy of improving the performance of the algorithm by manipulating the pixel
weights is discussed in [5,14–17]. Nonetheless, it is worth noting that the acquisition
of these weights relies predominantly on manual calibration, a process that demands
a substantial investment of time.

The remaining structure of this paper unfolds in subsequent sections. The depth
image hole repair algorithm is introduced in Section 2. The experimental results are
presented along with their corresponding analysis in Section 3. And conclusions are drawn
in Section 4.

2. Depth Image Inpainting Algorithm

Section 2 introduces the depth image repair algorithm, which aims to address holes
in-depth images caused by various factors. This algorithm involves a multi-step process,
starting with image preprocessing and progressing to the implementation of the NLM
hole-repairing algorithm. This section also discusses an algorithm improvement, termed
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Adaptive Block-based NLM (AB-NLM), which enhances the robustness of the original
NLM algorithm.

2.1. Image Preprocessing

Image preprocessing is a critical stage in in-depth image repair, serving to enhance
image quality and prepare the data for subsequent repair algorithms. In this section, we
delve into the significance of image preprocessing, its objectives, and the specific operations
employed to align grayscale and depth images.

Depth images captured using cameras often encounter voids caused by surface reflec-
tions, occlusions, and other factors, particularly in the interior and boundary regions of
objects. Image preprocessing plays a crucial role in improving image quality, enhancing
visualization effects, reducing noise interference, extracting meaningful features, and adapt-
ing to specific processing requirements, which provides a solid foundation for subsequent
image processing and analysis tasks.

In the image preprocessing stage, this paper employs the following operations: First,
a Gaussian filter is applied to the color image to reduce noise. Then, the color image is
converted to a grayscale image. Subsequently, a perspective transformation matrix is used
to align the grayscale image with the depth image. Finally, aligned depth and grayscale
images are obtained, and the depth image is overlaid onto the grayscale one, as shown in
Figure 1c. It can be observed that the aligned depth image and grayscale image exhibit
similar structures [22]. To enhance the accuracy and quality of depth image hole repair, the
similarity in structure between the grayscale and depth images can be leveraged to predict
and repair the holes present in the depth image.
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2.2. Hole Filling Algorithm Based on Non-Local Means

Section 2.2 introduces the NLM hole-repairing algorithm, a block-based method
selected for its unique approach to depth image repair. Unlike traditional pixel-based
methods, NLM leverages vector-centered repairs and maximizes the use of redundant
information in the image. This section outlines the fundamental principles of the NLM
algorithm and its application to depth image hole filling.

The NLM Algorithm is a block-based method for depth image hole repair that con-
siders the hole points as the centers and utilizes surrounding search blocks as processing
units. By calculating the similarity between different repair blocks and the repair block
centered at the hole point, similar weights are assigned to each repaired pixel. Then, a
weighted average is employed to estimate the repaired depth value of the hole points.
The NLM algorithm, which is different from traditional restoration methods based on
individual pixels, uses the vector centered at the hole point for repair and makes full use of
the redundant information in the image. The algorithm maximally preserves image details
and enables efficient and accurate repair of in-depth images. The relationship between the
search blocks and repair blocks of the hole point x and its neighboring non-hole point y is
illustrated in Figure 2.
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Figure 2. Illustration of the search block and the repair block.

According to Figure 2, it can be observed that the depth values within the holes are
strongly correlated with non-hole points distributed in the neighborhood of the holes.
Additionally, since the holes in-depth images often appear in the edge regions of objects,
utilizing a single-point calculation for repair weights cannot effectively distinguish between
points situated at the object edges and those within the smooth interior regions of objects.
This leads to a certain degree of computational error. The proposed algorithm addresses
this issue by computing similarity weights using vectors centered around the points within
the holes rather than relying on individual pixels. This approach enhances the robustness
of the algorithm in handling hole repair, providing a more accurate and reliable solution.

The weights in the NLM algorithm are composed of three components: grayscale
similarity, distance similarity, and repairing weight. Grayscale similarity weight refers
to the degree of likeness in grayscale values between the target hole point x within the
grayscale image and the non-hole point y within the search block A(x). The distance
similarity weight concerns the extent of proximity between the remaining points within
A(x) and its central point. The computation of the repairing weight for each y within A(x)
is determined through the collaborative influence of grayscale weight and distance weight,
thereby quantifying the similarity of depth values between x and y.

