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Abstract: This paper presents a comprehensive survey examining the prevailing feature extraction
methodologies employed within biometric palmprint recognition models. It encompasses a critical
analysis of extant datasets and a comparative study of algorithmic approaches. Specifically, this review
delves into palmprint recognition systems, focusing on different feature extraction methodologies. As
the dataset wields a profound impact within palmprint recognition, our study meticulously describes
20 extensively employed and recognized palmprint datasets. Furthermore, we classify these datasets
into two distinct classes: contact-based datasets and contactless-based datasets. Additionally, we
propose a novel taxonomy to categorize palmprint recognition feature extraction approaches into
line-based approaches, texture descriptor-based approaches, subspace learning-based methods, local
direction encoding-based approaches, and deep learning-based architecture approaches. Within each
class, most foundational publications are reviewed, highlighting their core contributions, the datasets
utilized, efficiency assessment metrics, and the best outcomes achieved. Finally, open challenges and
emerging trends that deserve further attention are elucidated to push progress in future research.
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1. Introduction

Palmprint recognition constitutes a pivotal biometric technology deployed in the
identification and verification of individuals, relying on the distinctive patterns inherent
in their palmprints. This method, known for its reliability and security, finds extensive
applications in diverse fields, including access control, security systems, and forensic
investigations [1]. The palmprint recognition methodology originated with a focus on
forensic analysis of latent prints, capitalizing on the intricate and extensive textural features
compared to fingerprints. In forensic applications, high-resolution images exceeding
400 dots per inch (dpi) are utilized to capture detailed structural information. In contrast,
civil and commercial systems, such as access control, opt for lower resolutions under 150 dpi
to balance utility and practicality. The larger surface area covered by palmprints allows for
highly discriminative characterization, even in low-quality images. The resolution-field
condition trade-off underscores the differing goals: Forensic usage requires definitive
one-to-one matching for evidence, whereas access control emphasizes immediate user
authentication and system integration. A comprehensive understanding of these contexts
and their implications on image quality, feature representation, and matching algorithms
is crucial for adapting palmprint recognition to diverse application needs. The process of
palmprint recognition entails several fundamental stages: image capture and acquisition,
preprocessing for normalization and enhancement, descriptive feature extraction, and
finally, pattern matching for classification.

Palmprint image acquisition involves capturing high-quality palmprint images using
various devices like cameras, scanners, or smartphones. These images are then subjected to
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preprocessing techniques, encompassing noise reduction, normalization, and enhancement,
to ensure consistent submission despite any restrictions on the availability of materials
and/or refined input data. Following preprocessing, relevant features are extracted, like
minutiae points specific to an individual’s palm, ridges, and lines. These features are
crucial for accurate identification and are obtained through advanced image processing
methods [2].

Palmprint recognition systems possess notable advantages—notably their non-intrusive
nature, stability of features over time, and the abundance of unique identifying character-
istics on the palm [3]. However, challenges persist, including variations in illumination,
pose, and image quality, necessitating meticulous attention for precise and dependable
recognition outcomes.

Sustained research efforts, especially within image processing, machine learning,
and deep learning, have significantly enhanced palmprint recognition systems. These
advancements have solidified the integration of palmprint recognition as an indispensable
component within contemporary biometric security applications [4].

Despite promising advancements in palmprint recognition, numerous unresolved
issues and open challenges persist in the field. These challenges encompass diverse fac-
tors such as changes in pose, occlusion, blurring, image resolution, and the synthesis
of palmprints [5,6]. Successfully addressing these challenges requires substantial efforts
aimed at enhancing palmprint acquisition, normalization techniques, and recognition
algorithms. Such efforts are crucial for deploying palmprint recognition within forensic
analysis, surveillance systems, mobile phone security, and various commercial applications.

To confront and deal with these challenges, this paper provides a meticulous analysis
that highlights notable advances that have significantly influenced the development of
palmprint biometric recognition. This discussion covers historical evolutions up to the
present, with focused attention on anticipating future directions in the field.

In this comprehensive review, our main contributions can be succinctly outlined
as follows:

- We deliver a timely, thorough, and concise review of the extensive literature on image-
based palmprint recognition. This includes an analysis of both contact and contactless
palmprint databases, along with the employed evaluation methods. Our evaluation
covers 20 databases and more than 60 publications from late 2002 to 2023.

- Our goal is to enlighten emerging scholars by highlighting significant advances in the
historical context of the field and directing them to relevant references for in-depth
exploration.

- We present a systematic categorization of palmprint feature extraction techniques,
including contemporary methods rooted in deep learning. The purpose of devel-
oping this taxonomy is to structure the existing literature on palmprint recognition
approaches and provide a coherent framework for understanding the diverse method-
ologies employed in the field.

- We provide an up-to-date and thorough comprehensive survey of both contact and
contactless databases utilized in the realm of palmprint recognition. Our methodology
involves organizing these databases and building a chronological timeline, showing
the evolution of these datasets over time in terms of the number of individuals
represented and the number of samples per individual.

- We scrutinize the existing deep learning-based methodologies, highlighting their
exceptional performance on intricate, unregulated, and extensive datasets. Conse-
quently, our examination offers researchers with an inclusive understanding of deep
learning-based techniques, which have significantly transformed palmprint recogni-
tion paradigms since the early 2015s.

This paper’s subsequent sections are outlined as follows: Section 2 delves into the
anatomical structure of the palm of the hand. Then, Section 3 focuses on the palmprint as
a distinctive biometric modality. In Section 4, a comprehensive overview of the general
framework for palmprint recognition systems is presented. The challenges inherent in
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the implementation and the employment of palmprint recognition systems are discussed
in Section 5. Section 6 introduces palmprint recognition databases and the proposed
taxonomy. Section 7 provides a meticulous classification of palmprint feature extraction
methods, detailing the pivotal contributions that have significantly advanced this field.
Finally, Section 8 serves as the conclusion, summarizing key findings and addressing future
research directions.

2. What Is a Palmprint?

The palmprint refers to the unique pattern of ridges and valleys found on the inner
surface of the hand, excluding the wrist and fingers. Palmprints, akin to fingerprints,
are a biometric characteristic unique to each individual. A seminal study by Shu and
Zhang in 1998 [7] explored the viability of palmprints as a means of personal identification,
establishing them as a form of physical biometrics. Their findings highlighted distinctive
features in palmprints, including major lines (life, heart, and head lines), wrinkles, minutiae,
and delta points. Each palmprint is unique, and the surface of the palm provides more
information space compared to fingerprints, so it contains a greater amount of information.

In general, the attributes of the palmprint manifest on multiple levels, each discernible
in various types of palmprint images. Typically, these characteristics are visible across
different image resolutions, with lower resolution, around 100 pixels per inch (ppi) [8,9],
exhibiting a pronounced texture in which dark lines are of particular significance and
visibility. Notably, among these lines, the three widest and longest are termed major lines,
constituted by the heart line gathering with the head and life lines, and the remaining
lines are referred to as wrinkles [10], as illustrated in Figure 1. Therefore, in the case
of low-resolution images, the predominant features are the major lines, wrinkles, and
texture. Nevertheless, the edges of the palmprint remain imperceptible in images of low
resolution. In contrast, visibility can be achieved in the case of images with high resolution,
of approximately 500 dpi, which unveils local texture intricacies, including minute creases,
ridges, valleys, and minutiae points [10]. Furthermore, images with very high resolution
allow an abundance of certain local particular features related to the palmprint to be
visualized, including the pores, which can be seen in resolutions exceeding 500 ppi or even
reaching 1000 ppi.
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Figure 1. Palmprint characteristics (a) at low resolution and (b) at high resolution.

3. Why Palmprint Recognition?

In the field of biometric recognition, facial identification still has limitations due to
persistent challenges, such as pose, lighting, and orientation variations [11]. Conversely,
fingerprints have been widely adopted due to their efficiency, although certain populations,
such as manual workers and the elderly, may have difficulty with capturing fingerprints.
In a networked society, reliable personal authentication remains critical for security [12].
Compared to other biometric modalities, palmprints have proven to be more effective
and acceptable. The palmprint biometric system offers higher accuracy than fingerprints
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and higher acceptance than facial recognition. With characteristics such as uniqueness,
reliability, and security, palmprints have been widely adopted by security agencies, pro-
viding a cost-effective and non-intrusive option for developing accurate and efficient
biometric systems.

Advanced research in palmprint feature extraction [13,14] has been conducted for
contactless systems. Contactless palmprint recognition aims to improve usability and
privacy. However, the lack of a knuckle guide can lead to variations in palmprint images
due to hand movements. Various methods, such as the utilization of texture operators
like local binary pattern (LBP) [15] and Gabor filters [16], were proposed to overcome
these challenges.

Palmprint has advantages over other biometric methods, including iris and fingerprint,
in terms of identity matching. Palmprints offer the advantage of easy capture with low-
resolution devices, mitigating the high costs associated with other modalities. Moreover,
law enforcement agencies have extensively employed palmprints for criminal identification,
leveraging their unique and stable characteristics [17,18]. These prints encapsulate diverse
features like primary lines, minutiae points, ridges, and overall texture. Each feature class
contributes significantly to the individuality and discriminative power of a palmprint.
This flexibility permits adaptation to the specific security requirements of individuals
and organizations.

4. Structure of a Palmprint Recognition System

As delineated in Figure 2, the palmprint recognition framework structure encompasses
four key stages similar to broader biometric architectures—(i) image acquisition, followed
by (ii) preprocessing and (iii) feature extraction, and culminating with (iv) classification [19].
The preprocessing stage aims to enhance image performance and remove extraneous
elements. Then, the process moves to the feature extraction stage, which allows features
to be elicited from the image of the palm through advanced image analytics. Finally, the
image proceeds to the classification stage, where it undergoes classification to match image
samples with individuals and identify the closest match in the database to the palmprint
used in the test.
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4.1. Image Acquisition

Contingent on the imaging apparatus, palmprint acquisition methodologies bifurcate
into contact-based palmprint images and contactless ones [14]. The first category neces-
sitates direct palm-sensor contact; however, the second one involves no direct physical
contact. Indeed, in the first case, images are acquired with palms placed on the device
and hands guided by positioning markers for the user. Conversely, in the second scenario,
images are captured without any physical contact with the device. Figure 3 illustrates both
modes of palmprint image acquisition, with and without contact [20,21].
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print image capturing method and (b) contactless palmprint image capturing model.

4.2. Preprocessing

Image preprocessing involves denoising and smoothing the region of interest (ROI)
in the entered data before deriving significant features within the palmprint images. ROI
extraction in palmprint recognition adverts to the process of identifying and isolating the
specific area of a palmprint image that contains the most relevant and distinctive features
for recognition purposes [22]. This extraction is critical for accurate feature analysis and
comparison within a recognition system. Various techniques are used to extract the ROI,
which typically involves locating the central area of the palmprint image where key features
like lines, ridges and minutiae points are concentrated.

The ROI extraction process aims to enhance the ability and the fineness of palmprint
recognition systems by focusing computational efforts on the most informative part of
the palmprint image. This targeted approach ensures that only the relevant features
are considered during feature extraction and comparison, resulting in more reliable and
accurate recognition results. Proper ROI extraction methods are essential for achieving
optimal performance in palmprint recognition systems, making it a fundamental step in
the overall recognition process.

Figure 4 highlights an example of the preprocessing module of the palmprint identifi-
cation system, comprising five essential stages [23].
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Figure 4. Example of preprocessing steps for a palmprint image. (a) image acquisition, (b) palm
contour extraction, (c) key point detection, (d) establishment of a coordinate system, and (e) extraction
of central parts.

4.3. Feature Extraction

Feature extraction captures distinctive features from biometric data to create a unique
digital representation of the palmprint. Algorithms transform raw data into discriminative
features used for identification or verification. These features must be invariant to irrelevant
variation and highlight fundamental characteristics. The following methods are most
commonly used in palmprint feature extractison: line-based, subspace learning-based,
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local direction encoding-based, texture descriptor-based, and deep learning-based methods.
This phase forms the core of this article and will be presented in more detail in Section 7.

4.4. Classification

During recognition, the features derived from the entered palmprint are compared
with the features stored in a database. Various matching algorithms, such as Euclidean
distance or neural networks, are used to determine the similarity between the input features
and the stored templates.

4.5. Evaluation Performances

The valid accuracy and equal error rate (EER) serve as widely accepted metrics for
evaluating the performance of biometric systems. These metrics are fundamental in judging
the effectiveness of such systems and are commonly utilized in the field. Valid accuracy
assesses the overall correctness of the system in authenticating users, indicating its ca-
pability to accurately identify legitimate users. Conversely, the EER stand as a pivotal
metric in evaluating biometric system performance. It pinpoints the precise operating
condition where the false acceptance rate (FAR) and false rejection rate (FRR) converge
equally, signifying an equilibrium assessment of the system performance.

