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Abstract: Silver nanoparticles have long been known for their antibacterial properties. Recently,
increasing numbers of studies confirm that they have antifungal properties as well. Due to the
increasing number of these studies, this review was performed, summarizing most of the research
conducted so far in this field and presenting the results of the activity of silver nanoparticles against
fungal pathogens of humans and plants, green synthesis of silver nanoparticles, and the mechanism
of action. The combined activity with antifungal drugs and toxicity assessment is also presented. The
review describes the antifungal activity of silver nanoparticles against pathogens such as F. oxysporum,
F. graminearum, T. asahii, B. cinerea, P. concavum, and Pestalotia sp. as well as many species of the genus
Candida. The green synthesis of these nanoparticles has been carried out from many species of plants
and microorganisms. The research cited in this review confirms the fact that silver nanoparticles
obtained using green synthesis exhibit antifungal activity and can therefore be an excellent alternative
to the chemical synthesis of these particles. All this proves that silver nanoparticles have a great
potential to be used as a potential antifungal agent in the future.

Keywords: silver nanoparticles; antifungal activity; antifungal properties; green synthesis; Candida

1. Introduction

Nanoparticles are generally considered to be particles whose size is in the range of
1–100 nm. They are an interesting and desirable object of modern research because they very
often show various unique properties compared to their macro-scale counterparts [1]. They
arouse constantly growing interest due to the discovery of new applications in many fields
of science and industry. The main direction in recent times is medicine, where nanoparticles
are used for diagnostic and therapeutic purposes. This is mainly related to the large active
surface-to-mass ratio of nanoparticles. In addition, the active surface is able to bind and
transfer other compounds; hence, nanoparticles are considered good carriers of proteins
or drugs, as they can deliver these compounds directly to the target site [2]. In addition,
nanoparticles, mainly of such metals as gold (Au), silver (Ag), and platinum (Pt), are used
as catalysts for chemical reactions or in optical biosensors and chemosensors. Considering
their biological activities, silver nanoparticles are a matter of special interest in biology and
medicine. Depending on their physicochemical properties, e.g., dimensions, formulation,
and high reactivity, metal nanoparticles show different biological activities [3–6]. They can
act as antibacterial, anticancer, antioxidant, and anti-inflammatory agents [7–10]. Taking
into account the medical applications of silver nanoparticles (AgNPs), the most popular is
their antibacterial activity. Colloidal silver has long been a popular antibacterial agent. In
the history of the use of silver in medicine, 1884 was a breakthrough year, when Carl Crede
used a solution of silver nitrate to treat gonococcal conjunctivitis in newborns. Silver nitrate
was also used in dentistry to treat caries. Currently, silver can be found in many antibacterial
cosmetics, such as soaps, deodorants, shampoos, and mouthwashes [1,11]. Data indicate
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that, in 2023, over 1000 consumer products containing nanosilver were identified (approved
and not by the FDA in the USA), which are mainly used in the medical, textile, and
cosmetics sectors [12]. Silver nanoparticles exhibit a broad spectrum of anticancer activity,
making them highly promising for application as novel therapeutic agents or drug carriers.
However, in order to develop a safe and effective anticancer agent based on AgNPs in
the future, it is essential to investigate more mechanisms of the anticancer action of these
nanoparticles. AgNPs also demonstrate potential as a new therapeutic strategy for wound
healing. Studies have shown that the action of AgNPs in this context involves the regulation
of the production of various cytokines and proteins participating in the wound-healing
process. They also promote early adhesion, contraction, and closure of the wound. Silver
nanoparticles also exhibit favorable properties in bone healing. They can be used as
osteoconductive material or as a doping material for synthetic bone scaffolds, providing
protection against potential bacterial infections, which are common and risky in bone grafts.
Another biomedical application involves incorporating AgNPs into dental biomaterials
due to their antibacterial and anti-biofilm effectiveness. Additionally, research indicates
that AgNPs also have the potential for use as adjuvants in vaccines, antidiabetic agents, or
as biosensors [13].

Silver nanoparticles are also widely used in food processing and packaging designed
to protect food against microorganisms [14].