The grayscale similarity weight can be described as follows:

g(x, y) = e−
∥v(Nx)−v(Ny)∥2

2,a
h2 (1)

where h is the decay rate of the grayscale weight v(Nx) and v
(

Ny
)

represents the vectors
of x and y, respectively. These two vectors are composed of pixels from the repair blocks
centered at x and y, with a size of q × q, denoted as B(x) and B(y) respectively. And the val-
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ues are listed from left to right and from top to bottom. The Gaussian-weighted Euclidean
distance is denoted by ∥ · ∥2

2,a, where a is the standard deviation of the Gaussian kernel.
The distance similarity weight can be described as follows:

d(x, y) = e−
∥x−y∥

σ2
2

(2)

where σ controls the decay rate of the exponential function and ∥ · ∥2 represents the Eu-
clidean distance between points x and y.

The repair weight can be described as follows:

r(x, y) =
g(x, y)d(x, y)

Z1(x)
(3)

where to ensure that ∑y∈A(x) r(x, y) = 1, the normalization constant Z1(x) is introduced.
Before calculating the weights, the sizes of the search block A(x) and the repair block

B(x) of the hole points x need to be manually set. The selection of the search and repair
block sizes directly affects the algorithm’s runtime and repair effectiveness. Therefore, it is
essential to strike a balance between the repair time and repair effectiveness of the algorithm
by enabling the algorithm itself to compute appropriate sizes for the repair and search
blocks. This encapsulates the challenges confronted by the NLM hole repair algorithm.

2.3. Algorithm Improvement

In response to the challenges present in the NLM hole repair algorithm, this section
undertakes its enhancement and introduces a novel approach termed the adaptive block-
based NLM hole repair algorithm. The detailed methodology is delineated as follows: The
principle of the NLM hole repair algorithm based on adaptive blocks is shown in Figure 3.
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Step 1: Aligned depth images and grayscale images captured from the same viewpoint
using an RGB-D camera facilitate the direct extraction of texture information from grayscale
images, enabling algorithms to perform depth image restoration.

Step 2: The coordinates of each hole point are recorded, and the computation of
connected components within the hole regions is performed. The initial value for the
search block A(x) is predetermined as m1 × m1, where m1 is the larger value between
the maximum row width and the maximum column width of the respective hole block,
incremented by three. The value of m1 is defined as below:

m1 = max{(Xr − Xl), (Yt − Yd)}+ 3 (4)
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where Xr and Xl represent the maximum and minimum values of the column indices of
the hole points within the hole block, respectively. Yt and Yd represent the maximum and
minimum values of the row indices of the hole points within the hole block, respectively.

Step 3: An intelligent block factor T is introduced. The factor T dynamically adjusts
the initial value of the search block A(x) based on the proportion of non-hole points within
the hole block. Through T, a large-size search and repair block is used to repair a large
area of hole block. Conversely, for small-area hole blocks, small-sized search and repair
blocks are utilized. This dynamic adjustment enhances the generality of our algorithm,
enabling it to adapt to various hole sizes and image features. The intelligent block factor T
is defined as

T =
∑k∈H(p) Ik

|H(p)| (5)

where |H(p)| represents the sum of the total number of pixels in the image and Ik denotes
the non-hole points within the target block.

Step 4: The size of the repair block A(x) is determined as follows: We calculate the
proportion T1 of non-zero pixels within the m1 × m1 neighborhood of the hole point. If T1
is greater than the given threshold P for the proportion of non-hole points in A(x), then
the final search block size is set as p = m1. Otherwise, increase m1 by 2 (m1 = m1 + 2), and
reevaluate the relationship between T1 and P.

Step 5: The size of the repair block B(x) is determined as follows: The initial value
of the repair block is set as m2 × m2, where m2 = m1 − 3. The proportion T2 of non-zero
pixel points within the m2 × m2 neighborhood of the hole points is calculated. Should T2
surpass Q (where Q represents the threshold for the proportion of non-vacant hole points
within B(x)), the ultimate determination for the size of the rectification block is q = m2/2.
Otherwise, m2 is incremented by 2 (m2 = m2 + 2), and the relationship between T2 and Q
is reevaluated.