The valid accuracy is the percentage of correctly accepted genuine instances or positive
matches in the biometric system, which can be obtained through:

Valid − accuracy =
Number o f true acceptances

Total number o f genuine instances
× 100 (1)

where:
True acceptances: the number of instances where the biometric system correctly accepts

a genuine user.
Total number of genuine instances: the total number of instances where a genuine

user attempts authentication.
The EER serves as an equilibrium point between the two error rates, which allows the

FAR and FRR to intersect.
EER = (FAR + FRR)/2 (2)

where:
FAR =

Number o f f alse acceptances
Total number o f impostor attempts

× 100 (3)

FRR =
Number o f f alse rejections

Total number o f genuine attempts
× 100 (4)

It is important to note that lower EER values indicate better performance in terms of
balancing the false acceptance rate (FAR) and false rejection rate (FRR).

In an ideal system, the recognition rate would be 100% and the EER would be 0%.
However, in practice, there is often a trade-off between these two metrics, and system
designers aim to find a balance that meets the requirements of the specific application.

5. Palmprint Biometric Recognition Challenges

Palmprint recognition presents a number of complex challenges, primarily due to
reduced pattern quality, variations in focal length, nonlinear deformation caused by con-
tactless image capture systems, and computational complexity caused by the large size
of typical palmprint images. In addition, contactless palmprint research ffaces specific
problems [24]. First, the accuracy of contactless palmprint matching tends to decrease
compared to contact images due to more pronounced image variations. This requires the
development of advanced matching techniques to improve accuracy. Second, automated
recognition of contactless palmprints from entered hands is complex due to dynamic or un-
stable backgrounds. Existing research addresses this problem by using fixed backgrounds
for image acquisition and pixel-wise operators for key point detection.
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Palmprint recognition shares several common problems with traditional fingerprint
recognition, including the detection of ridges, valleys, and minutiae points [25]. However,
palmprints are larger and more complex, which slows down their recognition at high
resolutions. The deformation of fingerprints, especially due to joint variations, is a critical
and more complex issue compared to the deformation of palmprints.

Different regions of palmprints exhibit varying qualities and levels of uniqueness.
Computational challenges arise from the fact that databases are not always maintained
in the same coordinate system during palmprint operations [26]. This affects minutiae-
matching algorithms, which become less effective for palmprints due to their higher density.

All biometric systems face challenges in accuracy, scalability, and usability, and im-
proving accuracy relies on strategies such as the use of multimodal biometric systems [27].
In the realm of contactless palmprint recognition, challenges include the degradation
of matching accuracy and automatic image detection. Advanced approaches and fixed
backgrounds are needed to address these issues.

6. Databases

Palmprint images can be captured using both contact and non-contact (contactless)
methods. Contact-based palmprint capture requires subjects to place their hands in direct
contact with a sensor mounted on pins to ensure proper positioning for image capture, as
shown in Figure 5a. Conversely, contactless capture can be achieved using readily available
commercial cameras and under unrestricted conditions, as shown in Figure 5b. The latter
approach offers significant advantages over contact-based methods, including enhanced
user convenience, increased confidentiality, and reduced hygiene risks [10]. Depending
on the method used to capture the palm images, we classified the available databases into
contact and non-contact databases, as shown in Figure 6.
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6.1. Contact-Based Palmprint Databases
6.1.1. PolyU (2003)

The Hong Kong Polytechnic University (PolyU) database [9] encompasses 7752 gray-
scale images of palmprint from 386 palms, representing 193 individuals. Each participant
contributed a minimum of 20 samples, covering both the left and the right hand. The
collection process was performed in two separate sessions, with approximately 10 samples
collected during the initial session and the remaining 10 samples gathered in the subsequent
session.

6.1.2. PolyU-MS (2009)

The PolyU-MS (Multi-Spectral) dataset [28] was created by collecting features of palm-
prints captured from 250 subjects spanning 20–60 years of age and encompassing 55 females
and 195 males. Data gathering employed a customized multi-illumination apparatus to
acquire six samples per session over two intervals under four spectral exposures (red, green,
blue, and near-infrared wavelengths). This dual-session collection strategy, combined with
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multi-spectral imaging, resulted in a total of 24,000 images distributed across 6000 prints
per band, with each contributing hand providing 12 palmprint images.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 31 
 

 

 
Figure 5. Comparison between (a) a contact and (b) a non-contact capturing method used in bio-
metric palmprint systems. 

 
Figure 6. Proposed taxonomy for palmprint datasets: a comprehensive classification and overview 
of widely utilized datasets. 

6.1. Contact-Based Palmprint Databases 
6.1.1. PolyU (2003) 

The Hong Kong Polytechnic University (PolyU) database [9] encompasses 7752 gray-
scale images of palmprint from 386 palms, representing 193 individuals. Each participant 
contributed a minimum of 20 samples, covering both the left and the right hand. The col-
lection process was performed in two separate sessions, with approximately 10 samples 
collected during the initial session and the remaining 10 samples gathered in the subse-
quent session. 

6.1.2. PolyU-MS (2009) 
The PolyU-MS (Multi-Spectral) dataset [28] was created by collecting features of 

palmprints captured from 250 subjects spanning 20–60 years of age and encompassing 55 
females and 195 males. Data gathering employed a customized multi-illumination 

Figure 6. Proposed taxonomy for palmprint datasets: a comprehensive classification and overview of
widely utilized datasets.

6.1.3. IIITDMJ (2015)

The palmprint images within the Indian Institute of Information Technology, Design
and Manufacturing, Jabalpur (IIITDMJ) [29] database were notably affected by palm move-
ment and distortion. This database comprises 900 gray-scale palmprint images, sourced
from 75 IIITDM Jabalpur students, with six images captured per palm during a single
session. The acquisition device was deliberately kept unconstrained in terms of rotation
and translation to ensure natural appearances during the capture process.

6.1.4. BJTU_PalmV1 (2019)

The BJTU_PalmV1 dataset [30] is a compilation of contact-based palmprints, featuring
2431 hand images from 174 participants. This dataset encompasses a diverse group,
with 77 males and 77 females all falling within the age range of 19 to 40 years. In this
dataset, 98 subjects provided 10 images of their right hands, while 4 participants provided
9–10 images of their left hands and the remaining 72 individuals contributed 8–10 images
of their left hands and 4–10 images of their right hands. The data collection occurred
over two sessions, with two to five images captured for each hand during each session.
The images were taken using two different CCD cameras in indoor settings, with the
hand positioned 0.35 m away from the camera. Unintentional environmental changes
occurred due to the variable number of images taken during each session. The dataset
includes individuals primarily from the Institute of Information Science at Beijing Jiao-Tong
University. All images were normalized to a size of 1792 × 1200 pixels.

6.1.5. PV_790 (2020)

The PV_790 dataset [31] was captured utilizing a near-infrared (NIR) imaging device
operating within the 790 nm wavelength band. This dataset was meticulously compiled



Appl. Sci. 2024, 14, 153 9 of 34

with the cooperation of 209 volunteers. In two separate sessions held a month apart, both
the left and right hands of each participant were captured ten times, with five images
obtained during each session. Consequently, the dataset comprises a total of 518 unique
classes and contains 5180 images (209 subjects × 2 hands × 10 samples).

6.1.6. COEP

The palmprint database curated by the College of Engineering, Pune [32], denoted
as the COEP palmprint database, encompasses eight distinct images capturing individual
palm impressions. This repository aggregates a sum of 1344 palmprint images, originating
from 168 distinct individuals. The dimensions of these palmprint images are specified as
1600 × 1200, with variations in the ROI size ranging from 290 × 290 to 330 × 330.

Table 1 provides a statistical summary of the contact datasets discussed in this subsec-
tion, while Figure 7 illustrates examples from each dataset discussed.
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6.2. Contactless-Based Palmprint Databases
6.2.1. CASIA (2005)

The CASIA (Chinese Academy of Sciences, Institute of Automation) palmprint database [33]
comprises a dataset of 5502 images obtained from 312 persons. For each subject, both the
left and right palmprints were systematically collected, providing a comprehensive dataset
for palmprint recognition research. Notably, there were no specific instructions given
regarding the posture or hand placement during data capture, leading to considerable
variations in palmprint postures within the CASIA database.

6.2.2. CASIA-MS (2007)

The CASIA Multi-Spectral (CASIA-MS) corpus [34] constitutes a substantial contact-
less palmprint compilation encompassing 7200 images gleaned from 100 distinct cases.
Data acquisition utilized a customized multi-illumination imaging apparatus to capture
six distinct samples from each palm across two independent sessions. This process was
conducted under varying electromagnetic exposures, including 460 nm, 630 nm, 700 nm,
850 nm, 940 nm, and white light channels. Notably, these palmprint acquisitions occurred
without any peg limitation, and deliberate measures were taken to introduce diverse vari-
ations intentionally. This purposeful introduction of variability amplifies the diversity
of samples within a class and emulates practical usage scenarios, thereby rendering the
CASIA-MS database highly valuable for advanced research in palmprint recognition.
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Table 1. Comparative summary of the contact-based palmprint databases (#Imgs: number of images, #ID: number of identities, #Imgs/ID: number of images per
identity, Res: resolution, Norm: normalization, Var: variation, Acqui.Dev: acquisition device).

Database Year Developer #Imgs #IDs #Imgs/ID Res. Norm. Var. Acqui. Dev.

PolyU [9] 2003 The Hong Kong
Polytechnic University 7752 386 ≈20 384 × 284 No No Scanner

PolyU-MS [28] 2009 The Hong Kong
Polytechnic University

6000 × 4 (red, green,
blue, and NIR) 500 × 4 12 700 × 500 Yes No Scanner

IIITDMJ [29] 2015

Indian Institute of
Information Technology,

Design and
Manufacturing, Jabalpur

900 150 6 700 × 500 No Small Scanner

BJTU_PalmV1 [30] 2019
Institute of Information
Science, Beijing Jiaotong

University
2431 174 From 8 to 10 1792 × 1200 No Large 2 CCD cameras

PV_790 [31] 2020 University of Macau 5180 518 10 N/A No No Scanner

COEP [32] N/A College of Engineering,
Pune 1344 168 8 1600 × 1200 No No Scanner
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6.2.3. IITD (2008)

The Indian Institute of Technology Delhi (IITD) palmprint database [35] offers a rich
resource for research and development in palmprint recognition, featuring a diverse collec-
tion of 2601 images captured from 460 unique palms. This dataset comprises contributions
from 230 cases ranging in age from 14 to 15 years. The acquisition methodology stipulated
the contribution of five to six samples from both the left and right palms of each individual.
The ROI images supplied in the dataset are standardized to a size of 150 × 150 pixels.

6.2.4. GPSD (2011)

The GPDS palmprint database [36], provided by the Digital Signal Processing Group
at the University of Las Palmas de Gran Canaria, contains 1000 images of the right hand of
100 individuals. During the data collection process, a volunteer was instructed to take ten
photographs of the participants’ palms without adhering to a specific hand position. All
palmprint images were acquired in a single session to maintain an uncontrolled environ-
ment with varying backgrounds and lighting conditions. Additionally, ROI information is
provided for each palmprint in the database.

6.2.5. Cross-Sensor (2012)

The Cross-Sensor touchless palmprint database [37], also known as the Chinese
Academy of Science—HeFei Institutes of Physical Science (CASHF), is a dataset containing
12,000 images captured by three distinct devices: one digital camera and two mobile phones.
Each device contributed a total of 4000 palmprint images sourced from 200 palms belonging
to 100 persons. The data collection process involved capturing 20 samples for each palm
across two sessions, with 10 samples acquired during each session. This dataset is designed
to facilitate research and development in touchless palmprint recognition.

6.2.6. REST (2016)

The hand database known as REgim Sfax Tunisia (REST [38]), curated by the Research
Groups in Intelligent Machines at the University of Sfax, constitutes 1945 samples procured
from 358 persons spanning 6–70 years old. Here, data acquisition relied on an afford-
able 24-bit color 2048 × 1536 CMOS camera under ambient indoor illumination without
appendage constraints. Unlike CASIA and IITD, REST exhibits less-constrained hand
positions, with no specific housing provided for users’ hands and relying solely on indoor
lighting. Consequently, sample variations are evident in terms of rotation, scale, illumi-
nation across samples, and translation. Nevertheless, users were mandated to maintain
dorsal hand contact with a table during the imaging process.

6.2.7. TJI (2017)

The Tongji University (TJI) contact-based palmprint assemblage [14] documents sam-
ples from 300 university-affiliated volunteers wherein 192 males and 108 females con-
tributed 10 left and right palm impressions during 2 distinct sessions. The individuals who
participated in this operation were all affiliated with Tongji University as employees or stu-
dents. A 61-day average inter-session interval with a 21–106-day span enabled longitudinal
variability assessment. The cohort encompassed 235 susbjects aged 20–30 years old, and
65 subjects fell into the 30–50-year-old range. Hence, the corpus furnishes 12,000 images of
600 × 800 pixels across 600 distinct palms, facilitating age-related recognition research. This
dataset offers a diverse collection of palm images suitable for research and development in
palmprint recognition.