As a feed additive, it has been shown that they reduce the occurrence of pathogenic
microorganisms, so they could reduce the use of antibiotics in livestock. Additionally,
their potential use in water treatment has been demonstrated by incorporating them into
foam filters or by the impregnation of ultrafiltration membranes. Moreover, AgNPs are
good candidates for use in food packaging due to their good stability and slow release
of silver ions in stored food. In the context of food safety, another approach is emerging
to use AgNPs as biosensors. This approach involves creating smart packaging to detect
pathogens and transforming this information into a detectable signal that would allow for
the early detection of food contamination. Due to the fact that there is insufficient research
on the safety of AgNPs in food, the EU does not allow their use in dietary supplements
or food packaging [15]. However, in 2021, the EFSA published information in which it
was concluded that the use of AgNPs as an additive in an amount of up to 0.025% w/w
in polymers such as polyolefins, polyesters, and styrenes that do not swell in contact
with hydrated food does not raise concerns regarding their use. A summary of the most
important applications of AgNPs is shown in Figure 1.
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The antibacterial properties of silver nanoparticles are well known and have been
confirmed by numerous studies [7,16]. AgNPs have been shown to inhibit the growth
and multiplication of such bacteria as Escherichia coli, Bacillus cereus, Staphylococcus aureus,
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Pseudomonas aeruginosa, Citrobacter koseri, Salmonella typhi, Klebsiella pneumoniae, and Vibrio
parahaemolyticus [14]. However, especially recently, a lot of research has been published on
the antifungal activity of silver nanoparticles against many species of fungi. Nanoparticles
synthesized by chemical, physical, and green synthesis methods are active (Figure 2).
Testing the activity of AgNPs against fungi is particularly important due to the enormous
resistance of pathogenic strains to systemic drugs.
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We can observe that silver nanoparticles accompany us in everyday life in household
and biomedical products and possess significant positive properties, including the ability
to eliminate pathogenic microorganisms. However, it should be noted that their use also
raises concerns about their potential threat to human health and the environment. The
major routes of entry of AgNPs are ingestion, inhalation, and dermal contact. Their toxicity
is due to the fact that AgNPs are able to induce inflammation and oxidative stress at the
site of exposure. Despite numerous toxicological studies, long-term toxicity data are still
lacking. However, an occupational respiratory exposure limit value of 0.19 µg/m3 for
AgNPs has recently been proposed based on a subchronic inhalation toxicity study in
rats [17]. Research using in vitro cell cultures indicates that AgNPs are toxic to several
human cell lines (human bronchial epithelial cells, human umbilical vein endothelial cells,
red blood cells, human peripheral blood mononuclear cells, immortal human keratinocytes,
liver cells). Furthermore, tests conducted in vivo using mice, rats, and zebrafish have
demonstrated that AgNPs can penetrate the blood–brain barrier and accumulate in organs
such as the liver, kidneys, and spleen. The induced cytotoxicity, however, largely depends
on the size of the nanoparticles, dosage, and duration of exposure [17,18].

2. Materials and Methods

Since, in addition to antibacterial properties, AgNPs show antimycotic effects, which
are less widely known, the aim of this mini-review was to survey the current literature, both
original papers and reviews, on the antifungal properties of silver nanoparticles against
plant and human mycopathogens with particular emphasis on the action on Candida species.
The review was based on scientific publications in English mainly from 2015–2023 available
in the largest biomedical databases, i.e., PubMed, ScienceDirect, and Wiley Library. The
databases were searched with such keywords as silver nanoparticles, fungi, antifungal
properties, and Candida. Keywords were entered in various combinations. The selection of
publications was made in two stages. In the first one, the selection was made based on titles
and abstracts. In the second stage, the full text was analyzed. Studies that were considered



Appl. Sci. 2024, 14, 115 4 of 16

unrelated to the topic discussed in the review were rejected. The individual steps taken
during the development of this review are outlined in the scheme below (Figure 3).
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3. Description of the State of Knowledge
3.1. Antifungal Activity of Silver Nanoparticles against Candida Species

Silver nanoparticles are regarded to have antifungal properties, but the number of
studies confirming this feature is currently insufficient. Although fungal infections are not
as widespread as bacterial infections, the incidence of fungal infections has been increasing
in recent years. An especially alarming phenomenon is the increasing drug resistance,
which is an even more serious problem due to the small arsenal of antifungal agents avail-
able on the market. Currently, the most commonly used systemic drugs are amphotericin
B, nystatin, fluconazole, and itraconazole, but their solubility and bioavailability are not
satisfactory [19–21]. In addition, their use is associated with the risk of side effects, such as
allergic and severe skin reactions. Fungal infections often affect and pose a serious threat to
immunocompromised patients [22–24]. Yeasts of the genus Candida are considered to be
the most common cause of invasive fungal disease in such individuals. They can lead to
bloodstream infections, which are associated with high mortality despite treatment [25].
The most common representative of this species is Candida albicans. It is part of the healthy
human microflora, where it exists as a harmless commensal. However, if the natural balance
in the microbiome is disturbed, e.g., in subjects with reduced immunity, it can become the
cause of life-threatening infections. In addition, C. albicans has the ability to form a biofilm.
It is a tightly packed community of cells that can grow on biotic and abiotic surfaces. This
form is very difficult to combat with the use of traditional drugs [26].