Step 6: For each hole point x, calculate the repair weight r(x, y) for each non-hole point
y in the neighborhood A(x) of x. Utilize the repair weights to restore the hole point. By
iterating through all hole points in the depth image and performing the same operation,
the final restoration of the depth image is achieved.

3. Experimental Results and Analysis

The algorithm presented in this study is implemented on a system with the following
specifications: Windows 10 operating system, 2.80 GHz Intel(R) Core(TM) i7-7700HQ
CPU, and 16 GB of memory. The experiments are conducted using Visual Studio 2019 and
OpenCV 4.6.0. To evaluate the performance of the proposed depth image optimization
algorithm, employ the NLM algorithm, the Multiple Edge Converge Inpainting Algorithm
(MECI) [10], and the AB-NLM algorithm as comparative benchmarks.

The experimental phase involves the utilization of fifty sets of depth and grayscale
images sourced from the Middlebury dataset [23], along with one hundred and twenty-six
self-captured sets of depth and grayscale images acquired through Orbbec’s imaging system.
The chosen scenes for evaluation consist of five intricate scenarios from the Middlebury
dataset, namely “Art”, “Teddy”, “Moebius”, “Recycle”, and “Jadeplant”. Additionally,
five self-captured scenes from the Orbbec dataset, identified as “Bag”, “Case”, “Corner1”,
“Corner2”, and “Miscellany”, constitute the designated test set employed for the assessment
of visual performance. The depth image dataset are now partitioned into a training set
comprising 70% (123 images), a validation set consisting of 15% (26 images), and a test
set comprising the remaining 15% (27 images). The partitioning process are randomized,
ensuring the maintenance of data balance between the training and test sets.

In certain studies, metrics are computed as part of an objective analysis to assess
the correspondence between reconstructed depth images and the unprocessed raw depth
images. Nevertheless, owing to the existence of holes, the original depth images exhibit
incompleteness. Metrics comparing the original and reconstructed depth images may
introduce inaccuracies into the analysis and assessment of the efficacy of the restoration
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process. To ensure precise effectiveness evaluation, all depth images within the training set
undergo manual augmentation, wherein holes are filled with ground truth depth values.

The evaluation of the results is carried out both qualitatively and quantitatively to
assess the effectiveness of the proposed method. The first set of experiments utilizes
the Middlebury stereo matching dataset. The second set of experiments involves using
grayscale and depth images captured by the Orbbec [24,25] Astra S sensor to perform depth
restoration in indoor scenes.

Based on extensive experimentation, the threshold values for the proportion of non-
hole points in A(x) and Q in B(x) are determined to be 0.7 and 0.5, respectively. The decay
rate for the grayscale weight h is set to 2, and the decay rate for the distance weight σ is
also set to 2. Additionally, the standard deviation of the Gaussian kernel, denoted as a, is
set to 2.

3.1. Qualitative Evaluation

In this section, we present a qualitative evaluation of the proposed algorithm’s per-
formance on two distinct datasets: the Middlebury dataset and data captured using the
Orbbec Astra S monocular structured light depth camera. The assessment entails a detailed
analysis of the algorithm’s effectiveness in hole repair, with a focus on specific scenes
and comparisons with existing algorithms. Scrutinizing the algorithm’s performance on
the Middlebury dataset emphasizes subjective quality assessments, while the subsequent
exploration of the Orbbec Depth Camera Data highlights the algorithm’s adeptness in
addressing hardware-specific challenges.

3.1.1. Result on Middlebury Database

The proposed algorithm is applied to the Middlebury dataset, which contains the
depth images of 2014 and 2021 and their corresponding grayscale images for depth recovery.
Five scenes from the Middlebury dataset, namely “Art”, “Teddy”, “Moebius”, “Recycle”,
and “Jadeplant”, are specifically selected to compare and evaluate the subjective quality of
the restoration results.

From Figure 4, it can be observed that the three algorithms perform well in repairing
small areas and internal voids. However, the MECI algorithm exhibits errors when dealing
with edge holes, as evident in the repair details of “Teddy” and “Jadeplant” shown in
Figure 4c. Additionally, the NLM algorithm shows issues with edge distortion and blur-
ring when repairing large voids, as demonstrated in the repair details of “Recycle” and
“Jadeplant” in Figure 4d.
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The AB-NLM algorithm proposed in this paper achieves adaptability to different sizes
of hole blocks by automatically adjusting the search and repair block sizes. For larger hole
blocks, larger repair blocks are selected, while smaller repair blocks are used for smaller
hole blocks. This approach yields excellent results for hole blocks of various sizes. As
shown in Figure 4e, the repaired images not only effectively restore the hole areas but also
enhance the details of occluded objects, resulting in sharper edges.

