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Abstract: A crucial area of study in data mining is outlier detection, particularly in the areas of
network security, credit card fraud detection, industrial flaw detection, etc. Existing outlier detection
algorithms, which can be divided into supervised methods, semi-supervised methods, and unsuper-
vised methods, suffer from missing labeled data, the curse of dimensionality, low interpretability, etc.
To address these issues, in this paper, we present an unsupervised outlier detection method based on
quantiles and skewness coefficients called ISOD (Interpretable Single dimension Outlier Detection).
ISOD first fulfils the empirical cumulative distribution function before computing the quantile and
skewness coefficients of each dimension. Finally, it outputs the outlier score. This paper’s contribu-
tions are as follows: (1) we propose an unsupervised outlier detection algorithm called ISOD, which
has high interpretability and scalability; (2) massive experiments on benchmark datasets demon-
strated the superior performance of the ISOD algorithm compared with state-of-the-art baselines in
terms of ROC and AP.
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1. Introduction

Outlier detection, sometimes referred to as novelty detection, is the process of finding
out what is different from normal data. According to Aggarwal, “outliers are also referred
to as abnormalities, discordants, deviants, or anomalies in the data mining and statistics
literature” [1].

Outlier detection has been an important field of research for industry and academia.
By identifying outliers, researchers can obtain vital knowledge that assists in making better
decisions or avoiding risks. So, outlier detection is widely used in many fields, such as
network intrusion detection [2–5], intelligent transportation [6–9], video content analysis
and detection [10–12], fraud detection [13–15], social media analysis [16–19], and data
generation [20,21].

Over the past few decades, many outlier detection algorithms have been pro-
posed [20,22–25]; depending on whether labeled data are utilized, they can be divided
into three main categories: (1) supervised methods, (2) semi-supervised methods, and
(3) unsupervised methods. We will provide more details on these methods in Section 2.

While these algorithms were shown to be effective in earlier applications, as the con-
cept of big data has become more prevalent and data have become more multidimensional,
they have increasingly become more problematic.

(1) Missing labeled data. Supervised algorithms require a large amount of labeled data
that, in many cases, are difficult to implement or require incurring high costs. This can lead
to unsatisfactory performance being demonstrated by these supervised algorithms.
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(2) Curse of Dimensionality. In the era of big data, the dimensionality of data is
increasing. The performance of supervised outlier detection algorithms, especially those
based on proximity, will decrease rapidly with the increasing data dimensionality.

(3) Interpretability. In practical applications of anomaly detection, such as credit
card fraud detection and medical imaging inspection for anomalies, we not only need to
be able to detect anomalous data but also need to make a reasonable explanation as to
why these data are anomalous. Due to the disparity in the distribution of outliers and
normal instances, the peculiarities of various detection algorithms, and the complexity of
data structures in particular applications, it might be challenging to explain abnormalities
in outliers.

To avoid the above shortcomings, this paper proposes a new outlier detection algo-
rithm based on quantiles and skewness coefficients: Interpretable Single dimension Outlier
Detection (abbreviated as ISOD). In this method, the empirical cumulative distribution
function of each sample’s dimension is first determined using data from that sample; the
skewness coefficient and quantile of the empirical cumulative distribution function are
then computed. Finally, the skewness coefficient is used as a weight to summarize the
anomaly score of that data point so that anomaly detection results can be obtained.

The rest of this paper is organized as follows: In Section 2, an overview of the current
anomaly detection algorithms is provided. In Section 3, the focus is on the proposed
algorithm (ISOD) and its analysis. In Section 4, the experiments we conduced and their
results are analyzed, and Section 5 concludes the article.

2. Related Works

In data mining, training data are used to train models, and test data are used to
measure performance. Based on the availability of labels, anomaly detection methods can
be classified into supervised, semi-supervised, and unsupervised methods.

2.1. Supervised Methods

The availability of a training dataset with labeled cases for both normal and anomalous
classes is assumed by supervised techniques. The training and testing datasets must then
be chosen to perform cross-validation. The training dataset is modeled using a supervised
learning technique. Creating a prediction model for normal vs. anomalous classes is a
common strategy in these situations. The model is then assessed using the testing dataset.