6.2.8. NTU-PI-v1 (2019)

To address palmprint recognition challenges in unregulated environments devoid
of user cooperation, the Nanyang Technological University Palmprints from the Inter-
net (NTU-PI-v1) dataset [18] was assembled. This dataset comprises 7781 images from
2035 unique palms pertaining to 1093 individuals of heterogeneous age, gender, and ethnic-
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ity. Manual cropping from online galleries using bounding boxes furnished samples with
uncontrolled perspectives, gestures, appearances, occlusions, and backgrounds, emulating
forensic use cases. Notably, there is a lack of publicly available palmprint databases specifi-
cally tailored to forensic applications. Hence, the lack of labeled contactless compilations
tailored to investigative derivation necessitated Internet sourcing to approximate opera-
tional conditions involving unsupervised capture without biometric intent. Specimen sizes
spanned from 30 × 30 to 1415 × 1415 pixels, with a median size resolution 115 × 115 pixels.
Additionally, manually annotated landmarks and segmentations are supplied throughout
the corpus of the dataset.

6.2.9. NTU-CP-v1 (2019)

The NTU-CP-v1 database [18] offers a diverse collection of 2478 contactless palm
images captured from 655 distinct palms. Participants in this dataset represent a specific
demographic, primarily consisting of individuals of Asian descent (Chinese, Indian, Malay),
with a smaller inclusion of Caucasian and Eurasian subjects. Collection took place during
two sessions in Singapore and was characterized by a non-contact setting and without
strict posing criteria. Photographs were captured using cameras such as a Canon EOS 500D
or a NIKON D70s, and subsequent processing involved cropping the images to focus on
the hand regions. The dimensions of the hand images vary, ranging from 420 × 420 pixels
to 1977 × 1977 pixels, with the most common size being 1373 × 1373 pixels. This dataset
offers a diverse representation of palm images, providing valuable resources for research
in palmprint recognition.

6.2.10. BJTU_PalmV2 (2019)

The BJTU_PalmV2 dataset [30] is a contactless palmprint collection featuring 2663 hand
images from 148 volunteers, including 91 males and 57 females, spanning ages 8 to 73.
Data were collected over two sessions from 2015 to 2017. Each participant contributed
6–10 images of both the left and right hands, with 3–5 images captured per hand in each
session. The dataset was acquired indoors and outdoors using smartphones like the iPhone
6, Nexus 6p, Huawei Mate8, Nubia Z9, and Xiaomi Redmi 1S. Although there were no strict
limitations, volunteers were instructed to naturally spread their fingers and maintain a
distance of 15–25 cm from the mobile camera. Participants represented diverse occupations
from China, India, Sri Lanka, and Singapore. All images were normalized to a size of
3264 × 2448 pixels.

6.2.11. MPD (2020)

The MPD dataset [39] comprises palm images captured under diverse backgrounds
and various levels of lighting conditions. To mitigate the effects of different camera pa-
rameters between different brands of mobile devices, palm images were collected using
two specific smartphone brands: Huawei and Xiaomi. To eliminate seasonal or temporal
effects on the photos, a second round of collection was conducted using the same standard
with the same set of phones six months later. The MPD includes 16,000 palmprint images
from 200 volunteers from Tongji University, encompassing a balanced mix of both academic
staff and student demographics. The age range spans from 20 to 50 years, with 195 subjects
in the 20–30 age range and the remaining participants between 30 and 50 years old.

6.2.12. XJTU-UP (2021)

The Xi’an Jiaotong University Unconstrained Palmprint (XJTU-UP) database [40]
contains >20,000 palmprint images collected from 100 persons. It was collected in an un-
constrained environment, which significantly reduced the collection constraints compared
to other databases, thereby increasing the convenience of the recognition system. The
data were collected using five popular smartphones: iPhone 6S, HUAWEI Mate8, LG G4,
Samsung Galaxy Note5, and MI8. Each device captures images under two different lighting
conditions: natural room lighting and flash from the phone. The entire database is divided
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into ten sub-datasets named HN (HUAWEI Mate8 under natural lighting), IN (iPhone 6S
under natural lighting), LN (LG G4 with natural lighting), MN (MI8 under natural lighting),
SN (Samsung Galaxy Note 5 using natural light), HF (HUAWEI Mate8 under flash light),
IF (iPhone 6S using flash light), LF (LG G4 under flash light), MF (MI8 under flash light),
and SF (Samsung Galaxy Note5 under flash light).

6.2.13. CrossDevice-A (2022)

Images comprising CrossDevice-A [41] were sourced from the MPD and TJI datasets,
captured by mobile and Internet of Things (IoT) devices, respectively. The MPD dataset
comprises 400 identities and 16,000 images, whereas the TCD dataset includes 600 identities
and 12,000 images. CrossDevice-A was created by selecting intersecting identities from
both the TCD and MPD datasets.

6.2.14. CrossDevice-B (2022)

CrossDevice-B is a heterogenous contactless palmprint corpus [41] constituting im-
agery derived from the MOHI [42] and WEHI [42] hand shape datasets. Uniquely, these
source datasets focused exclusively on structural hand characterization rather than friction
ridge encoding, thereby presenting imagery with diminished palmprint clarity. Conse-
quently, consolidating the distinct datasets poses significant subject-matching challenges,
resulting in CrossDevice-B constituting a more realistic and arduous test than CrossDevice-
A for assessing cross-device deployability.

Table 2 provides a statistical summary of the contactless datasets discussed in this
subsection, while Figure 8 illustrates examples from each dataset discussed.
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Table 2. Comparative summary of the contactless-based palmprint databases (#Imgs: number of images, #ID: number of identities, #Imgs/ID: number of images per
identity, Res: resolution, Norm: normalization, Var: variation, Acqui.Dev: acquisition device).

Database Year Developer #Imgs #IDs #Imgs/ID Res. Norm. Var. Acqui. Dev.

CASIA [33] 2005
Chinese Academy of
Sciences, Institute of

Automation
5502 624 ≈8 640 × 480 No Small Digital camera

CASIA-MS [34] 2007
Chinese Academy of
Sciences, Institute of

Automation
1200 200 6 700 × 500 No Large Digital camera

IITD [35] 2008 Indian Institute of
Technology, Delhi 2601 460 ≈6 800 × 600 Yes Small Digital camera

GPDS [36] 2011 Las Palmas de Gran
Canaria University 1000 100 10 800 × 600 Yes Small 2 webcams

Cross-Sensor [37] 2012 Chinese Academy of
Science 12,000 200 60

816 × 612
778 × 581
816 × 612

No Large 1 digital camera + 2
mobile phones

REST [38] 2016 Sfax University, Tunisia 1945 358 ≈5 2048 × 1536 No Small Digital camera

TJI [14] 2017 Tongji University, China 12,000 600 20 800 × 600 No Small Developed device

NTU-PI-v1 [18] 2019 Nanyang Technological
University, Singapore 7781 2035 ≈4 From 30 × 30 to

1415 × 1415 No Large From internet

NTU-CP-v1 [18] 2019 Nanyang Technological
University, Singapore 2478 655 ≈4 From 420 × 420 to

1977 × 1977 No Large Digital camera

BJTU_PalmV1 [30] 2019
Institute of Information
Science, Beijing Jiaotong

University
2663 296 From 6 to 10 3264 × 2448 No Large Several mobile

phones

MPD [39] 2020 Tongji University, China 16,000 400 40 N/A No Large Mobile phone

XJTU-UP [40] 2021 Xi’an Jiaotong University,
China >20,000 200 ≈100 From 3264 × 2448

to 5312 × 2988 Yes Large 5 smartphone
cameras

CrossDevice-A [41] 2022 Tencent Youtu Lab, China 18,600 310 60 N/A No Large Mobile phone + IoT

CrossDevice-B [41] 2022 Tencent Youtu Lab, China 6000 200 30 N/A No Large Mobile phone +
webcam
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7. Feature Extraction Approaches

The majority of biometric recognition systems using palmprint images extract distinc-
tive features and then compare these features to enrolled models archived in a database.
We proposed a categorization of palmprint recognition approaches based on both the
type of data employed and the specific strategy utilized for extracting pertinent features.
This categorization divides palmprint recognition methods into five overarching classes:
line-based, deep learning-based, subspace learning-based, local direction encoding-based,
and texture descriptor-based methods (as shown in Figure 9).
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7.1. Line-Based Approaches

Line-based methods focus on the identification and extraction of the main and local
lines embedded in a palmprint in an image. These distinctive lines, which include both
the prominent main ridges and the finer local ridges, serve as key features to facilitate
accurate and efficient recognition processes. By strategically detecting and analyzing these
lines, line-based techniques exploit the inherent uniqueness of the palm ridge pattern. The
sophisticated ability of these methods to capture the intricate interplay between the major
and minor lines enables the creation of highly informative palmprint templates, providing
the basis for reliable and discriminatory recognition systems. This meticulous line-oriented
approach adds an extra dimension of precision to palmprint recognition, making line-based
methods an invaluable tool in the arsenal of biometric security mechanisms.

Li et al. (2002) [43] proposed a novel approach for palmprint identification by exploit-
ing the power of the Fourier transform to extract and represent spatial frequency features
from palmprint images. Prior to feature extraction, the palmprint images are aligned
and normalized. Then, the Fourier transform acts as a bridge, seamlessly transforming
the palmprint image from the spatial domain, characterized by pixel intensities, into the
frequency domain and detecting major lines in the contours. Finally, the retrieved features
are used to guide a multi-level search in the database for the best match to the template.

Jia et al. (2008) [44] proposed a multi-feature-based technique for palmprint recog-
nition that combines primary line (PL) and locality preserving projection (LPP) features.
The technique involves extracting the main lines from the query image and comparing
them with the main lines present in each image within the training set. Next, it creates a
smaller training set consisting of the images with the highest similarity scores. Finally, the
technique fuses the similarity scores of the main lines and the LPP features at the decision
level and recognizes the query image in the smaller training set.

Jia et al. (2013) [45] introduced a novel approach for palmprint identification named
histogram of oriented lines (HOL). This technique draws inspiration from the widely
used histogram of oriented gradients (HOG) technique. Unlike HOG, which primarily
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captures edge information, HOL delves deeper, specifically targeting and characterizing
the prominent lines that define a palmprint’s unique identity through the use of a series of
Gabor filters with varying orientations or modified finite random transform (MFRAT). In
the matching phase, they use the Euclidean distance as the similarity measure.

Luo et al. (2016) [46] unveiled a local line directional pattern (LLDP) descriptor
based on line direction space for palmprint identification. To capture the line direction
features, they used methods such as modified finite radon transform (MFRAT) and the real
component of the Gabor filter. For the categorization process, they used Manhattan and
Chi-square distances.

Mokni et al. (2017) [47] proposed an intra-model palmprint recognition method that
combines the characteristics of the major line and texture features. First, an elastic shape
analysis framework was employed to explore the shape characteristics of the main line.
Then, the texture information was explored using fractal analysis. Then, to improve the
system accuracy, the important information from the various collected features of the main
line shape and the texture pattern were merged. Finally, a random forest classifier was used
to identify palmprints after combining the shape analysis-based and fractal-based features.

Gumaei et al. (2018) [48] proposed the HOG-SGF technique for palmprint identifi-
cation, which combines histogram of oriented gradients (HOG) features with a steerable
Gaussian filter (SGF). First, all palmprint images are preprocessed to segment only the
necessary ROI. Then, the palmprint features are extracted using HOG-SGF. In the next
phase, the dimensionality of the palmprint features is reduced using an efficient auto-
encoder (AE). Finally, the regularized extreme learning machine (RELM) classifier is used
for palm identification.

Zhou et al. (2019) [49] developed a palmprint feature extraction network founded on
the double biologically inspired transform (DBIT), aiming to elucidate the mechanisms
through which the optical human system perceives palmprints. This network comprises
two phases, each applying dual convolutional layers succeeded by sum pooling, rectified
linear unit (ReLU) activation, and normalization and combination operations. The first
stage activates orientation-selective filters to elicit line and edge responses. The subse-
quent layer drives rotation-, scale-, and translation-invariant feature maps. Additionally,
Pearson correlation and weighted fusion techniques are combined to assess the features’
discriminability and provide palmprint matching.

In order to synthesize the reviewed studies in this subsection, Table 3 offers a summary
overview, outlining the various palmprint feature extraction methodologies spanning
the utilized techniques, leveraged datasets, implemented experimental protocols, and
key findings.

Table 3. A comparative overview of line-based approaches (#ID: number of identities, #Imgs: number
of images, Acc: valid accuracy).

Year Paper Method
Used Datasets

Evaluation Protocol Acc. (%)
Name #IDs. #Imgs.