3.1.2. Result on Orbbec Depth Camera Data

Orbbec is a domestic company specializing in 3D cameras and computer vision tech-
nology. It is dedicated to the research and development, as well as the production, of
high-performance, high-precision, and cost-effective 3D cameras and sensors. In this study,
we utilize the Orbbec Astra S monocular structured light depth camera, which is suitable
for scenes with less stringent accuracy requirements and within a distance range of 40 cm
to 200 cm.

Due to the hardware design of the Orbbec camera, there are data missing in several
leftmost columns of the captured depth image, as shown in Figure 5b. From the details ob-
served in Figure 5c,d, it can be deduced that the MECI algorithm successfully accomplishes
the hole recovery, yet disparities from the ground truth depth map persist. The contours
of objects exhibit a certain degree of blurring. In comparison, the algorithm presented in
this paper achieves more accurate object contours in most cases and demonstrates superior
performance in filling the holes within the depth map. However, the depth restoration of
transparent objects is not optimal in our algorithm, as illustrated in the restoration details
of the “Corner2” scene in Figure 5d. The repaired values for the missing region in the
computer host area are close to the depth values of the curtain behind it, which is not
appropriate for that region.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 14 
 

 

Art

Jadeplant

Recycle

Teddy

Moebius

(a) Original 
grayscale image

(b)Original  
depth image

(c)The algorithm 
results from MECI

(d)The algorithm 
results from NLM

(e)The algorithm 
results from AB-NLM  

Figure 4. Illustrates a comparative evaluation of hole-inpainting outcomes from the MECI, NLM, 
and AB-NLM algorithms using the Middlebury dataset. 

3.1.2. Result on Orbbec Depth Camera Data 
Orbbec is a domestic company specializing in 3D cameras and computer vision tech-

nology. It is dedicated to the research and development, as well as the production, of high-
performance, high-precision, and cost-effective 3D cameras and sensors. In this study, we 
utilize the Orbbec Astra S monocular structured light depth camera, which is suitable for 
scenes with less stringent accuracy requirements and within a distance range of 40 cm to 
200 cm. 

Due to the hardware design of the Orbbec camera, there are data missing in several 
leftmost columns of the captured depth image, as shown in Figure 5b. From the details 
observed in Figure 5c,d, it can be deduced that the MECI algorithm successfully accom-
plishes the hole recovery, yet disparities from the ground truth depth map persist. The 
contours of objects exhibit a certain degree of blurring. In comparison, the algorithm pre-
sented in this paper achieves more accurate object contours in most cases and demon-
strates superior performance in filling the holes within the depth map. However, the 
depth restoration of transparent objects is not optimal in our algorithm, as illustrated in 
the restoration details of the “Corner2” scene in Figure 5d. The repaired values for the 
missing region in the computer host area are close to the depth values of the curtain be-
hind it, which is not appropriate for that region.  

Bag

Case

Miscellany

Corner1

Corner2

(a) Original 
grayscale image

(b) Original  
depth image

(c) The algorithm 
results from NLM

(d) The algorithm 
results from AB-NLM  

Figure 5. Presents a comparison of hole inpainting results between the NLM and AB-NLM algo-
rithms utilizing a self-constructed dataset from the Orbbec camera. 
Figure 5. Presents a comparison of hole inpainting results between the NLM and AB-NLM algorithms
utilizing a self-constructed dataset from the Orbbec camera.

3.2. Quantitative Evaluation

In this section, we evaluate the efficacy of the aforementioned methods in the Mid-
dlebury dataset using five metrics: Root Mean Square Error (RMSE), Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM), Depth Error (DE), and Average Local
Mean Error (ALME). These metrics serve to measure the quality of the restoration outcomes.
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In the restoration of in-depth images, RMSE is employed to quantify the disparity
between the repaired image and the original image. A lower RMSE value indicates that the
restored image closely approximates the original image. The RMSE is defined as follows:

RMSE =

√√√√ 1
n ∑
(x,y)∈D

(
dg(x, y)− di(x, y)

)2 (6)

where n represents the number of pixels contained in D and (x, y) denotes the pixel
coordinates. dg(x, y) and di(x, y) refer to the depth values of the original image and the
restored image at point (x, y), respectively.