The representative supervised method is a classification-based anomaly detection
algorithm. A classifier is trained by using the labels in the training dataset so that it can
distinguish between normal and abnormal data. Once this classifier is trained, it can
accurately distinguish between normal data and abnormal data when facing new data.

Many algorithms exist for supervised anomaly detection in health monitoring [26], equip-
ment failure detection, system state monitoring, and other industrial applications [27–30].

A detailed description of these methods can be found in [22]. The merits of supervised
methods include the fact that they are (1) supervised, which means they are easy to use,
and (2) robust to different data types. However, their shortcomings are obvious. Namely,
(1) labeled data are difficult to obtain or require large costs to obtain, especially in industrial
and commercial applications; also, (2) the abnormal result finally obtained by the supervised
algorithm is binary, and the degree of abnormality cannot be further compared.

2.2. Semi-Supervised Methods

The main difference between semi-supervised anomaly detection algorithms and
supervised anomaly detection algorithms is that not all data are labeled. In other words, a
portion of the data has a label indicating whether it is normal data or abnormal data. But
other data are unlabeled. The typical technique used in semi-supervised methods is to
build a model for the class corresponding to normal behavior and use the model to identify
anomalies in the test data.
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A detailed description of these methods can be found in [22]. In semi-supervised
anomaly detection, class support vector machines and support vector data description are
widely used [31,32].

Such techniques may not always be widely used because, with their use, it is difficult
to obtain a dataset that covers all possible anomalies. Even if there is such a dataset, the
data will change over time, and abnormal data that have not appeared before may appear.
Therefore, when there are no historical anomaly data, unsupervised measures can be used
as a preliminary strategy for anomaly detection.

2.3. Unsupervised Methods

Unsupervised methods are the most extensively used methods since they do not need
labeled training data. Modeling the training dataset is carried out using an unsupervised
learning approach.

The underlying premise used by the strategies in this category is that regular cases
in the test data are significantly more common than abnormalities. If this presumption is
incorrect, the effectiveness of these methods will drop dramatically.

By employing a portion of the unlabeled dataset as training data, many semi-supervised
approaches may be modified to function in an unsupervised manner. This kind of adapta-
tion is predicated on the test data having relatively few abnormalities and the model to be
trained being resilient to those anomalies.

A detailed description of these methods can be found in [22]. Isolation Forest is a
representative for this type of method [33].

Some researchers have applied unsupervised anomaly detection for health testing [34]
and time-series anomaly detection [35]. A novel method based on mutual information and
reduced spectral clustering was developed in [36].

The advantage of this type of method is that it can perform anomaly detection without
label data, which means it is more suitable in most situations; its main disadvantages are
that the interpretability is relatively poor, and the decision process is less direct and more
obscure than supervised anomaly detection, especially when using artificial intelligence
technologies such as neural networks and deep learning.

2.4. Self-Supervised Methods

Self-supervised learning (SSL) is an AI-based method of training algorithmic models
on raw, unlabeled data. Using various methods and learning techniques, self-supervised
models create labels and annotations during the pre-training stage, aiming to iteratively
achieve an accurate ground truth so a model can go into production.

Some self-supervised methods have been developed for outlier detection [37–39]. A
detailed description of these methods can be found in [40].

Automating Feature Subspace Exploration, a preprocessing step in machine learning
for improving outlier detection, was developed in [41].

3. Proposed Algorithm
3.1. Preliminaries
3.1.1. Quantiles

A quantile defines a particular part of a dataset; i.e., a quantile determines how many
values in a distribution are above or below a certain limit. Special quantiles include the
quartile (quarter), the decile (tenth), and percentiles (hundredth).

Although the term “quantile” lacks a uniform meaning, it is widely used to describe
the proportion of values in data collection scores that are less than a particular number. A
quantile shows how a given value compares to others. For example, if a value is in the kth
percentile, it is greater than K percent of the total values.

Qx =
nx

n
(1)
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In Formula (1), nx represents the number of values below x, n represents the total
number of scores, and Px represents the quantile of the data x.