Studies have shown that AgNPs have good activity against Candida spp. They can both
inhibit the growth of yeast cells and influence various virulence factors, e.g., biofilm for-
mation. The antifungal activity of AgNPs against C. albicans was investigated by Alshaikh
et al. [27]. AgNPs were coated with polyvinylpyrrolidone (PVP) for water dispersion. Five
isolates of C. albicans were used in the study and the minimum inhibitory concentration
(MIC) was determined. The MIC values of AgNPs against C. albicans isolates ranged be-
tween 24 and 12 µg/mL. They were compared to fluconazole, which had an MIC value
of 20 µg/mL. In this study, AgNPs were even more potent than fluconazole against some
strains of C. albicans. In another study, AgNPs were synthesized using ribose sugars as
reducing agents and sodium dodecyl sulfate (SDS) as a blocking agent. The antifungal
activity of these nanoparticles was evaluated against 30 strains of Candida spp. (14 C.
albicans and 16 C. tropicalis) isolated from blood samples from hospitalized patients. The
tested strains showed a strong sensitivity to the nanoparticles used [28]. It was shown
that silver nanoparticles are also effective against C. albicans biofilm with the half max-
imal inhibitory concentration (IC50) of 0.089 ppm [29]. Recent studies conducted using
an iturin–AgNPs complex also showed excellent antifungal activity of the synthesized
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molecules (MIC = 1.25–5 µg/mL) against C. albicans. Moreover, the mechanism of the
antifungal activity of the tested complex was revealed. Iturin–AgNPs caused damage to
the integrity of the cell membrane, which in turn increased its permeability and the leakage
of intracellular proteins and nucleic acids outside the cell [30]. In a study conducted by
Dorgham et al. [31], silver nanoparticles were synthesized using the sugarcane process
by-product (molasses) and named Mo-capped AgNPs. The synthesized molecules showed
promising activity against C. albicans DAY185 with an MIC of 16 µg/mL. With the use
of a scanning electron microscope and through the determination of the minimal biofilm
eradication concentration (MBEC), it was also confirmed that the nanoparticles penetrated
the preformed biofilm and eliminated the microbial cells. Moreover, the activity of AgNPs
against Candida species was tested in vivo in a mouse model of oral candidiasis. In this
study, nanoparticles synthesized with the use of the green synthesis method using Erodium
glaucophyllum extract were used. The effect of the treatment was a significant reduction
in candidal tissue invasion, fewer inflammatory changes, and no tissue modification [32].
Another in vivo study concerned AgNPs individually and combined with fluconazole.
Activity was tested in a murine model of systemic candidiasis against C. albicans. The best
results were obtained for combined treatment with AgNPs and fluconazole. This treatment
reduced the fungal burden and increased the survival rate of infected mice [33]. Although
the body of evidence for the anti-Candida activity of AgNPs is limited, the nanoparticles
show promising potential to be developed as antimycotic agents.

3.2. Antifungal Activity of Silver Nanoparticles against Fungal Plant Pathogens and Other
Species of Fungi

Silver nanoparticles are also commonly tested against plant mycopathogens. Various
fungi can cause crop destruction and, thus, large economic losses for farmers. They also
reduce the quality of agricultural products used in everyday life, i.e., fruits, vegetables, and
cereals. An obvious method for combating these pathogens is the use of various types of
agrochemicals; however, they have a number of adverse side effects, i.e., environmental
pollution, emergence of resistant pathogens, or impact on other organisms that are not
the direct target of combating fungal contamination. Fusarium species are one of the
most widespread mycopathogens. These filamentous fungi from the Ascomycota family,
commonly found in the soil, can attack various plant species. Silver nanoparticles have
been identified as potential antifungal agents against F. oxysporum, which attacks plant
roots and causes widespread losses in tomato cultivation, and F. graminearum, which causes
fusarium head blight (FHB) in cereal crops [34–37]. FHB manifests itself as the partial or
complete bleaching of a spikelet combined with glume discoloration. FHB, in addition to
infecting plant parts, is associated with the production of the deoxynivalenol mycotoxin
by Fusarium spp. Therefore, firstly, it causes large quantitative and qualitative losses in
crops and, secondly, it poses a threat to human and animal health after consuming grain
containing this mycotoxin [38]. Another fungal pathogen used in tests of the antifungal
activity of silver nanoparticles is Trichosporon asahii, in which a significant growth-inhibiting
effect was observed. The MIC concentration in this case was 0.5 µg/mL, which was lower
than that of the known antifungal agents, amphotericin B, 5-flucytosine, caspofungin,
terbinafine, fluconazole, and itraconazole; they used the pathogenic fungi Botrytis cinerea,
Pilidium concavum, and Pestalotia sp. to assess the antifungal activity of AgNPs [39,40]. They
observed that the presence of nanoparticles inhibited the growth of the fungi and spore
germination. For example, in the case of B. cinerea spores, germination was completely
inhibited in a culture containing 100 ppm of AgNPs. In turn, AgNPs synthesized by
Elgorban et al. [41] were analyzed against Rhizoctonia solani, which is a pathogen for
several hundred plant species. Their results showed that AgNPs caused a reduction in
the growth of R. solani. Moreover, Żarowska et al. [42] reported that AgNPs inhibited the
growth of Aspergillus brasiliensis, Chaetomium globosum, Penicillium pinophilum, Paecilomyces
variotii, and Trichoderma virens.
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3.3. Combined Action of AgNPs and Known Antifungal Drugs