PSNR is commonly utilized to assess the quality of repaired images. A higher PSNR
value signifies a reduced disparity between the repaired image and the original image, high-
lighting the commendable performance of the algorithm. The PSNR is defined as follows:

PSNR = 10 log10

(
max(di)

2

MSE

)
(7)

where max(di) represents the maximum depth value of the restored depth image, and MSE
represents the mean square error between the original and restored images.

SSIM measures the structural similarity of image quality between two images. We
strive for an SSIM value close to one to ensure a high degree of consistency between the
repaired image and the original image in terms of structural features. The SSIM is defined
as follows:

SSIM =

(
2µxy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (8)

where µx and µy represent the mean values of depth values dg(x, y) and di(x, y), respec-
tively. σ2

x and σ2
y represent the variances of dg(x, y) and di(x, y), respectively. µxy and σxy

represent the covariances of dg(x, y) and di(x, y), respectively. Additionally, C1 and C2 are
chosen as 0.0001 and 0.0009, respectively, to prevent division by zero and avoid potential
system errors.

DE conducts a holistic error measurement on the repaired depth images, utilizing
absolute depth error to quantify the disparities between them. A smaller absolute depth
error indicates a more favorable restoration outcome. The definition of DE is as follows:

DE =
1
N ∑

(x,y)

∣∣dg(x, y)− di(x, y)
∣∣ (9)

where N represents the total number of pixels in the image.
ALME involves a comparison of the local means between the repaired and original

depth images, with a smaller value indicating greater consistency of the repaired depth
image with the original one in terms of local means. The definition of the local mean error
for the kth local region is as follows:

LMEk =
1
m ∑

(x,y)∈R

∣∣dg(x, y)− di(x, y)
∣∣ (10)

where R denotes a fixed-size local region (a 10 × 10 window) that sequentially slides
10 steps from left to right and top to bottom across the image. m represents the pixels within
R, resulting in a value of 100. The definition of ALME is expressed as follows:

ALME =
1
M∑M

k=1 LMEk (11)

where M represents the total number of local regions in the image.
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To assess the robustness of this research findings, Monte Carlo simulation was em-
ployed to estimate the 95% confidence intervals for various evaluation metrics. For RMSE,
experimental results based on the dataset yielded a 95% confidence interval of [0, 10]. The
confidence intervals for SSIM, PSNR, DE, and ALME were determined as [0, 1], [0, 50] (with
values above 30 considered good and above 40 considered excellent for PSNR), [0, 40], and
[0, 30], respectively.

As shown in Figure 6, an in-depth analysis of the Root Mean Square Error (RMSE) for
the MECI, NLM, and AB-NLM algorithms on various images reveals noteworthy observa-
tions. On the Art image, AB-NLM exhibits a significantly lower RMSE (3.297) compared
to MECI (6.291) and NLM (5.294). Similarly, in the Teddy image, AB-NLM demonstrates
superior performance, with an RMSE of 1.873, exhibiting a significant difference compared
to NLM (2.358) and MECI (3.185). This trend persists across other images (Moebius, Recy-
cle, and Jadeplant), showcasing the comparatively more accurate depth image restoration
capabilities of AB-NLM.
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Examining the Peak Signal-to-Noise Ratio (PSNR) results in Figure 7 reveals the
consistent superiority of the AB-NLM algorithm across diverse images. For instance, on
the Art image, AB-NLM achieves a remarkable PSNR of 45.148, surpassing MECI (42.156)
and NLM (43.153). This pattern extends to other images (Teddy, Moebius, Recycle, and
Jadeplant), underscoring the consistently higher PSNR values and reaffirming AB-NLMs
robust performance in image reconstruction tasks.
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Figure 8 presents a scientific analysis of the Structural Similarity Index (SSIM) results
for the MECI, NLM, and AB-NLM algorithms on various images. Notably, AB-NLM
consistently demonstrates higher SSIM values, indicating its excellence in image quality
assessment. Taking the Art image as an example, AB-NLM achieves an SSIM of 0.986,
significantly surpassing MECI (0.982) and NLM (0.983). This consistent trend across
different images (Teddy, Moebius, Recycle, and Jadeplant) emphasizes AB-NLMs ability
to provide higher structural similarity, indicative of a more accurate reconstruction of the
original images.
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In Table 1, when ndisp = 256, it implies that the depth map’s disparity values do
not exceed 256 during the restoration evaluation. Increasing ndisp results in higher DE
and ALME. For instance, in the Jadeplant image, both DE and ALME values are notably
higher, yet this does not necessarily mean poorer restoration. Notably, within the five
images in Table 1, all DE values surpass their respective ALME values, indicating most
restoration outcomes closely approximate true depth values, with a small fraction exhibiting
suboptimal results. Analysis of the MECI, NLM, and AB-NLM algorithms in Table 1 reveals
that AB-NLM outperforms others in terms of DE and ALME values across various images,
indicating superior performance in-depth image repair.