3.1.2. Skewness Coefficient

The skewness coefficient is one way to measure the skewness of a distribution, a
measure of a probability distribution’s asymmetry. A distribution is said to be skewed if its
curve is twisted either toward the left or the right. Karl Pearson’s coefficient of skewness
is the most significant measure of skewness. It is sometimes referred to as Pearson’s
skewness coefficient.

When a dataset’s skewness is measured, it typically takes the form of a bell curve. The
skewness of normal distributions is zero. As a result, the distribution becomes symmetrical
concerning the mean. Still, there are situations in which skewness is not symmetric. It can
be either positive or negative in these circumstances.

When a distribution’s tail is more prominent on the right than the left, it is said to be
positively skewed. The skewness coefficient is assumed to be positive since the distribution
is positive. The majority of the values thus turn out to be to the left of the mean. This
indicates that the values on the right side are the most extreme.

Negative skewness, on the other hand, occurs when the tail is more pronounced on
the left rather than the right side. Contrary to positive skewness, most of the values are
found on the right side of the mean in negative skewness. As such, the most extreme values
are found to be further to the left.

Formula (2) describes how to calculate the skewness coefficient.

γ =
1
n ∑n

i=1
(
xi − X

)3[
1
n ∑n

i=1
(
xi − X

)2
] 3

2
(2)

In Formula (2), X = 1
n ∑n

i=1 xi (sometimes expressed as EX).

3.2. Definition of Outlier Detection

Outlier detection, without supervision, employs some criteria to find outlier candidates
which deviate from major normal points. We have n data points X1, X2, . . . , Xn ∈ Rd, which
are sampled independently and identically distributed. We use the matrix X ∈ Rn×d as
the notation of the entire dataset, which is formed by stacking each data point’s vectors as
rows. After giving X, an outlier detector obtains an outlier score oi ∈ R for each data point
xi, 1 ≤ i ≤ n. Data points with higher outlier scores are more likely to be outliers.

3.3. The Proposed ISOD Algorithm
3.3.1. Construct the Empirical Cumulative Distribution Function

Anomaly detection is carried out to find data points in areas with less probability of
occurrence in the data distribution. In the univariate normal distribution model, the degree
of anomaly can be determined by the ratio of its distance to the mean and its variance.
Starting from this idea, we can calculate the degree of anomaly in each dimension of the
multivariate probability distribution and finally determine its anomaly score.

In each dimension, the data can be arranged from small to large to construct an
empirical cumulative distribution function.

3.3.2. Compute the Quantiles

In the dataset X ∈ Rn×d, we use Xi 1 ≤ i ≤ n as a data sample, and X j 1 ≤ j ≤ d is
used as the j-th dimension of X. Therefore, we use X j

i as the j-th entry of data Xi.

According to Formula (1), we compute the quantile of X j
i through Formula (3).

Qij =
1
n

n

∑
k=1

I
{

X j
k ≤ X j

i

}
∀1 ≤ i ≤ n,1 ≤ j ≤ d (3)
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where I{·} is an indicator function that is 1 when its argument is true and 0 when otherwise.

3.3.3. Compute the Skewness Coefficient

According to Formula (2), we compute the skewness coefficient of X j 1 ≤ j ≤ d
through Formula (4).

γj =

1
n

n
∑

i=1
(X j

i − X j)
3

[
1
n

n
∑

i=1
(X j

i − X j)
2
] 3

2
(4)

where X j = 1
n

n
∑

i=1
X j

i is the mean of the j-th feature.

3.3.4. Obtain the Outlier Scores

Finally, we obtain an outlier score for each Xi through Formula (5).

Oi =
d
∑

j=1
oij

oij = −log2 Qij ×
(
−γj

)
when γj < 0

oij = −log2
(
1 − Qij

)
× γj when γj > 0

(5)

We use γi as the weighting factor when calculating the anomaly score of each data
point. We use oij to represent the abnormality degree of each dimension.

3.3.5. Pseudocode of ISOD

Based on the above steps, the pseudocode of the ISOD algorithm is given in Algorithm 1.