2002 Li et al. [43] Fourier
transform Private 500 3000 1 Img/sub (Rand) for training,

remain 5 Imgs for testing 95.48

2008 Jia et al. [44] PL + LPP PolyU 100 600 First session for training, second
session for testing 100.00

2014 Jia et al. [45] HOL
PolyU 386 7752 First 3 Imgs/sub from 1st session

for training, all images from 2nd
session for testing

99.97

PolyU-MS 500 6000 100.00
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Table 3. Cont.

Year Paper Method
Used Datasets

Evaluation Protocol Acc. (%)
Name #IDs. #Imgs.

2016 Luo et al. [46] LLDP

PolyU 386 7752
First 3 Imgs from 1st session
for training, second session

for testing

100.00

PolyU-MS 500 6000 100.00

Cross-Sensor 200 12,000 98.45

IITD 460 2601 First Img/sub for training,
remaining (4–6) for testing 92.00

2017
Mokni et al.

[47]

Principal
lines +
texture
pattern

PolyU 386 7752
All Imgs from 1st session for
training, 5 Imgs (Rand) from

second session for testing
96.99

CASIA 312 5502
5 Imgs/sub for training,

3 Imgs/sub for testing (only
right hands)

98.00

IITD 460 2300 3 Imgs/sub for training,
2 Imgs/sub for testing 97.98

2018
Gumaei et al.

[48]
HOG-SGF +

AE

PolyU-MS 500 6000
First 3 Imgs from 1st session for

training, 6 Imgs from second
session for testing

99.22

CASIA 614 5502 6 Imgs/sub for training,
remaining for testing (Rand) 97.75

TJI 600 12,000 First session for training, second
session for testing 98.85

2019
Zhou et al.

[49] DBIT

PolyU-MS 500 6000

5-fold cross-validation

99.83

PolyU 386 7752 98.85

CASIA 614 5502 97.02

IITD 460 2601 94.79

COEP 168 1344 97.64

7.2. Subspace Learning-Based Approaches

Subspace learning-based methods work by extracting and assimilating key features
from a palmprint image through the acquisition of a latent subspace guided by a variety of
constraints. These methods go beyond traditional feature extraction techniques by dynami-
cally learning and encapsulating the most salient aspects of palmprint patterns into a lower
dimensional subspace. By incorporating constraints that include structural, statistical, and
contextual information, these techniques meticulously fine-tune their subspace represen-
tations to capture the subtle intricacies of individual palmprint variations. This process
effectively distills the complexity of palmprint data into a more compact and discriminative
form, laying the groundwork for increased recognition accuracy. Subspace learning-based
methods emerge as powerful tools to decipher the underlying palmprint data structure,
allowing for the creation of highly informative templates that are adept at detecting minute
differences while also accounting for broader pattern trends.

Wu et al. (2003) [50] proposed the Fisherpalm, a palmprint recognition system founded
on fisher’s linear discriminant (FLD) analysis. Within this approach, every palmprint is
treated as a point within a high-dimensional image space. Palmprints are then mapped
from this high-dimensional space to a much lower-dimensional feature space. This trans-
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formation enhances the system’s ability to effectively discriminate between the palmprints
of different individuals.

Connie et al. (2005) [2] introduced an automated system for palmprint recognition
utilizing a peg-free scanner. Specifically, to deal with projection issues following the ROI
extraction, principal component analysis (PCA), independent component analysis (ICA),
and fisher discriminant analysis (FDA) were investigated for dimensionality reduction.
Additionally, wavelet transform provided complementary multi-resolution texture charac-
terization. The authors concluded that the configuration involving wavelet + FDA, denoted
as WFDA, outperforms other configurations in terms of performance.

Hu et al. (2007) [51] proposed a technique known as 2D locality preserving projection
(2DLPP) for palmprint identification. This method focuses on feature extraction and is
based on the concept of locality preservation and image matrix projection. To perform
the classification, they used a nearest neighbor classifier considering the L2 norm for
measuring similarity.

Pan and Ruan (2008) [52] proposed an approach known as two-dimensional locality
preserving projections (I2DLPP) for palmprint identification. This technique focuses on
simplifying computational complexity and reducing feature dimensions by employing
two main steps: First, it performs a projection of the training space along the row direction
using a two-dimensional principal component analysis (2DPCA). Thereafter, I2DLPP is
conducted over the resultant compressed columnar direction by employing a nearest
neighbor graph. Additionally, the authors propose applying I2DLPP on Gabor-filtered
images (I2DLPPG) to further enrich textural characterization identification. Extensive
analysis revealed that the input filtered images significantly improved computational
efficiency and identification accuracy.

Lu and Tan (2011) [53] proposed an approach called diagonal discriminant locality
preserving projections (Dia-DLPP) for the identification of both faces and palmprints. This
approach is crafted to capture in both directions—vertical and horizontal—by cueing dis-
criminant information from data. Uniquely, diagonalized images were integrated during
the training and testing phases to enhance the discriminative capabilities. The authors
additionally proposed a weighted discriminative variant (W2D-DLPP) that explicitly as-
signs greater significance to more identity-discriminative pixel clusters when computing
projection vectors. The discriminative scores are incorporated into the traditional 2D-DLPP
technique, resulting in the refined method W2D-DLPP. This integration of discriminative
pixel weighting significantly improves the identification performance of both 2D-DLPP
and Dia-DLPP, leading to improved accuracy in face and palmprint identification tasks.

Rida et al. (2018) [54] introduced a palmprint recognition system that relies on a set
of sparse representations (SR). They used two-dimensional principal component analysis
(2D-PCA) to build an initial sample dictionary and then used two-dimensional linear
discriminant analysis (2D-LDA) to extract discriminative features.

Rida et al. [55] devised an ensemble framework leveraging the random subspace
method (RSM) for contactless palmprint recognition classification. Two-dimensional princi-
pal component analysis (2DPCA) was applied to obtain multiple dimensional eigenvector
random subspaces. Thereafter, two-dimensional linear discriminant analysis (2DLDA)
was conducted within each random 2DPCA projection to retrieve the most discriminative
feature subsets. In addition, Euclidean distances with nearest neighbor classifiers were
subsequently implemented on each subspace. Ultimately, a nonlinear decision function
was constructed, comprising individual classifiers that vote by majority.

Wan et al. (2021) [56] introduced a feature extraction technique for palmprint recogni-
tion termed sparse 2D discriminant local preserving projection (SF2DDLPP) that integrates
elasticity into the dimensionality reduction process. Their method first constructs a fuzzy
membership matrix using the fuzzy k-nearest neighbors algorithm (FKNN), computed
separately for within-class and between-class weight matrices to encode intra-personal and
inter-personal variations. Two theorems are subsequently derived to efficiently obtain the
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generalized eigenfunctions for optimized class separation. Finally, elastic net regularization
is utilized to determine the optimal sparse projection matrix.

Zhao et al. (2022) [57] proposed an innovative approach known as double-cohesion
learning-based multi-view and discriminant palmprint recognition (DC_MDPR). This
approach effectively exploits the multi-view features of palmprint images along with the
inherent data structure. To achieve this goal, they introduced a method called double
cohesion, which combines inter-view cohesion and intra-class cohesion. This technique
aims to enhance the distinctiveness of multiple features, reduce feature dimensions, and
enhance the representation of these features within the same subspace.

Wan et al. (2023) [58] proposed an approach known as low-rank two-dimensional local
discriminant graph embedding (LR-2DLDGE) for the purpose of feature extraction and
dimensionality reduction. Initially, the technique uses a graph embedding (GE) framework
to capture and preserve essential discriminative information within local neighborhoods
of the data. Next, LR-2DLDGE is designed to ensure that data points within the feature
space are maximally independent across different classes, thereby enhancing discriminative
capabilities. To bolster the method’s resilience against noise and corruption, the approach
incorporates an L1 norm constraint and employs low-rank learning techniques.

Table 4 provides a summary of the studies discussed in this subsection, elucidating the
employed feature extraction methods, datasets, experimental protocols, and principal findings.

Table 4. A comparative overview of subspace learning-based approaches (#ID: number of identities,
#Imgs: number of images, Acc: valid accuracy).

Year Paper Method
Used Datasets

Evaluation Protocol Acc. (%)
Name #IDs. #Imgs.

2003 Wu et al. [50] Fisherpalms Private 300 3000 6 Imgs/sub (Rand) for training,
remaining 4 Imgs/sub for testing 99.75

2005 Connie et al.
[2] WFDA Private 150 900 3 Imgs/sub for training,

remaining 3 Imgs/sub for testing 98.64

2007 Hu et al. [51] 2DLPP PolyU 100 600 First session for training, second
session for testing 84.67

2008
Pan and

Ruan [52] I2DLPPG
Private-1 40 400 5 Imgs/sub for training (Rand),

remaining for testing 99.50

Private-2 346 1730 5-fold cross-validation 95.77

2011 Lu and Tan
[53] W2D−DLPP PolyU 100 600

4 Imgs/sub for training (Rand,
20 iterations), remaining for

testing
94.90

2018
Rida et al.

[54] SR
PolyU-MS 500 6000 4 Imgs/sub for training,

remaining for testing (Rand,
10 iterations)

99.24

PolyU 374 3740 99.87

2019
Rida et al.

[55] RSM

PolyU 374 3740
First 4 Imgs/sub for training,

remaining for testing

99.96

PolyU-MS 500 6000 99.15

Private 400 8000 94.50

2021 Wan et al.
[56] SF2DDLPP PolyU 100 600 50% for training (Rand), 50% for

testing 95.18
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Table 4. Cont.

Year Paper Method
Used Datasets

Evaluation Protocol Acc. (%)
Name #IDs. #Imgs.

2022
Zhao et al.

[57] DC_MDPR

IITD 460 2601

4 Imgs/sub for training,
remaining for testing (Rand,

10 iterations)

98.43

GPDS 100 1000 98.93

CASIA 624 5500 99.11

TJI 600 12,000 99.44

PV_790 418 4180 99.76

2023 Wan et al.
[58] LR-2DLDGE PolyU 100 600 50% for training (Rand,

10 iterations), 50% for testing 93.87

7.3. Local Direction Encoding-Based Approaches

Methods based on local orientation coding focus on extracting and encoding the
prevailing orientation information inherent in each pixel of a palmprint image. These
methods differ from conventional techniques by focusing on the underlying directional
characteristics of the ridge patterns, capturing the nuanced variations in orientation that
contribute to the uniqueness of each palmprint. By extracting dominant directions at a
local level, these methods reveal the intricate minutiae of the palm surface, going beyond
traditional ridge-based representations. This wealth of directional information is then dis-
tilled into compact and informative bitwise codes, creating a powerful and discriminative
coding scheme. These techniques effectively balance the precision of directional cues with
the efficiency of compact coding, resulting in improved recognition performance. In the
landscape of biometric authentication, these methods carve out a distinctive niche, offering
a fusion of geometric understanding and efficient data representation that contributes to
the development of accurate and reliable identity verification systems.

Kumar and Shen (2004) [59] proposed a palmprint recognition method based on
real Gabor function (RGF) filtering. The process starts by normalizing palmprint images.
Subsequently, these normalized images are subjected to multi-channel filtering using a set
of RGF filters. Distinctive features, referred to as PalmCode, are computed within multiple
overlapping concentric bands using each of these filtered images.

Kong et al. (2006) [60] proposed a feature-level coding method for palmprint recogni-
tion. First, palmprint image features are extracted utilizing a bank of elliptic Gabor filters.
Then, a feature-level fusion technique is offered to create a single feature known as the
fusion code. The normalized Hamming distance between two fusion codes is then used to
determine their similarity. Finally, a dynamic threshold is applied for final judgments.

Mansoor et al. [61] proposed a multi-scale feature encoding strategy fusing contourlet
transforms (CTs) and non-subsampled contourlet transforms (NSCTs) for palmprint recog-
nition. This method aims to jointly capture localized texture details alongside global
features within palmprint imagery, representing them as a compact and fixed-length palm
code. The iterated directional filter banks are introduced to divide the two-dimensional
spectrum into small slices. The feature vector is then formed by computing the block-wise
directional energy in the transform domains. Finally, for matching, normalized Euclidean
distances between vectorial codes quantify palmprint identity similarity.

Zhang et al. (2012) [62] proposed a novel approach for palmprint identification based
on local direction encoding. Specifically, the authors augment native BOCV descriptors
with additional “fragile bits” constituting noise-sensitive activations to derive extended
BOCV (E-BOCV). A consolidated similarity metric was obtained by synergizing fragile
pattern distance (FPD) with Hamming distances to capture the mismatches between two
code maps.
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Zhang and Gu (2013) [63] suggested employing a weighted fusion scheme integrating
two-phase test sample sparse representation (TPTSR) with competitive coding methods
for palmprint identification. First, a competitive coding algorithm is employed to obtain
the directional matching score of two images. Thereafter, TPTSR is computed globally to
match the score of the two images. Finally, the two scores are added together to categorize
the test sample.