So far, studies have shown that nanoparticles improve the activity of known anti-
fungal drugs. The synergism between AgNPs and fluconazole was confirmed in several
papers [27,33,43]. In turn, other studies tested the antifungal activity of AgNPs in combi-
nation with ketoconazole against Malassezia furfur. It is a representative of yeast, which
naturally inhabits the human skin microbiota and is associated with several skin diseases,
e.g., folliculitis, seborrheic dermatitis, and dandruff versicolor. The observations showed
no antagonistic effect, and synergism was observed in 17.08% of the 40 tested M. furfur
isolates [44]. Synergism between AgNPs and amphotericin B against C. albicans and C.
tropicalis was demonstrated as well. An aqueous extract of Maytenus royleanus was used
for the synthesis of these nanoparticles. The conjugation of amphotericin B with silver
nanoparticles enhanced the antifungal activity of the systemic drug with an MIC value
of 1.5 and 5 µg/mL, respectively [45]. The study by Jia and Sun attempted to identify
the mechanisms of synergistic action between AgNPs and fluconazole. The results of this
study showed that AgNPs can promote fluconazole accumulation in resistant C. albicans.
Increased ROS production was identified as the probable cause of the synergy between
AgNPs and fluconazole [33].

3.4. Green Biosynthesis of Silver Nanoparticles with Antifungal Properties

Of great interest is the green synthesis of nanoparticles, a technique based on the
use of plants and their components as reducing agents (Figure 4). The possibility of their
use results from the fact that many plants are rich in antioxidant compounds, such as
polyphenols, flavonoids, and amide compounds. They have reducing hydroxyl groups that
have the ability to reduce silver ions to elemental silver [46]. These methods are usually
simple, convenient, cost-effective, and, most importantly, environmentally friendly, as they
eliminate the need for toxic chemicals and solvents. Various species of microorganisms
can also be used for the synthesis of nanoparticles; however, a necessary condition in this
method is to maintain the asepticity of the entire process [47,48].
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AgNPs synthesized by Artemisia annua, plants from the Asteraceae family, were evalu-
ated against three species of Candida: C. albicans, C. tropicalis, and C. glabrata. The particles
showed activity against all the species used in the study with an MIC value in the range
of 80–120 µg/mL [49]. Silver nanoparticles synthesized using beech bark extracts (BBE),
silver acetate, and nitrate salts (AgNPs Acetate BBE and AgNPs Nitrate BBE) were tested as
well. The antifungal activity of the compounds was tested against Candida reference strains
(C. albicans, C. parapsilosis, C. krusei, C. auris, and C. guilliermondii). Growth inhibition was
observed in all the tested strains in the presence of both AgNP BBEs, with the exception
of C. auris. The tested compounds also inhibited biofilm formation but only against C.
albicans and C. guilliermondii. In addition, synergistic activity of the nanoparticles was
observed in combination with fluconazole against C. parapsilosis and C. guilliermondii [43].
Spruce bark extracts (SBE) were also used for AgNP biosynthesis. Acetate and nitrate
silver salts (AgNPs SBE acetate, AgNPs SBE nitrate) against the same five Candida strains
were tested as above. AgNP SBEs inhibited the growth of C. parapsilosis, C. krusei, and
C. guilliermondii; moreover, they showed a synergistic effect with fluconazole against C.
parapsilosis and C. guilliermondii and inhibited biofilm formation by C. albicans, C. auris, and
C. guilliermondii [50]. Other research focused on AgNPs produced by the callus extract from
Solanum incanum L., a plant from the nightshade family. Plant pathogenic fungi F. oxysporum,
Alternaria alternata, Aspergillus niger, and Pythium ultimum were used. At a concentration
of 25 µg/mL, AgNPs inhibited the growth of these fungi in the range of approximately
30–50% depending on the strain, while these values at a concentration of 200 µg/mL ranged