Algorithm 1: ISOD

Input: X =
[

xij

]
n×d

with n samples and d features

Output: Outlier scores {O1, O2, . . . , Oi, . . . , On}
1. for each dimension 1 ≤ j ≤ d:
2. calculate the quantile of each data in this dimension

Qij =
1
n

n
∑

k=1
I
{

X j
k ≤ X j

i

}
∀1 ≤ i ≤ n,1 ≤ j ≤ d

3. calculate the skewness coefficient for each dimension:

γj =

1
n

n
∑

i=1
(X j

i−X j)
3

[
1
n

n
∑

i=1
(X j

i−X j)
2
] 3

2

4.end for
5.for each data Xi 1 ≤ i ≤ n:
6. calculate the anomaly score for each dimension

oij = −log2 Qij ×
(
−γj

)
when γj < 0

oij = −log2

(
1 − Qij

)
× γj when γj > 0

7. calculate outlier score for Xi:

Oi =
d
∑

j=1
oij

8.end for
9.Return {O1, O2, . . . , Oi, . . . , On} while {O1 ≥ O2 ≥ . . . ≥ Oi ≥ . . . ≥ On}.

3.4. Properties of ISOD
3.4.1. Time Complexity Analysis

According to Formulas (3) and (4), calculating the quantiles and skewness coefficients
for all d dimensions using n samples leads to O(nd) time complexity. Similarly, according
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to Formula (5), calculating the anomaly score for d dimensions using n samples also leads
to O(nd) time complexity. Therefore, the overall time complexity of ISOD is O(nd).

3.4.2. Interpretability

Interpretability is an important aspect of the practical applications of anomaly de-
tection. In network attack detection, for example, finding an anomaly is as important as
identifying the cause of the anomaly. An algorithm with high interpretability has greater
reliability, which not only means that it can provide a result but also the reason(s) behind
such a result, which is good for improving the performance of the system and assisting
in decision making. Therefore, interpretability is very important in the application of
anomaly detection.

As can be seen from Formula (5), the ISOD algorithm aggregates the anomalies on
each dimension to determine the final anomaly score. Where necessary, we can give the
anomalies of the anomalous data in each dimension, which helps the expert to further iden-
tify the dimension in which the anomaly occurs. This involves taking anomaly detection
from a “black box” to a “white box”.

3.4.3. Sensitivity Analysis

As can be seen from the description of the algorithmic process in Section 3.3 above,
the ISOD algorithm independently calculates the skewness coefficients for each dimension
as weights to be combined with the quantiles in each dimension. Therefore, there are no
special requirements on the distribution of data, slight data noise, or the percentage of
outliers. Therefore, we can confidently say that the ISOD algorithm is a robust anomaly
detection algorithm that is insensitive to data noise, and this property will have a positive
impact on its practical application.

3.4.4. Hyperparameter-Free and Unsupervised

The ISOD algorithm is an easy-to-understand unsupervised anomaly detection algo-
rithm with the following advantages: (1) The ISOD algorithm is a statistic-based algorithm
that calculates the anomalies in each dimension and aggregates them to obtain final anomaly
scores for the sample data. Therefore, the algorithm has no hyperparameters, and no pa-
rameter tuning is required. (2) The algorithm is an unsupervised algorithm that does not
need to prepare a large amount of labeled data for training, which gives the algorithm high
interpretability and, at the same time, lays a better foundation for the practical applications
of the algorithm.

4. Experimental Results and Discussion
4.1. Performance Evaluation Metrics
4.1.1. ROC (Receiver Operating Characteristic)

The receiver operating characteristic (ROC) curve is frequently used for evaluating
the performance of binary classification algorithms. It provides a graphical representation
of a classifier’s performance rather than a single value like most other metrics. The closer
the ROC is to 1, the more effective that detection model is. This algorithm’s ROC is equal
to or lower than 0.5, which means that the inspection model has no value for use.