Li et al. (2014) [64] presented directed representations (DRs) for palmprint identifi-
cation. First, a representation is proposed for an appearance-based technique based on
multiple anisotropic filters. Subsequently, the feature extraction and the dimension reduc-
tion are guaranteed using the PCA technique. Finally, a compressed sensing classification
step is implemented to distinguish between palms of different hands.

Fei et al. (2016) [65] presented a robust palmprint recognition method, the double-
orientation code (DOC) approach. This technique offers a reliable way to represent palm-
print orientation features, as shown through an investigation of palmprint orientation-based
coding theory. They also introduced a novel nonlinear angular matching score metric for
efficient similarity assessment between DOC-encoded palmprints, boosting the overall
effectiveness of the technique in palmprint identification.

Xu et al. (2016) [66] introduced a palmprint identification technique called discrimina-
tive and robust competitive code (DRCC), which emphasizes discriminative and robust
techniques based on dominant orientation. Their approach combines dominant orienta-
tion and lateral codes to capture important orientation features in palmprints. Strategic
weighting during orientation extraction improves accuracy while using the same Gabor
filters as the conventional method. This innovation holds promise for accurate and efficient
palmprint orientation extraction.

Almaghtuf et al. (2020) [67] proposed a palmprint coding technique known as differ-
ence of block means (DBM). To derive the palmprint code, they followed the recommended
approach: First, they computed the difference between overlapping block means of identi-
cal size within the interest area of the palmprint to extract palm-related information in both
the vertical and horizontal directions. Then, vertical and horizontal codes were generated
by applying thresholding to the DBM features. Finally, the Hamming distance, which is the
average of the vertical and horizontal distances, was used for the matching step.

Liang et al. (2020) [68] developed a multi-feature palmprint recognition framework
predicated on modeling orientation field patterns termed histograms of line mixed distances
(HODlm) alongside histograms of response distances (HODr). Subsequently, the multi-
feature two-phase sparse representation (MTPSR) was designed to improve the overall
matching cost and to allow the handling of palmprint feature recognition.

Table 5 furnishes an overview of the studies discussed in this subsection, outlining
the employed feature extraction methodologies, datasets, experimental protocols, and key
findings.

Table 5. A comparative overview of local direction encoding-based approaches (#ID: number of
identities, #Imgs: number of images, Acc: valid accuracy).

Year Paper Method
Used Datasets

Evaluation Protocol Acc. (%)
Name #IDs. #Imgs.

2004 Kumar and
Shen [59] PalmCode Private 40 800 1 Img/sub for training, remaining

for testing (both palms) 98.00

2006 Kong et al. [60] Fusion Code Private 488 9599 First session for training, second
session for testing 98.26

2011
Mansoor et al.

[61] CT + NSCT

PolyU 386 7752 5 Imgs/sub for training,
remaining 3 for testing 88.91

GPDS 50 500 3 Imgs/sub for training,
remaining 7 for testing 98.20
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Table 5. Cont.

Year Paper Method
Used Datasets

Evaluation Protocol Acc. (%)
Name #IDs. #Imgs.

2012
Zhang et al.

[62] E-BOCV PolyU 384 7752
First session for training, second

session for testing EER = 0.03

2013 Zhang and Gu
[63]

Competitive
Coding +
TPTSR

PolyU-MS 500 6000 First 3 Imgs/sub for training,
remaining 6 Imgs/sub for testing 98.00

2014 Li et al. [64] DR + PCA PolyU 100 600 First 3 Imgs/sub for training,
remaining for testing 97.00

2016 Fei et al. [65] DOC

PolyU 374 3740
First 2 Imgs/sub for training,

remaining for testing

99.27

PolyU-MS 500 6000 98.60

IITD 460 2300 78.70

2016 Xu et al. [66] DRCC

PolyU 386 7752
First 2 Imgs/sub for training,

remaining for testing

98.79

PolyU-MS 500 6000 98.67

IITD 460 2600 81.38

2020
Almaghtuf
et al. [67] DBM

PolyU 386 7752
First 3 Imgs/sub for training,

remaining 3 for testing

100.00

PolyU-MS 500 6000 100.00

IITD 230 3220 95.40

CASIA 624 5502 First 2 Imgs/sub for training,
remaining 2 for testing 93.90

2020 Liang et al. [68] MTPSR

PolyU 386 7752
First 4 Imgs/sub for training,

remaining for testing

99.58

GPDS 100 1000 96.83

IITD 460 2601 97.11

7.4. Texture-Based Approaches

Texture-based methods take advantage of the intricate and diverse local features
present in palmprint patterns. By exploiting these rich textural features, these methods aim
to achieve higher accuracy and reliability in the identification process. Unlike traditional
methods that rely solely on global features, texture-based techniques delve into the fine-
grained details of the palm surface, capturing an array of minutiae such as ridges, wrinkles,
and pores. This meticulous analysis enables the creation of comprehensive and distinctive
palmprint templates that facilitate robust and discriminative recognition. As a result, these
methods are the cornerstone of biometric authentication systems, where the intricate texture
patterns of an individual’s palm provide a wealth of information for secure and accurate
identity verification.

Hammami et al. (2014) [69] employed a technique involving the division of the
complete palmprint image into smaller sub-regions. Within each of these sub-regions, they
applied the local binary pattern (LBP) operator to capture the texture characteristics. To
enhance recognition efficiency and minimize memory consumption, they introduced a
selection process, which retained only the most distinctive areas for the identification task.
The sequential forward floating selection (SFFS) algorithm was the basic method employed
for this purpose.

Raghavendra and Busch (2015) [70] introduced an innovative and straightforward
method for palmprint inspection, exploiting the distributed feature representation extracted
from the bank of binarized statistical image features (B-BSIF). The BSIF specifically func-
tions as a texture descriptor akin to the LBP, but its distinctiveness lies in its approach to
acquiring filters. Unlike the LBP, which manually defines filters, BSIF filters are learned
from real images.
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Tamrakar and Khanna (2016) [71] introduced a palmprint recognition approach. Ini-
tially, the region of interest (ROI) is obtained from palmprint images. Subsequently, to
mitigate computational costs and noise, first-level decomposition is performed on the ROI
by employing the Haar wavelet. Combining this image with its block-wise histograms,
which statistically summarize local variations, yields a comprehensive descriptor called
the block-wise Gaussian derivative phase pattern histogram (BGDPPH). Having extracted
robust features, kernel discriminant analysis (KDA) is applied to refine their discriminative
power. Finally, the Euclidean distance is used for classification.

Doghmane et al. (2018) [72] proposed a local palmprint feature descriptor based on
the Gabor wavelet, a local phase quantization (LPQ) descriptor and a spatial pyramid
histogram (SPH) descriptor for palmprint image extraction. First, the Gabor wavelet and
the LPQ are used to recover invariant blur for multiscale and multi-orientation features.
The SPH is then employed for vertical decomposition to concatenate a group of local
features into a large histogram called the Gabor LPQ special pyramid histogram (GLSPH)
feature for each image. The GLSPH features are then projected into a whitened linear
discriminant analysis (WLDA) subspace to reduce their dimensions and make them further
discriminative, resulting in the DGLSPH feature. Ultimately, to deal with classification, the
K-nearest neighbor (K-NN) classifier is employed in this context.

Zhang et al. (2018) [73] introduced an innovative approach to palmprint recogni-
tion that involves a two-stage process using a combination of weighted adaptive center
symmetric local binary pattern (WACS-LBP) and weighted sparse representation-based
classification (WSRC). Their methodology first implements WACS-LBP in an initial labeling
stage to assign the test sample a limited set of feasible class labels. WSRC is then employed
in the ensuing identification phase to determine the final class membership from this
reduced label set. Core to their approach is the strategic conversion of the intrinsically
complex complete classification problem into a more tractable task through substantial
reduction of the number of output classes under consideration at each phase.

El-Tahrouni et al. (2019) [74] proposed a multispectral palmprint identification method
that incorporates Pascal coefficient multispectral local binary pattern (PCMLBP) and pyra-
mid histogram orientation gradient (PHOG) descriptors. They performed two experimental
procedures. In the first procedure, only the PCMLBP descriptor was used for feature ex-
traction. In the second procedure, PCMLBP was combined with PHOG, resulting in an
improved recognition rate. PCA was then used to reduce the dimensionality of the fea-
ture vectors. Finally, random sample linear discriminant analysis (LDA) was utilized
for classification.

Attallah et al. (2019) [75] introduced a palmprint identification approach that involves
merging spiral features with LBP filters and selecting the optimal features using minimum
redundancy maximum relevance (mRMR). This process starts by partitioning the palmprint
image into smaller blocks, akin to meticulously examining individual pieces of a mosaic.
Within each block, the researchers delve deeper, analyzing two crucial statistical descriptors:
skewness and kurtosis. The Hamming distance is then applied to compute both inter-
similarities between different blocks within the same palmprint and intra-similarities
between corresponding blocks across different palmprints.

Chaudhary and Srivastava (2020) [76] proposed an approach for feature extraction
in palmprint identification known as two-dimensional cochlear transform (2DCT). This
method was designed to efficiently capture distinctive palmprint features. To validate the
efficacy of the method, the authors performed comprehensive analyses, including both
theoretical and empirical assessments. The theoretical evaluation involved demonstrating
the orthogonality properties of the transform, whereas the empirical evaluation considered
its performance under various challenging conditions. For the classification step, they
adopted the k-nearest neighbors (KNN) algorithm, using the Euclidean distance metric for
similarity assessment.

Zhang et al. (2020) [77] proposed a contactless palmprint identification and recognition
technique integrating hierarchical multi-scale complete local binary patterns (HMS-CLBPs)
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for scale-invariant texture encoding with weighted sparse representation-based classifi-
cation (WSRC) for pattern matching. Local texture descriptors are first extracted over
multi-scale domains to capture fine and coarse palmprint texture. The descriptors are
weighted, vectorized, and augmented to construct a highly overcomplete dictionary of
training sets. Following the creation of the dictionary, it is utilized to find a sparse represen-
tation of the test sample, yielding the sparse coefficients corresponding to each dictionary
atom. Palmprint image recognition is then performed by computing the reconstruction
residuals between the test sample and its synthesized approximation under each class-
specific sub-dictionary.

Amrouni et al. (2022) [78] introduced a feature extraction approach called multires-
olution analysis. First, they applied the discrete wavelet transform (DWT) to an original
palmprint image. This application facilitated the creation of multiple image representa-
tions, known as sub-bands, each with different resolutions. In addition, they utilized the
local texture descriptor known as binarized statistical image features (BSIF) and applied it
not only to the original image but also to the sub-bands produced by the DWT at lower
resolutions. The resulting histograms from each of these levels were then merged to form a
final feature vector.

Table 6 provides a summary of the studies discussed in this subsection, presenting the
feature extraction methods used, the datasets employed, the experimental protocols, and
the key findings.

Table 6. A comparative overview of texture-based approaches (#ID: number of identities, #Imgs:
number of images, Acc: valid accuracy).

Year Paper Method
Used Datasets

Evaluation Protocol Acc. (%)
Name #IDs. #Imgs.

2014
Hammami
et al. [69] LBP + SFFS

CASIA 564 4512 5 Imgs/sub for training, remaining
3 Imgs/sub for testing (Rand) 97.53

PolyU 386 7752 First session for training, second
session for testing 95.35

2015
Raghavendra

and Busch
[70]

B-BSIF

PolyU 352 7040 Fist 10 Imgs/sub for training,
remaining 10 Imgs/sub for testing EER = 4.06

IITD 470 2350
4 Imgs/sub for training, remaining

1 Img/sub for testing (Rand,
10 iteration)

EER = 0.42

PolyU-MS 500 6000 First session for training, second
session for testing EER = 0.00

2016
Tamrakar

and Khanna
[71]

BGDPPH +
KDA

PolyU 400 8000 4-fold cross-validation 99.98

CASIA 624 5335

3-fold cross-validation

99.22

IITD 430 2400 99.19

IIITDMJ 150 900 100.00

PolyU-MS 500 6000
2-fold cross-validation

100.00

CASIA-MS 200 1200 98.99

2018
Doghmane
et al. [72] DGLSPH

PolyU 386 7752

First 3 Imgs/sub for training,
remaining for testing

99.95

PolyU
2D/3D 400 8000 99.95

IITD 460 2601 99.57
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Table 6. Cont.

Year Paper Method
Used Datasets

Evaluation Protocol Acc. (%)
Name #IDs. #Imgs.