between 65 and 90% [51]. Salem et al. carried out an environmentally friendly synthesis of
silver nanoparticles using Pseudomonas indica S. Azhar [52]. The studies of the antifungal
activity of these molecules focused on fungi that cause mucormycosis, a dangerous disease
that affects mainly people with diabetes or cancer or after transplants. The Rhizopus
microsporus, Mucor racemosus, and Syncephalastrum racemosum species were used in the
study. The results showed antifungal activity of nanoparticles against all the tested fungi
at a concentration of 400 µg/mL, with the MIC values of 50, 50, and 100 µg/mL against
R. microsporus, S. racemosum, and M. racemosus, respectively. Another study was focused
on the synthesis of AgNPs using an aqueous extract of the red seaweed Gelidiella acerosa
as a reducing agent. The antifungal activity of these nanoparticles was tested against
Humicola insolens, Fusarium dimerum, Mucor indicus, and Trichoderma reesei. The antifungal
assay was performed with the agar well diffusion method. The results showed higher
antifungal activity against M. indicus and T. reesei, whereas moderate activity was revealed
against F. dimerum and H. insolens, compared with the standard antifungal agent clotrima-
zole [53]. Dried grass was also used for the synthesis of AgNPs. The antifungal effects
of the synthesized AgNPs on Fusarium solani and Rhizoctonia solani were evaluated using
the agar dilution method. The results showed that the effect of these nanoparticles was
similar to that of amphotericin B and much stronger than that of fluconazole [54]. AgNPs
were also successfully synthesized using an aqueous callus extract from Gymnema sylvestre.
The synthesized AgNPs exhibited effective antifungal activity against both C. albicans and
non-albicans Candida species [55]. Another example is nanoparticles biosynthesized using a
cell-free extract of Bacillus thuringiensis MAE 6. The nanoparticles showed activity against
the four most common Aspergillus species, i.e., A. niger, A. terreus, A. flavus, and A. fumigatus,
at concentrations of 0.5 mg/mL [56]. Silver nanoparticles were also synthesized using A.
terreus and tested against A. niger and C. albicans. In this study, A. niger showed the highest
susceptibility to AgNPs (MIC = 0.312 µg/mL), whereas C. albicans showed the highest resis-
tance (MIC = 1.25 µg/mL) [57]. Another example is the AgNP synthesis using Nigrospora
oryzae. These nanoparticles displayed strong antifungal activity against Fusarium spp. [58].
Using an Amaranthus retroflexus extract, it was also possible to synthesize AgNPs that
showed antifungal activity. The MIC50 against Macrophomina phaseolina, A. alternata, and
F. oxysporum was 159.80, 337.09, and 328.05 µg/mL, respectively. However, these types
of nanoparticles turned out to be inactive against Trichoderma harzianum and Geotrichum
candidum [59]. In the study of Riberio et al., seven biogenic AgNPs were obtained using the
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fungi species Aspergillus tubingensis, Aspergillus spp., Bionectria ochroleuca, Cladosporium
pini-ponderosae, Fusarium proliferatum, Epicoccum nigrum, and Exerohilum rostratum. Ag-
NPs showed antifungal activity against clinical strains of Candida: C. albicans, C. krusei, C.
glabrata, C. guillermondii, C. parapsilosis, and C. tropicalis. All of the tested AgNPs were more
effective than amphotericin B, which was used as the positive control in this study [60].
One recent study on antifungal activity against C. albicans involved AgNPs synthesized by
green synthesis using glucose as a reducing agent and incorporated into an agar matrix
to form a film (AgFilm). The AgFilm showed a high antifungal activity with an inhibition
zone of 19 ± 2 mm [61]. Corn cob xylan was also used as a green reducing and stabilizing
agent in the synthesis of AgNPs. Antifungal activity was demonstrated against C. albicans,
C. parapsilosis, and Cryptococcus neoformans with an MIC value of 7.5 µg/mL [62]. Other
publications where information about the green synthesis of silver nanoparticles and their
antifungal properties can be found are listed in the table below [Table 1].

Table 1. Biogenic AgNPs with antifungal activity.