4.1.2. AP (Average Precision)

Another way to evaluate outlier detection models is to use the average precision (AP).
The AP measures the average precision across all possible thresholds, with a higher value
indicating a better model. The AP is more suitable for outlier detection problems with rare
anomalies or imbalanced data, as it focuses more on the positive class (anomalies) than
the negative class (normal instances). However, it may not reflect the overall accuracy or
specificity of the model, as it does not account for the true negatives or false negatives.
Evaluating outlier detection models can be challenging, especially when you do not have
labeled data or ground truth data to compare with. One of the possible ways to evaluate
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outlier detection models is to use external validation, which involves comparing the results
with some other sources of information, such as domain experts, feedback, or historical data.

Overall, 30% of the data in experiments is reserved for testing, while the remaining
70% is used for training. The area under the receiver operating characteristic (ROC) and
average precision (AP) are used to obtain the average score from ten separate trials to assess
performance.

4.2. Experimental Settings
4.2.1. Experimental Environment and Baselines

In subsequent experiments, a Windows personal computer with AMD Ryzen 7 5800H
CPU and 16G of memory will be used.

We compared the performance of the ISOD algorithm with eight state-of-the-art
outlier detection algorithms. These eight outlier detection algorithms—k Nearest Neighbor
(KNN) [42], Local Outlier Factor(LOF) [43], Isolation Forest (IForest) [33], Clustering-
Based Local Outlier Factor (CBLOF) [44], Locally Selective Combination in Parallel Outlier
Ensembles(LSCP) [45], One-Class Support Vector Machines (OCSVMs) [46], Deep Isolation
Forest (DIF) [47], and GANomaly [48].

4.2.2. Dataset

To validate the effectiveness of the proposed method, we conducted a series of com-
parative experiments on ten real-world datasets with different types and sizes. They were
collected from several domains and are available on the OODS website (https://odds.cs.
stonybrook.edu/, accessed on 20 October 2023). These 10 datasets have been frequently used
by researchers to evaluate the performance of anomaly detection methods.

Table 1 shows the 10 datasets from the OODS website with the highest dimensions
which were selected for our study.

Table 1. Ten real-word benchmark datasets.

Dataset Number of Samples Number of Dimensions Outliers (%)

Musk 3062 166 97 (3.2%)

Satimage-2 5803 36 71 (1.2%)

Letter Recognition 1600 32 100 (6.25%)

Speech 3686 400 61 (1.65%)

Satellite 6435 36 2036 (32%)

Arrhythmia 452 274 66 (15%)

Ionosphere 351 33 126 (36%)

Mnist 7603 100 700 (9.2%)

Optdigits 5216 64 150 (3%)

Heart 224 44 10 (4.4%)

4.3. Experimental Results

In this section, we give the experimental results of ISOD for the benchmark datasets
in Tables 2 and 3. The highest ROC or AP score is marked in bold, which means that the
algorithm achieves the best performance for this dataset.

4.3.1. Analysis of Experimental Results

The proposed ISOD algorithm achieved the best performance, with an average ROC of
0.813 and an average precision of 0.75. As shown in Table 2, the ISOD algorithm achieved
the highest ROC in 6 of the 10 datasets. Additionally, as shown in Table 3, the ISOD
algorithm achieved the highest AP (average precision) in 6 of the 10 datasets.

https://odds.cs.stonybrook.edu/
https://odds.cs.stonybrook.edu/
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It is worth noting that, by analyzing the data in Tables 2 and 3, it can be found that
the higher the data dimensionality, the better results the ISOD algorithm can achieve, as
exemplified by the results for the Speech, Satellite, and Arrhythmia datasets. This confirms
that the ISOD algorithm has low time complexity and good performance when working
with data with high dimensionality, as noted in Section 3.4.1.

Table 2. ROC scores in terms of outlier detector performance (the highest ROC scores are marked
in bold).