2018
Zhang et al.

[73]
WACS-LBP +

WSRC

PolyU 386 7752 First 10 Imgs/sub for training,
remaining 10 Imgs/sub for testing 99.14

CASIA 624 5502 7 Imgs/sub for training, remaining
for testing (50 Rand iterations) 98.06

2019 El-Tarhouni
et al. [74]

PCMLBP +
PHOG PolyU 500 6000 First session for training, second

session for testing 99.34

2019
Attallah et al.

[75]

LBP + Spiral
features +

mRMR

PolyU 352 7040 First session for training, second
session for testing ≈97.00

IITD 470 2350 4 Imgs/sub for training, remaining
for testing ≈98.00

PolyU-MS 500 6000 First session for training, second
session for testing ≈99.00

2020

Chaudhary
and

Srivastava
[76]

2DCT

IITD 200 1200
50% for training (first Imgs),

50% for testing

97.85

CASIA 312 2496 98.66

PolyU 386 7752 99.80

2020
Zhang et al.

[77]
HMS-CLBP +

WSRC

PolyU 386 7752 5-fold cross-validation
(50 iterations)

99.68

CASIA 312 5335 97.13

2022
Amrouni
et al. [78] BSIF + DWT

IITD 460 2601 First 3 Imgs/sub for training,
remaining for testing 98.77

CASIA 624 4992 First 4 Imgs/sub for training,
remaining for testing 98.10

7.5. Deep Learning-Based Approaches

In this category, the methods frequently employed convolutional neural networks
(CNNs). These networks comprise convolutional layers, pooling layers, and fully connected
layers, allowing for simultaneous feature extraction and classification [79,80].

Izadpanahkakhk et al. (2018) [81] proposed a system consisting of three main modules.
(i) The Region of Interest Extraction Module (REM) is responsible for extracting palmprint
ROIs using a bounding box approach. First, the input images are subjected to a preprocess-
ing step. Then, a transfer learning technique using CNNs is applied to identify the optimal
placement of bounding boxes on the palmprint images. This module extracts regions
of interest (ROIs) from the palmprint, which serve as input for the subsequent feature
extraction module. (ii) In the Feature extraction module (FEM), features are represented
using a pre-trained CNN architecture. It applies the learned representations to extract
discriminative features from the palmprint ROIs. (iii) The matching module (MM) takes
the feature vector generated in the previous step as input and uses a machine learning
classifier to perform the recognition task.

Matkowski et al. (2019) [18] developed an end-to-end deep learning approach named
the end-to-end palmprint recognition network (EE-PRnet). This network comprises two
fundamental components: ROI localization and alignment network (ROI-LAnet) and fea-
ture extraction and recognition network (FERnet). ROI-LAnet is tasked with transforming
all input palmprint images into a consistent coordinate system and delineating the ROI
containing distinguishing structural information. ROI-LAnet comprises two segments: the
first is a pre-trained VGG-16 network with its top layers removed, and the second is a fully
connected regression network. FERnet is tasked with extracting and recognizing palmprint
features. This network is a self-contained CNN based on a modified VGG-16 architecture.

Chai et al. (2019) [30] proposed the use of two separate comprehensive CNN systems,
named PalmNet and GenderNet. These networks were thoroughly trained to excel in
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two tasks: palmprint recognition and gender categorization, respectively. Their ground-
breaking study not only demonstrated unprecedented performance in biometric recognition
but also needed to validate the notion that integrating gender information could improve
the accuracy of palmprint identification. To further test this concept, they created two Boost
CNN networks, BoostNet-Sequential and BoostNet-Parallel, with the goal of combining
the strengths of palmprint recognition and gender categorization.

Genovese et al. (2019) [82] presented PalmNet, an innovative CNN architecture. In
particular, their unsupervised training eliminates the need for class labels. They also
proposed a novel Gabor-based technique that uses PCA to refine adaptive filters within the
CNN, thereby improving its specificity for palmprint recognition.

Zhao and Zhang (2020) [83] presented a novel approach to improve multi-scenario
palmprint recognition using a versatile framework. It uses deep convolutional networks
(DC-NNs), termed deep discriminative representation (DDR), to learn effective features.
These features work well for palmprint recognition under various conditions. The key
innovation is to train DC-NNs to extract discriminative features from palmprints that
include global abstract and local compact attributes. This framework remains effective even
with limited training data, providing a new avenue for advancing palmprint recognition in
diverse scenarios.

Liu and Kumar (2020) [24] presented a robust and versatile deep learning framework
for contactless palmprint identification. Their approach uses a fully convolutional network
to generate complex residual features (RFNs), which imsproves accuracy and generaliz-
ability. A distinctive feature is the utilization of a soft-shifted triplet loss function, which
enhances the learning of discriminating the features of palmprints. Additionally, they
incorporated a contactless palm detector, customized and trained utilizing the prompter
CNN model, for effective detection of palmprint regions across diverse backgrounds.

Liu et al. (2021) [84] introduced an end-to-end deep hashing network tailored for
few-shot contactless palmprint identification, termed the similarity metric hashing network
(SMHNet). Their framework integrates a structural similarity index (SSIM) module to elicit
multi-scale representations encoding both holistic topology and localized texture details. A
composite SSIM loss function alongside distance metrics supervises the training process for
enhanced inter-class separability. Additionally, a hashing unit learns binary compact codes
optimized for efficient storage and fast retrieval demonstrated significant improvement in
few-shot recognition of palmprints.

Shen et al. (2022) [41] introduced a progressive target distribution loss (PTD Loss)
function, which is tailored to minimize the gap between positive cross-device sample
affinities and negative within-device sample relations. Additionally, the authors established
a new cross-device palmprint identification dataset compositing color images sourced from
multiple capture platforms.

Shao and Zhong (2022) [85] developed a deep metric learning paradigm designed for
open-set contactless palmprint identification termed weight-based meta-metric learning
(W2ML). Their framework strategically partitions the dataset into training and testing
subsets without overlap between the two phases. The training set is further divided into
multiple tasks, each comprising a support set for representation learning and a query set for
few-shot generalization assessment akin to meta-learning by aggregating support sets from
the task-specific subspaces into consolidated positive and negative meta-sets. The model
is then trained using set-based distances between them. Additionally, hard prototype
mining and weighting further enhances discrimination by identifying and prioritizing the
most informative samples within each meta-set (from positive and negative). Extensive
experiments demonstrated significant gains over conventional approaches, constituting a
vital step towards palmprint identification systems.

Türk et al. (2023) [86] devised a hybrid palmprint recognition framework fusing
deep learning and classical machine learning methodologies. Their processing pipeline
starts with multiple preprocessing interventions encompassing boundary delineation,
binarization, finger exclusion, edge contour extraction, noise filtering, and image thinning
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to maximize distinctive friction ridge information. The second step focuses on extracting
the ROI for palmprint images. Thereafter, a CNN feature extractor learns hierarchical
representations encoding both textural and topological traits. Finally, the CNN embeddings
are classified using CNN classifier gathering with support vector machine (SVM) classifiers
for gallery identity prototypes for palmprint identification.

Table 7 provides a summary of the studies discussed in this subsection, presenting the
feature extraction methods used, the datasets employed, the experimental protocols, and
the key findings.

Table 7. A comparative overview of deep learning-based approaches (#ID: number of identities,
#Imgs: number of images, Acc: valid accuracy).

Year Paper Method
Used Datasets

Evaluation Protocol Acc. (%)
Name #IDs. #Imgs.

2018
Izadpanahkakhk

et al. [81] Fast CNN

PolyU 386 7752
First 4 Imgs/sub for training,

remaining for testing

99.40

Private 354 3540 98.30

IITD 460 2600 94.70

2019
Matkowski et al.

[18] EE-PRnet

CASIA 618 5502 First 4 Imgs/sub for training,
remaining for testing

97.65

IITD 460 2601 99.61

PolyU 177 1770
50% for training, 50% for testing

(Rand)

99.77

NTU-CP-v1 655 2478 95.34

NTU-PI-v1 2035 7881 41.92

2019 Chai et al. [30] PalmNet +
GenderNet

PolyU2D/3D 177 1770

50% for training, 50% for testing

98.98

IITD 460 2601 99.01

TJI 600 12000 99.50

CASIA 620 5502 99.18

BJTU_PalmV1 347 2431 100.00

BJTU_PalmV2 296 2663 95.16

2019
Genovese et al.

[82]
PalmNet-

GaborPCA

CASIA 624 5455

2-fold cross-validation,
5 permutations (Rand)

99.77

IITD 467 2669 99.37

REST 358 1937 97.16

TJI 600 5182 99.83

2020
Zhao and Zhang

[83] DDR

CASIA 624 5500
4 Imgs/sub for training,

remaining for testing (Rand,
5 iterations)

99.41

IITD 460 2600 98.70

PolyU-MS 500 6000 99.95

2020 Liu and Kumar
[24] RFN IITD 230 1150 5 left Imgs for training, 5 right

Imgs for testing 99.20

2021 Liu et al. [84] SMHNet

PolyU-MS 500 6000

5-way 1-shot recognition

98.94

XJTU-UP N/A N/A 89.73

TJI 600 12,000 97.36
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Table 7. Cont.

Year Paper Method
Used Datasets

Evaluation Protocol Acc. (%)
Name #IDs. #Imgs.

2022 Shen et al. [41] ArcPalm-
IR50 + PTD

CASIA 624 5502

5-fold cross-validation (4/5 for
training, 1/5 for testing)

99.85

IITD 460 2601 100.00

PolyU 114 1140 100.00

TJI 600 12,000 100.00

MPD 400 16,000 99.78

CrossDevice-A 310 18,600 99.19

CrossDevice-B 200 6000 71.20

2022
Shao and Zhong

[85] W2ML

XJTU-UP 200 2000

50% for training (first half),
50% for testing

91.63

TJI 600 12,000 93.39

MPD 400 16,000 71.74

IITD 460 2600 94.02

2023 Türk et al. [86]
CNN deep
features +

SVM
PolyU 386 7752 Monte Carlo cross-validation

(5 iterations) 99.72

7.6. Comparative Analysis

In this subsection, a comprehensive overview of the strengths and weaknesses of
various palmprint identification and recognition methods, including line-based, subspace
learning-based, local direction encoding-based, texture descriptor-based, and deep learning-
based approaches, was presented. A summary of the methods discussed in the previous
subsections is presented in Table 8. The comparative analysis between the five approaches
indicates that many approaches demonstrate satisfactory performance with simple and con-
trolled datasets. However, significant disparities in both performance and computational
cost arise when dealing with large-scale and unconstrained datasets due to the challenges
posed by diverse environmental conditions.

Table 8. A comparative summary among various palmprint recognition approaches.

Strengths Weakness

Line-based methods
These methods demonstrate the ability to
acquire data-driven representations and

exhibit strong discriminative abilities.

It is essential that the training data
represent the classes under consideration

comprehensively and accurately.

Subspace learning-based methods

High descriptive capabilities coupled
with a low computational cost

characterize the efficiency of these
methods.

The sensitivity to the size of the subspace
is a significant challenge that requires

careful consideration in its application.

Local direction encoding-based methods
These methods have a high

discriminatory capability and stable
characteristics.

They require significant computing
resources and contribute to high

computational costs.

Texture based-methods

Characteristics can be extracted from
lower-resolution images, and these

techniques exhibit consistent and stable
characteristics.

They are highly susceptible to noise
interference.

Deep learning-based methods
These methods demonstrate exceptional

robustness when applied to large and
complex datasets.

They require a significant amount of
training data and incur high

computational costs.
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In summary, there is a compelling opportunity to develop novel and real-time models
specifically tailored to unconstrained palmprint recognition. Such advancements are
essential to enhance overall performance, achieve a certain level of maturity in the field,
and facilitate widespread commercial deployment.

8. Future Directions

Unlike more established biometric modalities, palmprint recognition is relatively
nascent, necessitating further scrutiny. Challenges and issues that are well explored in
facial and fingerprint recognition demand in-depth investigation in the context of palm-
print recognition. This section outlines critical research topics requiring comprehensive
exploration in future endeavors. Insights on emerging ideas are provided to guide and
inspire forthcoming research initiatives.

8.1. Enhancement of Palmprint Imagery through the Application of Generative
Adversarial Networks

The utilization of generative adversarial networks (GANs) [87–90] in the context of
palmprint recognition, specifically applied to tasks such as inpainting, enhancement, de-
blurring, recolorizing, and segmentation, represents a highly promising paradigm. The
inherent architecture of GANs, comprising a generator and a discriminator, proves in-
strumental in ameliorating palmprint images by proficiently generating authentic data to
address instances of missing or occluded information. This versatile application extends to
mitigating challenges associated with occlusions, blurring, diminished visual quality, and
noise, thereby augmenting the accuracy of palmprint biometric recognition.

It is noteworthy that the computational demands of GAN training are considerable,
necessitating meticulous optimization to facilitate real-time deployment. The multifaceted
integration of GANs in the palmprint recognition domain, encompassing diverse tasks,
presents a comprehensive strategy poised to be strategically leveraged in the imminent
future. This strategic utilization holds the potential to substantially enhance the resilience
and precision of palmprint recognition systems.