Table 1. Comparative analysis of DE and ALME for NLM, MECI, and AB-NLM algorithms based on
the Middlebury dataset.

Image of Scenes ndisp * NLM MECI AB-NLM

DE ALME DE ALME DE ALME

Art 256 2.75 2.29 2.31 1.98 2.08 1.67

Teddy 256 2.68 2.61 2.54 2.35 2.41 2.28

Moebius 256 2.88 2.59 2.69 2.55 2.21 2.11

Recycle 260 3.04 2.81 2.75 2.58 2.19 1.78

Jadeplant 640 10.70 10.31 9.11 8.43 8.31 7.92

* The ‘ndisp’ commonly refers to the number of potential disparity values in the disparity map, representing the
levels of disparity corresponding to depth differences.

4. Conclusions

The effectiveness of the proposed adaptive block-based deep image hole repair algo-
rithm is successfully demonstrated in this study. Initially, the algorithm based on NLM for
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hole repair of void regions is expounded upon. Subsequently, an intelligent block factor is
introduced upon the foundation of the NLM hole repair algorithm. This factor facilitates
automatic adjustments of search and repair block sizes to accommodate void regions of
various dimensions, thereby mitigating the complexities associated with parameter tuning.
Moreover, optimal search and repair blocks are computed for each void region, aiding
in their proficient restoration. Finally, a series of experiments is conducted utilizing the
Middlebury stereo matching dataset and scenes captured by the Orbbec Astra S depth
camera. The NLM, AB-NLM, and MECI algorithms proposed in this paper are subjected
to both qualitative and quantitative assessments employing the RMSE, SSIM, PSNR, DE,
and ALME metrics. The outcomes validate that the proposed algorithm consistently yields
more authentic object contours in the majority of scenarios. Furthermore, its performance
in void region restoration within in-depth images is notably superior.

Our future work will focus primarily on the following research areas:

(1) Through an extensive series of experimental investigations, it has been ascertained that
the algorithm proposed within the context of this study exhibits certain deficiencies in
the realm of transparent object depth restoration. Consequently, a prospective avenue
for further inquiry entails the formulation of algorithms capable of addressing the
task of transparent object depth restoration.

(2) As the proportion of missing regions in the image gradually increases, the restoration
effectiveness of various methods, including the algorithm proposed in this paper,
will decrease. This is manifested by varying degrees of distortion at the restoration
locations. Regardless of whether based on traditional algorithms or deep learning-
based approaches, the fundamental principle of image restoration involves filling
in the missing regions using known information in a certain manner. Naturally,
better restoration results are achieved when the unknown regions are minimized.
However, when the proportion of masked areas becomes excessively large, the limited
amount of known information cannot adequately support the predictive function of
the restoration algorithm. Therefore, in the future, the incorporation of the concept
of style transfer will be explored. Particularly for large-scale restoration, combining
image-style prior information with the idea of style transfer will be considered. Two
models will synchronize output features and mutually supervise each other, thereby
enhancing the model’s capability to restore large-scale missing regions.
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Abbreviations

NLM Non-local means
AB-NLM Adaptive Block-based Non-local means
MECI Multiple Edge Converge Inpainting
RMSE Root Mean Square Error
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index
DE Depth Error
ALME Average Local Mean Error
ndisp number of disparities
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