Dataset KNN LOF IForst CBLOF LSCP OCSVM DIF GANomaly ISOD

Musk 0.73 0.86 0.709 0.755 0.472 0.111 0.874 0.248 0.956

Satimage-2 0.144 0.19 0.557 0.28 0.77 0.274 0.535 0.929 0.775

Letter Recognition 0.364 0.121 0.105 0.202 0.2 0.323 0.486 0.152 0.797

Speech 0.755 0.406 0.278 0.918 0.981 0.58 0.736 0.692 0.833

Satellite 0.625 0.393 0.475 0.664 0.837 0.593 0.22 0.58 0.9

Arrhythmia 0.769 0.433 0.168 0.798 0.297 0.171 0.91 0.324 0.538

Ionosphere 0.238 0.846 0.272 0.343 0.605 0.867 0.127 0.165 0.912

Mnist 0.476 0.454 0.115 0.369 0.418 0.904 0.787 0.603 0.808

Optdigits 0.794 0.478 0.798 0.518 0.264 0.896 0.924 0.67 0.747

Heart 0.705 0.331 0.488 0.115 0.311 0.56 0.355 0.429 0.863

Average ROC 0.56 0.451 0.397 0.496 0.516 0.528 0.545 0.479 0.813

Table 3. Average precision (AP) scores in terms of outlier detector performance (the highest AP scores
are marked in bold).

Dataset KNN LOF IForst CBLOF LSCP OCSVM DIF GANomaly ISOD

Musk 0.589 0.756 0.115 0.397 0.432 0.143 0.272 0.66 0.814

Satimage-2 0.188 0.321 0.786 0.146 0.154 0.315 0.494 0.807 0.856

Letter Recognition 0.257 0.474 0.948 0.52 0.964 0.885 0.802 0.345 0.754

Speech 0.536 0.214 0.195 0.138 0.32 0.164 0.349 0.822 0.996

Satellite 0.281 0.794 0.321 0.204 0.633 0.737 0.962 0.888 0.887

Arrhythmia 0.207 0.103 0.612 0.534 0.407 0.338 0.422 0.551 0.663

Ionosphere 0.929 0.985 0.979 0.138 0.827 0.88 0.715 0.741 0.566

Mnist 0.744 0.271 0.679 0.592 0.604 0.274 0.433 0.605 0.392

Optdigits 0.264 0.656 0.359 0.221 0.394 0.261 0.553 0.112 0.776

Heart 0.439 0.511 0.32 0.734 0.208 0.387 0.796 0.794 0.8

Average ROC 0.443 0.509 0.531 0.362 0.494 0.438 0.58 0.632 0.75

4.3.2. Additional Experimental Results and Analysis of Running Time

To further test the scalability of the ISOD algorithm, the running time of the algorithm
on the 10 datasets mentioned above was tested, and the results are represented in the form
of a scatter plot, as shown in Figure 1. In this figure, the horizontal axis represents the size
of the dataset, the vertical axis represents the dimensionality of the data, and the dot size
represents the running time of the ISOD algorithm on the dataset. The larger the dot, the
longer the running time.
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Although Figure 1 does not provide a specific running time, by comparing the size
of these scatter plots, we can see that a dataset with a large amount of data or data with a
high dimensionality has a longer running time for the ISOD algorithm, which conforms the
complexity analysis results mentioned earlier.

5. Conclusions

In this article, we proposed an effective unsupervised outlier detection method based
on quantiles and skewness coefficients called ISOD. ISOD can be mainly divided into
three stages: (1) the construction of the empirical cumulative distribution function; (2) the
computation of the quantiles and skewness coefficients of each dimension; (3) summarizing
the degree of anomalies in each dimension and ultimately obtaining the outlier score for
each data point. After these stages, the method finally obtains the outlier scores.

The experimental results derived from applying the ISOD algorithm to 10 benchmark
datasets show that the ISOD method has great competitive and promising performance
in comparison to the state-of-the-art baseline anomaly detection algorithms. In addition
to achieving better experimental results, the ISOD algorithm also has high interpretability
and scalability, as explained in Section 4.

Based on Sections 3.4 and 4.3.1, it is clear that the ISOD algorithm does not require
labeled data and that it is an unsupervised anomaly detection algorithm. At the same
time, it has good scalability and can obtain good performance with ultra-high dimensional
datasets. Finally, this algorithm is theoretically guaranteed to have high interpretability.
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