8.2. Enhancing Recognition Rates and Expediting Processing time through the Exploitation of Soft
Biometric Attributes

Soft biometrics denotes the utilization of non-intrusive and readily quantifiable at-
tributes for the purpose of biometric identification. Personal characteristics such as gender,
ethnicity, age, scars, marks, and tattoos exemplify instances of soft biometric traits [91–94].
Within the realm of palmprint biometrics, the integration of soft biometrics is posited to
augment recognition accuracy and diminish processing time, achieved through a judicious
reduction in dataset inquiries. Through the incorporation of these methodologies, it is
posited that a decrease in processing time and an increase in recognition accuracy can
be realized in the domain of palmprint biometrics, thereby enhancing the operational
efficiency and practical applicability of the system across diverse contexts.

8.3. Utilizing Three-Dimensional Representations to Mitigate Image Acquisition Challenges

Previous palmprint research has predominantly focused on two-dimensional (2D)
images, which are susceptible to environmental factors. Recognition methodologies, cate-
gorized into line, texture, subspace, and coding approaches, often compromise accuracy
due to the lack of depth information in 2D representations. To address this limitation,
three-dimensional (3D) palmprints offer promising biometric identification with qualities
of uniqueness, stability, and universality [95–98]. However, adopting 3D palmprints in-
troduces challenges in data volume and computational complexity. Sparse point clouds
from 3D sensors impact mesh resolution and identification performance. Prolonged pre-
processing time and compatibility issues with 3D recognition algorithms further complicate
matters. Advanced research is crucial for optimized 3D sensors, addressing time effi-
ciency and data volume challenges in palmprint-based recognition. Enhancing 3D sensor
capabilities is imperative for efficient and accurate palmprint recognition.
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8.4. Exploring Liveness Detection and Mitigating Vulnerability to Spoofing Attacks

Liveness detection and susceptibility to spoofing attacks are significant concerns in
palmprint biometrics. Despite the advantages of palmprint recognition, it is not immune to
deceptive practices, similar to other biometric modalities. Spoofing attacks, involving the
presentation of fake biometric data such as displayed or printed images, pose challenges to
verifying the authenticity of presented data, jeopardizing the privacy and security of palmprint
biometrics. Despite the issue’s importance, limited attention has been given to spoofing attacks
on palmprint biometrics, as evident from the sparse existing studies [99–102].

Addressing this gap is crucial and necessitates research in robust presentation attack
detection algorithms tailored to palmprint-based recognition systems. The lack of suitable
anti-spoofing databases compounds this challenge, underscoring the urgency to fortify the
security of palmprint recognition systems against adversarial activities.

9. Conclusions

This study furnishes an exhaustive survey of the palmprint biometrics literature, en-
compassing benchmark datasets, challenges and impediments, assessment metrics, and
predominant techniques. Specifically, a rigorous analysis and comparison of myriad ap-
proaches is conducted across five taxonomic categories of feature extraction methodologies.
Furthermore, a systematic classification of the diverse palmprint datasets employed for
algorithmic development and testing is provided alongside documented performances
of experimental results. Additionally, the study delineates outstanding challenges neces-
sitating immediate attention through further inquiry to advance automated palmprint
identification systems. Overall, via comprehensive aggregation and the juxtaposition of
factors, this taxonomic synthesis aims to edify discernment of comparative virtues and
limitations underlying contemporary methodologies. It is expected that this taxonomic
survey will serve as an inspiration for the research community and emerging scholars and
will encourage further advances in palmprint recognition.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kong, A.; Zhang, D.; Kamel, M. A Survey of Palmprint Recognition. Pattern Recognit. 2009, 42, 1408–1418. [CrossRef]
2. Connie, T.; Jin, A.T.B.; Ong, M.G.K.; Ling, D.N.C. An Automated Palmprint Recognition System. Image Vis. Comput. 2005, 23,

501–515. [CrossRef]
3. Zhong, D.; Du, X.; Zhong, K. Decade Progress of Palmprint Recognition: A Brief Survey. Neurocomputing 2019, 328, 16–28.

[CrossRef]
4. Trabelsi, S.; Samai, D.; Dornaika, F.; Benlamoudi, A.; Bensid, K.; Taleb-Ahmed, A. Efficient Palmprint Biometric Identification

Systems Using Deep Learning and Feature Selection Methods. Neural Comput. Appl. 2022, 34, 12119–12141. [CrossRef]
5. Zhang, D.; Zuo, W.; Yue, F. A Comparative Study of Palmprint Recognition Algorithms. ACM Comput. Surv. 2012, 44, 1–37.

[CrossRef]
6. Zhao, S.; Fei, L.; Wen, J. Multiview-Learning-Based Generic Palmprint Recognition: A Literature Review. Mathematics 2023, 11,

1261. [CrossRef]
7. Shu, W.; Zhang, D. Automated Personal Identification by Palmprint. Opt. Eng. 1998, 37, 2359–2362. [CrossRef]
8. Jia, W.; Huang, D.S.; Zhang, D. Palmprint Verification Based on Robust Line Orientation Code. Pattern Recognit. 2008, 41,

1504–1513. [CrossRef]
9. Zhang, D.; Kong, W.K.; You, J.; Wong, M. Online Palmprint Identification. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25,

1041–1050. [CrossRef]
10. Jain, A.K.; Feng, J. Latent Palmprint Matching. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 1032–1047. [CrossRef]
11. Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-Ahmed, A. Past, Present, and Future of Face Recognition: A Review. Electronics 2020,

9, 1188. [CrossRef]

https://doi.org/10.1016/j.patcog.2009.01.018
https://doi.org/10.1016/j.imavis.2005.01.002
https://doi.org/10.1016/j.neucom.2018.03.081
https://doi.org/10.1007/s00521-022-07098-4
https://doi.org/10.1145/2071389.2071391
https://doi.org/10.3390/math11051261
https://doi.org/10.1117/1.601756
https://doi.org/10.1016/j.patcog.2007.10.011
https://doi.org/10.1109/TPAMI.2003.1227981
https://doi.org/10.1109/TPAMI.2008.242
https://doi.org/10.3390/electronics9081188


Appl. Sci. 2024, 14, 153 31 of 34

12. Ross, A.; Banerjee, S.; Chen, C.; Chowdhury, A.; Mirjalili, V.; Sharma, R.; Yadav, S. Some Research Problems in Biometrics: The
Future Beckons. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; pp. 1–8.

13. Alausa, D.W.; Adetiba, E.; Badejo, J.A.; Davidson, I.E.; Obiyemi, O.; Buraimoh, E.; Oshin, O. Contactless Palmprint Recognition
System: A Survey. IEEE Access 2022, 10, 132483–132505. [CrossRef]

14. Zhang, L.; Li, L.; Yang, A.; Shen, Y.; Yang, M. Towards Contactless Palmprint Recognition: A Novel Device, a New Benchmark,
and a Collaborative Representation Based Identification Approach. Pattern Recognit. 2017, 69, 199–212. [CrossRef]

15. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary
Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

16. Kong, W.K.; Zhang, D.; Li, W. Palmprint Feature Extraction Using 2-D Gabor Filters. Pattern Recognit. 2003, 36, 2339–2347.
[CrossRef]

17. Laadjel, M.; Kurugollu, F.; Bouridane, A.; Boussakta, S. Degraded Partial Palmprint Recognition for Forensic Investigations.
In Proceedings of the 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009;
pp. 1513–1516.

18. Matkowski, W.M.; Chai, T.; Kong, A.W.K. Palmprint Recognition in Uncontrolled and Uncooperative Environment. IEEE Trans.
Inf. Forensics Secur. 2019, 15, 1601–1615. [CrossRef]

19. Wu, X.; Zhang, D.; Wang, K.; Huang, B. Palmprint Classification Using Principal Lines. Pattern Recognit. 2004, 37, 1987–1998.
[CrossRef]

20. Fei, L.; Lu, G.; Jia, W.; Teng, S.; Zhang, D. Feature Extraction Methods for Palmprint Recognition: A Survey and Evaluation. IEEE
Trans. Syst. Man Cybern. Syst. 2018, 49, 346–363. [CrossRef]

21. Fei, L.; Zhang, B.; Zhang, W.; Teng, S. Local Apparent and Latent Direction Extraction for Palmprint Recognition. Inf. Sci. 2019,
473, 59–72. [CrossRef]

22. Xiao, Q.; Lu, J.; Jia, W.; Liu, X. Extracting Palmprint ROI from Whole Hand Image Using Straight Line Clusters. IEEE Access 2019,
7, 74327–74339. [CrossRef]

23. Leng, L.; Liu, G.; Li, M.; Khan, M.K.; Al-Khouri, A.M. Logical Conjunction of Triple-Perpendicular-Directional Translation
Residual for Contactless Palmprint Preprocessing. In Proceedings of the 11th International Conference on Information Technology:
New Generations, Las Vegas, NV, USA, 7–9 April 2014; pp. 523–528.

24. Liu, Y.; Kumar, A. Contactless Palmprint Identification Using Deeply Learned Residual Features. IEEE Trans. Biom. Behav. Identity
Sci. 2020, 2, 172–181. [CrossRef]

25. Ali, M.M.; Gaikwad, A.T. Multimodal Biometrics Enhancement Recognition System Based on Fusion of Fingerprint and Palmprint:
A Review. Glob. J. Comput. Sci. Technol. 2016, 16, 13–26.

26. Dai, J.; Feng, J.; Zhou, J. Robust and Efficient Ridge-Based Palmprint Matching. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34,
1618–1632.

27. Benzaoui, A.; Khaldi, Y.; Bouaouina, R.; Amrouni, N.; Alshazly, H.; Ouahabi, A. A Comprehensive Survey on Ear Recognition:
Databases, Approaches, Comparative Analysis, and Open Challenges. Neurocomputing. Neurocomputing 2023, 537, 236–270.
[CrossRef]

28. Zhang, D.; Guo, Z.; Lu, G.; Zhang, L.; Zuo, W. An Online System of Multispectral Palmprint Verification. IEEE Trans. Instrum.
Meas. 2009, 59, 480–490. [CrossRef]

29. Tamrakar, D.; Khanna, P. Occlusion Invariant Palmprint Recognition with ULBP Histograms. Procedia Comput. Sci. 2015, 54,
491–500. [CrossRef]

30. Chai, T.; Prasad, S.; Wang, S. Boosting Palmprint Identification with Gender Information Using DeepNet. Future Gener. Comput.
Syst. 2019, 99, 41–53. [CrossRef]

31. Zhao, S.; Zhang, B. Learning Salient and Discriminative Descriptor for Palmprint Feature Extraction and Identification. IEEE
Trans. Neural Netw. Learn. Syst. 2020, 31, 5219–5230. [CrossRef]

32. COEP Palmprint Database. Available online: https://www.coep.org.in/resources/coeppalmprintdatabase (accessed on 8
November 2023).

33. Sun, Z.; Tan, T.; Wang, Y.; Li, S.Z. Ordinal Palmprint Representation for Personal Identification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005.

34. Hao, Y.; Sun, Z.; Tan, T. Comparative Studies on Multispectral Palm Image Fusion for Biometrics. In Asian Conference on Computer
Vision; Springer: Berlin/Heidelberg, Germany, 2007; pp. 12–21.

35. Kumar, A. Incorporating Cohort Information for Reliable Palmprint Authentication. In Proceedings of the 6th Indian Conference
on Computer Vision, Graphics & Image Processing, Bhubaneswar, India, 16–19 December 2008; pp. 583–590.

36. GPDS Palmprint Image Database. Available online: https://gpds.ulpgc.es/ (accessed on 8 November 2023).
37. Jia, W.; Hu, R.X.; Gui, J.; Zhao, Y.; Ren, X.M. Palmprint Recognition across Different Devices. Sensors 2012, 12, 7938–7964.

[CrossRef]
38. Charfi, N.; Trichili, H.; Alimi, A.M.; Solaiman, B. Local Invariant Representation for Multi-Instance Touchless Palmprint

Identification. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary,
9–12 October 2016; pp. 003522–003527.