Organism Used for Synthesis Target Fungi

Antifungal Activity
MIC [µg/mL] or

Inhibition Zone [mm] or
Inhibition Rate [%]

Reference

Agave americana, Mentha
spicata, Mangifera indica

Verticillium dahliae, Aspergillus niger,
Aspergillus parasitica, Fusarium oxysporum,

Penicillium notatum
12–89% [63]

Aspergillus kambarensis
Candida albicans, Candida tropicalis, Fusarium

oxysporum, Aspergillus
niger

13.1–44.2 mm [64]

Cinnamomum camphora Fusarium oxysporum 154.39 µg/mL [65]

Marinobacter lipolyticus Candida albicans 16 ± 2 mm [66]

Navicula cincta Aspergillus flavus, Aspergillus niger, Aspergillus
fumigatus, Rhizopus stolonifer 3.01–6.02 mg/µL [67]

Sidr honey Candida albicans 9.70 ± 0.09–15.20 ± 0.29 mm [68]

Zea mays Fusarium sp., Rhizopus oryzae, Candida
albicans 12 ± 1.0–14.6 ± 0.57 mm [69]

Parrotiopsis jacquemontiana
Aspergillus flavus, Aspergillus niger,
Fusarium solani, Mucor piriformis,

Aspergillus fumigatus, Candida albicans
10–20 µg/mL [70]

Trichoderma asperellum Fusarium oxysporum, Fusarium graminearum,
Pythium ultimum 20.0 ± 2.0–28.67 ± 3.05 mm [71]

Artemisia afra Candida albicans 200 µg/mL [72]

Phoma gardeniae Candida albicans 5.95 µg/mL [73]

Cassia fistula Candida krusei, Trichophyton mentagrophytes 21.6 ± 1.1–23.3 ± 1.1 mm [74]

Trifolium resupinatum Rhizoctonia solani, Neofusicoccum Parvum 84–91% [75]

Bipolaris maydis Exserohilum turcicum 5.0 ± 0.84–10.7 ± 1.26 mm [76]

Trichoderma atroviride Phomopsis theae 75.7–80.3% [77]

Helminthosporium sp.,
Chaetomium sp.

Aspergillus flavus, Aspergillus fumigatus,
Aspergillus niger, Curvularia sp.,

Bipolaris sp., Fusarium sp.
30–70 µg/mL [78]

Phoma capsulatum,
Phoma putaminum, Phoma citri Aspergillus niger, Candida albicans 5.95 µg/mL [79]
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Table 1. Cont.

Organism Used for Synthesis Target Fungi

Antifungal Activity
MIC [µg/mL] or

Inhibition Zone [mm] or
Inhibition Rate [%]

Reference

Ginkgo biloba Setosphaeria turcica 7.0 ± 1.41–13.0 ± 1.79 mm [80]

Mentha pulegium Candida albicans 100 µg/mL [81]

Phoenix dactylifera Rhizoctonia solani 22–80% [82,83]

Zingiber officinale,
Thymus vulgaris Candida albicans 0.5–0.7 µg/mL [83]

Tagetes patula Colletotrichum chlorophyti 24.88 ± 0.85–63.01 ± 0.97% [84]

Hyptis suaveolens Candida albicans 0.27 ± 0.03–0.97 ± 0.13 µg/mL [85]

Elettaria cardamomum
Alternaria alternata, Aspergillus niger, Botrytis

cinerea, Fusarium oxysporum,
Penicillium expansum

8–64 µg/mL [86]

Arthroderma fulvum

Candida albicans, Candida parapsilosis, Candida
krusei, Candida tropicalis, Aspergillus fumigatus,
Aspergillus flavus, Aspergillus terrrus, Fusarium

solani, Fusarium moniliforme,
Fusarium oxysporum

0.125–4.00 µg/mL [87,88]

Justicia spicigera Colletotrichum sp., Fusarium solani, Alternaria
alternata, Macrophomina phaseolina 35.60 ± 3.55–80.95 ± 1.35% [88]

Jasminum nudiflorum Amanita longipes 32 µg/mL [89]

Recently, there has been growing interest in synthesis methods that utilize templates
such as viruses’ DNA, membranes, or diatoms [90,91]. A representative example is the
method by Kora et al., where gum kondagogu, a non-toxic and renewable natural plant
polymer, was used as a template. The synthesized silver nanoparticles had a significant an-
tibacterial effect [92]. To illustrate the use of a matrix for the synthesis of nanoparticles, it is
worth mentioning the research by Kucełow et al. [93], where dextran-graft-polyacrylamide
served as a template, and the study by Matos and Courrol, where the synthesis utilized an
aqueous saliva solution and irradiation with light from a mercury metal halide lamp [94].
Another eco-friendly reducing factor during the synthesis of silver nanoparticles can be
exposure to sunlight. Binaymotlagh et al. utilized this method in their research. Ad-
ditionally, they developed a one-pot process for the synthesis of AgNPs inside peptide
hydrogels [95]. Such hydrogels with silver nanoparticles have great potential for use in
medicine as dressings that improve the healing of wounds, including burns, and at the
same time inhibit the development of infection in the treated area [96].