39. Zhang, Y.; Zhang, L.; Zhang, R.; Li, S.; Li, J.; Huang, F. Towards Palmprint Verification on Smartphones. arXiv 2020,
arXiv:2003.13266.

https://doi.org/10.1109/ACCESS.2022.3193382
https://doi.org/10.1016/j.patcog.2017.04.016
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1016/S0031-3203(03)00121-3
https://doi.org/10.1109/TIFS.2019.2945183
https://doi.org/10.1016/j.patcog.2004.02.015
https://doi.org/10.1109/TSMC.2018.2795609
https://doi.org/10.1016/j.ins.2018.09.032
https://doi.org/10.1109/ACCESS.2019.2918778
https://doi.org/10.1109/TBIOM.2020.2967073
https://doi.org/10.1016/j.neucom.2023.03.040
https://doi.org/10.1109/TIM.2009.2028772
https://doi.org/10.1016/j.procs.2015.06.056
https://doi.org/10.1016/j.future.2019.04.013
https://doi.org/10.1109/TNNLS.2020.2964799
https://www.coep.org.in/resources/coeppalmprintdatabase
https://gpds.ulpgc.es/
https://doi.org/10.3390/s120607938


Appl. Sci. 2024, 14, 153 32 of 34

40. Shao, H.; Zhong, D.; Du, X. Deep Distillation Hashing for Unconstrained Palmprint Recognition. IEEE Trans. Instrum. Meas. 2021,
70, 1–13. [CrossRef]

41. Shen, L.; Zhang, Y.; Zhao, K.; Zhang, R.; Shen, W. Distribution Alignment for Cross-Device Palmprint Recognition. Pattern
Recognit. 2022, 132, 108942. [CrossRef]

42. Hassanat, A.; Al-Awadi, M.; Btoush, E.; Al-Btoush, A.; Alhasanat, E.A.; Altarawneh, G. New Mobile Phone and Webcam Hand
Images Databases for Personal Authentication and Identification. Procedia Manuf. 2015, 3, 4060–4067. [CrossRef]

43. Li, W.; Zhang, D.; Xu, Z. Palmprint Identification by Fourier Transform. Int. J. Pattern Recognit. Artif. Intell. 2002, 16, 417–432.
[CrossRef]

44. Jia, W.; Ling, B.; Chau, K.W.; Heutte, L. Palmprint Identification Using Restricted Fusion. Appl. Math. Comput. 2008, 205, 927–934.
[CrossRef]

45. Jia, W.; Hu, R.X.; Lei, Y.K.; Zhao, Y.; Gui, J. Histogram of Oriented Lines for Palmprint Recognition. IEEE Trans. Syst. Man Cybern.
Syst. 2013, 44, 385–395. [CrossRef]

46. Luo, Y.T.; Zhao, L.Y.; Zhang, B.; Jia, W.; Xue, F.; Lu, J.T.; Xu, B.Q. Local Line Directional Pattern for Palmprint Recognition. Pattern
Recognit. 2016, 50, 26–44. [CrossRef]

47. Mokni, R.; Drira, H.; Kherallah, M. Combining Shape Analysis and Texture Pattern for Palmprint Identification. Multimed. Tools
Appl. 2017, 76, 23981–24008. [CrossRef]

48. Gumaei, A.; Sammouda, R.; Al-Salman, A.M.; Alsanad, A. An Effective Palmprint Recognition Approach for Visible and
Multispectral Sensor Images. Sensors 2018, 18, 1575. [CrossRef]

49. Zhou, K.; Zhou, X.; Yu, L.; Shen, L.; Yu, S. Double Biologically Inspired Transform Network for Robust Palmprint Recognition.
Neurocomputing 2019, 337, 24–45. [CrossRef]

50. Wu, X.; Zhang, D.; Wang, K. Fisherpals Based Palmprint Recognition. Pattern Recognit. Lett. 2003, 24, 2829–2838. [CrossRef]
51. Hu, D.; Feng, G.; Zhou, Z. Two-Dimensional Locality Preserving Projections (2DLPP) with Its Application to Palmprint Recogni-

tion. Pattern Recognit. 2007, 40, 339–342. [CrossRef]
52. Pan, X.; Ruan, Q.Q. Palmprint Recognition with Improved Two-Dimensional Locality Preserving Projections. Image Vis. Comput.

2008, 26, 1261–1268. [CrossRef]
53. Lu, J.; Tan, Y.P. Improved Discriminant Locality Preserving Projections for Face and Palmprint Recognition. Neurocomputing 2011,

74, 3760–3767. [CrossRef]
54. Rida, I.; Al-Maadeed, S.; Mahmood, A.; Bouridane, A.; Bakshi, S. Palmprint Identification Using an Ensemble of Sparse

Representations. IEEE Access 2018, 6, 3241–3248. [CrossRef]
55. Rida, I.; Herault, R.; Marcialis, G.L.; Gasso, G. Palmprint Recognition with an Efficient Data Driven Ensemble Classifier. Pattern

Recognit. Lett. 2019, 126, 21–30. [CrossRef]
56. Wan, M.; Chen, X.; Zhan, T.; Xu, C.; Yang, G.; Zhou, H. Sparse Fuzzy Two-Dimensional Discriminant Local Preserving Projection

(SF2DDLPP) for Robust Image Feature Extraction. Inf. Sci. 2021, 563, 1–15. [CrossRef]
57. Zhao, S.; Wu, J.; Fei, L.; Zhang, B.; Zhao, P. Double-Cohesion Learning Based Multiview and Discriminant Palmprint Recognition.

Inf. Fusion 2022, 83, 96–109. [CrossRef]
58. Wan, M.; Chen, X.; Zhan, T.; Yang, G.; Tan, H.; Zheng, H. Low-Rank 2D Local Discriminant Graph Embedding for Robust Image

Feature Extraction. Pattern Recognit. 2023, 133, 109034. [CrossRef]
59. Kumar, A.; Shen, H.C. Palmprint Identification Using Palmcodes. In Proceedings of the 3rd International Conference on Image

and Graphics (ICIG’04), Hong Kong, China, 18–20 December 2004; pp. 258–261.
60. Kong, A.; Zhang, D.; Kamel, M. Palmprint Identification Using Feature-Level Fusion. Pattern Recognit. 2006, 39, 478–487.

[CrossRef]
61. Mansoor, A.B.; Masood, H.; Mumtaz, M.; Khan, S.A. A Feature Level Multimodal Approach for Palmprint Identification Using

Directional Subband Energies. J. Netw. Comput. Appl. 2011, 34, 159–171. [CrossRef]
62. Zhang, L.; Li, H.; Niu, J. Fragile Bits in Palmprint Recognition. IEEE Signal Process. Lett. 2012, 19, 663–666. [CrossRef]
63. Zhang, S.; Gu, X. Palmprint Recognition Method Based on Score Level Fusion. Optik-Int. J. Light Electron Opt. 2013, 124, 3340–3344.

[CrossRef]
64. Li, H.; Zhang, J.; Wang, L. Robust Palmprint Identification Based on Directional Representations and Compressed Sensing.

Multimed. Tools Appl. 2014, 70, 2331–2345. [CrossRef]
65. Fei, L.; Xu, Y.; Tang, W.; Zhang, D. Double-Orientation Code and Nonlinear Matching Scheme for Palmprint Recognition. Pattern

Recognit. 2016, 49, 89–101. [CrossRef]
66. Xu, Y.; Fei, L.; Wen, J.; Zhang, D. Discriminative and Robust Competitive Code for Palmprint Recognition. IEEE Trans. Syst. Man

Cybern. Syst. 2016, 48, 232–241. [CrossRef]
67. Almaghtuf, J.; Khelifi, F.; Bouridane, A. Fast and Efficient Difference of Block Means Code for Palmprint Recognition. Mach. Vis.

Appl. 2020, 31, 1–10. [CrossRef]
68. Liang, L.; Chen, T.; Fei, L. Orientation Space Code and Multi-Feature Two-Phase Sparse Representation for Palmprint Recognition.

Int. J. Mach. Learn. Cybern. 2020, 11, 1453–1461. [CrossRef]
69. Hammami, M.; Ben Jemaa, S.; Ben-Abdallah, H. Selection of Discriminative Sub-Regions for Palmprint Recognition. Multimed.

Tools Appl. 2014, 68, 1023–1050. [CrossRef]

https://doi.org/10.1109/TIM.2021.3053991
https://doi.org/10.1016/j.patcog.2022.108942
https://doi.org/10.1016/j.promfg.2015.07.977
https://doi.org/10.1142/S0218001402001757
https://doi.org/10.1016/j.amc.2008.05.024
https://doi.org/10.1109/TSMC.2013.2258010
https://doi.org/10.1016/j.patcog.2015.08.025
https://doi.org/10.1007/s11042-016-4088-5
https://doi.org/10.3390/s18051575
https://doi.org/10.1016/j.neucom.2018.07.083
https://doi.org/10.1016/S0167-8655(03)00141-7
https://doi.org/10.1016/j.patcog.2006.06.022
https://doi.org/10.1016/j.imavis.2008.03.001
https://doi.org/10.1016/j.neucom.2011.06.024
https://doi.org/10.1109/ACCESS.2017.2787666
https://doi.org/10.1016/j.patrec.2018.04.033
https://doi.org/10.1016/j.ins.2021.02.006
https://doi.org/10.1016/j.inffus.2022.03.005
https://doi.org/10.1016/j.patcog.2022.109034
https://doi.org/10.1016/j.patcog.2005.08.014
https://doi.org/10.1016/j.jnca.2010.08.004
https://doi.org/10.1109/LSP.2012.2211589
https://doi.org/10.1016/j.ijleo.2012.10.048
https://doi.org/10.1007/s11042-012-1240-8
https://doi.org/10.1016/j.patcog.2015.08.001
https://doi.org/10.1109/TSMC.2016.2597291
https://doi.org/10.1007/s00138-020-01103-3
https://doi.org/10.1007/s13042-019-01049-7
https://doi.org/10.1007/s11042-012-1109-x


Appl. Sci. 2024, 14, 153 33 of 34

70. Raghavendra, R.; Busch, C. Texture Based Features for Robust Palmprint Recognition: A Comparative Study. EURASIP J. Inf.
Secur. 2015, 2015, 5. [CrossRef]

71. Tamrakar, D.; Khanna, P. Kernel Discriminant Analysis of Block-Wise Gaussian Derivative Phase Pattern Histogram for Palmprint
Recognition. J. Vis. Commun. Image Represent. 2016, 40, 432–448. [CrossRef]

72. Doghmane, H.; Bourouba, H.; Messaoudi, K.; Bouridane, A. Palmprint Recognition Based on Discriminant Multiscale Representa-
tion. J. Electron. Imaging 2018, 27, 053032. [CrossRef]

73. Zhang, S.; Wang, H.; Huang, W.; Zhang, C. Combining Modified LBP and Weighted SRC for Palmprint Recognition. Signal Image
Video Process. 2018, 12, 1035–1042. [CrossRef]

74. El-Tarhouni, W.; Boubchir, L.; Elbendak, M.; Bouridane, A. Multispectral Palmprint Recognition Using Pascal Coefficients-Based
LBP and PHOG Descriptors with Random Sampling. Neural Comput. Appl. 2019, 31, 593–603. [CrossRef]

75. Attallah, B.; Serir, A.; Chahir, Y. Feature Extraction in Palmprint Recognition Using Spiral of Moment Skewness and Kurtosis
Algorithm. Pattern Anal. Appl. 2019, 22, 1197–1205. [CrossRef]

76. Chaudhary, G.; Srivastava, S. A Robust 2D-Cochlear Transform-Based Palmprint Recognition. Soft Comput. 2020, 24, 2311–2328.
[CrossRef]

77. Zhang, S.; Wang, H.; Huang, W. Palmprint Identification Combining Hierarchical Multi-Scale Complete LBP and Weighted SRC.
Soft Comput. 2020, 24, 4041–4053. [CrossRef]

78. Amrouni, N.; Benzaoui, A.; Bouaouina, R.; Khaldi, Y.; Adjabi, I.; Bouglimina, O. Contactless Palmprint Recognition Using
Binarized Statistical Image Features-Based Multiresolution Analysis. Sensors 2022, 22, 9814. [CrossRef]

79. Harrou, F.; Dairi, A.; Zeroual, A.; Sun, Y. Forecasting of Bicycle and Pedestrian Traffic Using Flexible and Efficient Hybrid Deep
Learning Approach. Appl. Sci. 2022, 12, 4482. [CrossRef]

80. Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep Learning Methods for Forecasting COVID-19 Time-Series Data: A Comparative
Study. Chaos Solitons Fractals 2020, 140, 110121. [CrossRef]

81. Izadpanahkakhk, M.; Razavi, S.M.; Taghipour-Gorjikolaie, M.; Zahiri, S.H.; Uncini, A. Deep Region of Interest and Feature
Extraction Models for Palmprint Verification Using Convolutional Neural Networks Transfer Learning. Appl. Sci. 2018, 8, 1210.
[CrossRef]

82. Genovese, A.; Piuri, V.; Plataniotis, K.N.; Scotti, F. PalmNet: Gabor-PCA Convolutional Networks for Touchless Palmprint
Recognition. IEEE Trans. Inf. Forensics Secur. 2019, 14, 3160–3174. [CrossRef]

83. Zhao, S.; Zhang, B. Deep Discriminative Representation for Generic Palmprint Recognition. Pattern Recognit. 2020, 98, 107071.
[CrossRef]

84. Liu, C.; Zhong, D.; Shao, H. Few-Shot Palmprint Recognition Based on Similarity Metric Hashing Network. Neurocomputing 2021,
456, 540–549. [CrossRef]

85. Shao, H.; Zhong, D. Towards Open-Set Touchless Palmprint Recognition via Weight-Based Meta Metric Learning. Pattern Recognit.
2022, 121, 108247. [CrossRef]
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