3.5. Mechanisms of Antifungal Activity of Silver Nanoparticles

The mechanism of action of silver nanoparticles on cells has not yet been thoroughly
investigated, but several most likely mechanisms have been identified (Figure 5). These
include the ability to attach AgNPs to the cell wall and the ability to penetrate the cell
interior, induction of oxidative stress, and interference with signal transduction and protein
synthesis [97]. Researchers suggest that the ability of AgNPs to connect with the cell wall
occurs as a result of the electrostatic interaction between positively charged silver ions
and the negatively charged surface of the cell membrane and to then penetrate it, thus
causing structural changes in the cell membrane, which in turn increases its permeability.
Other researchers suggest that silver nanoparticles lead to the inactivation of enzymes
and proteins associated with the membrane or change the composition of the lipid bilayer,
which translates into a change in its integrity. Another example is the interaction of silver
ions with the disulfide bonds of enzymes involved in cellular metabolism, causing their
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inactivation. It was also found that silver ions bind to the 30S ribosomal subunit, deactivate
the ribosome complex, and stop protein synthesis [98]. Generally, the main mechanism
of activity of AgNPs is the ability to produce reactive oxygen species that cause oxidative
stress in the cell. Free radicals can cause, among other things, lipid peroxidation, damage
to the integrity of cell membranes, and DNA damage, which leads to cell apoptosis. The
mechanisms mentioned here were confirmed in the studies of Xia et al. on the action of
AgNPs on Trichosporon asahii. Analysis under an electron microscope showed that silver
nanoparticles caused damage to the cell wall and membrane and then penetrated the
cells and damaged mitochondria and ribosomes. They also caused condensation and
marginalization of chromatin [39]. In the study by Wen et al. using the plant pathogen
Ustilaginoidea virens, it was also confirmed that AgNPs disrupt the integrity of the cell
wall and cell membrane and also affect the transcription process [99]. An increase in the
permeability of the cell membrane was also identified in the case of studies on the influence
of AgNPs on the cells of four pathogens causing rot of kiwi fruit: Alternaria alternata,
Pestalotiopsis microspora, Diaporthe actinidiae, and Botryosphaeria dothidea [100].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 17 
 

 
Figure 5. Antifungal mechanisms of silver nanoparticles, based on [35]. 

3.6. Toxicity of Silver Nanoparticles 
We can observe that silver nanoparticles accompany us in everyday life in household 

and biomedical products and possess significant positive properties, including the ability 
to eliminate pathogenic microorganisms. However, it should be noted that their use also 
raises concerns about their potential threat to human health and the environment. The 
toxicity of nanoparticles depends on their size, shape, coating/capping agent, and method 
of synthesis. Interestingly, it was also noticed that nanoparticles synthesized using the 
green synthesis method are often more toxic than those synthesized with traditional meth-
ods. Toxicity is demonstrated at both the cellular and molecular levels. The major routes 
of entry of AgNPs are ingestion, inhalation, and dermal contact. Their toxicity is due to 
the fact that AgNPs are able to induce inflammation and oxidative stress at the site of 
exposure. In addition to causing oxidative stress, AgNPs also cause a decrease in glutathi-
one levels (GSH) and lipid peroxidation, which in turn leads to DNA damage, apoptosis, 
and necrosis. Despite numerous toxicological studies, long-term toxicity data are still lack-
ing. However, an occupational respiratory exposure limit value of 0.19 µg/m3 for AgNPs 
was recently proposed based on a subchronic inhalation toxicity study in rats [17]. Re-
search using in vitro cell cultures indicates that AgNPs are toxic to several human cell 
lines (human bronchial epithelial cells, human umbilical vein endothelial cells, red blood 
cells, human peripheral blood mononuclear cells, immortal human keratinocytes, liver 
cells). For example, studies on human skin cancer cells (A431) and fibrosarcoma cells (HT-
1080) showed that AgNPs (7–20 nm; 6.25 ug/mL; after 24 h of exposure) induced oxidative 
stress in these cells, manifested by a reduced level of GSH and superoxide dismutase 
(SOD) activity and increased lipid peroxidation. Moreover, they caused the induction of 
caspase 3 activity and DNA breaks. However, in the case of human colon cancer cells 
(HT29), hepatoma cells (HepG2), colon cancer cells (HCT116), lung adenocarcinoma cells 
(A549), lung fibroblasts (IMR-90), and glioma cells (U251), the main cause of toxicity was 
the generation of reactive oxygen species (ROS). In turn, in the case of mouse embryonic 
stem cells and mouse embryonic fibroblasts (25 nm; 50 ug/mL; after 72 h of exposure, 
coated), the increased expression of p53 (cell cycle checkpoint protein), γ-H2AX (bi-
omarker for DNA double-strand breaks), and Rad 51 (DNA repair protein) was identified. 
Furthermore, tests conducted in vivo using mice and rats demonstrated that AgNPs can 
penetrate the blood–brain barrier and accumulate in organs such as the liver, kidneys, and 
spleen. The induced cytotoxicity, however, largely depends on the size of the nanoparti-
cles, dosage, and duration of exposure [17,18]. During studies on Sprague–Dawley rats, a 
negative impact on the liver was observed after the ingestion of AgNPs (60 nm, 300 mg), 

Figure 5. Antifungal mechanisms of silver nanoparticles, based on [35].

3.6. Toxicity of Silver Nanoparticles

We can observe that silver nanoparticles accompany us in everyday life in household
and biomedical products and possess significant positive properties, including the ability
to eliminate pathogenic microorganisms. However, it should be noted that their use
also raises concerns about their potential threat to human health and the environment.
The toxicity of nanoparticles depends on their size, shape, coating/capping agent, and
method of synthesis. Interestingly, it was also noticed that nanoparticles synthesized using
the green synthesis method are often more toxic than those synthesized with traditional
methods. Toxicity is demonstrated at both the cellular and molecular levels. The major
routes of entry of AgNPs are ingestion, inhalation, and dermal contact. Their toxicity is
due to the fact that AgNPs are able to induce inflammation and oxidative stress at the
site of exposure. In addition to causing oxidative stress, AgNPs also cause a decrease in
glutathione levels (GSH) and lipid peroxidation, which in turn leads to DNA damage,
apoptosis, and necrosis. Despite numerous toxicological studies, long-term toxicity data are
still lacking. However, an occupational respiratory exposure limit value of 0.19 µg/m3 for
AgNPs was recently proposed based on a subchronic inhalation toxicity study in rats [17].
Research using in vitro cell cultures indicates that AgNPs are toxic to several human cell
lines (human bronchial epithelial cells, human umbilical vein endothelial cells, red blood
cells, human peripheral blood mononuclear cells, immortal human keratinocytes, liver
cells). For example, studies on human skin cancer cells (A431) and fibrosarcoma cells (HT-
1080) showed that AgNPs (7–20 nm; 6.25 ug/mL; after 24 h of exposure) induced oxidative
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stress in these cells, manifested by a reduced level of GSH and superoxide dismutase (SOD)
activity and increased lipid peroxidation. Moreover, they caused the induction of caspase
3 activity and DNA breaks. However, in the case of human colon cancer cells (HT29),
hepatoma cells (HepG2), colon cancer cells (HCT116), lung adenocarcinoma cells (A549),
lung fibroblasts (IMR-90), and glioma cells (U251), the main cause of toxicity was the
generation of reactive oxygen species (ROS). In turn, in the case of mouse embryonic stem
cells and mouse embryonic fibroblasts (25 nm; 50 ug/mL; after 72 h of exposure, coated),
the increased expression of p53 (cell cycle checkpoint protein), γ-H2AX (biomarker for
DNA double-strand breaks), and Rad 51 (DNA repair protein) was identified. Furthermore,
tests conducted in vivo using mice and rats demonstrated that AgNPs can penetrate the
blood–brain barrier and accumulate in organs such as the liver, kidneys, and spleen. The
induced cytotoxicity, however, largely depends on the size of the nanoparticles, dosage, and
duration of exposure [17,18]. During studies on Sprague–Dawley rats, a negative impact
on the liver was observed after the ingestion of AgNPs (60 nm, 300 mg), while prolonged
inhalation exposure to AgNPs resulted in lung damage. Additionally, an increased level of
silver was found in the offsprings’ tissues exposed during the prenatal period. Another
consequence of exposure (10 days) was lung inflammation in mice. In in vivo studies on
AgNPs in zebrafish, a reduction in the embryo hatching success rate, abnormal dorsal
chord, damaged eyes, and curved tail in larvae were observed. The acute toxicity dose for
zebrafish was determined to be 40 µg/L for 48 h. AgNPs exhibited cytotoxicity for rainbow
trout cell lines and their hepatocytes, and exposure to AgNPs in catfish embryos resulted in
mortality, DNA fragmentation, and malformations. Jasmine rice was used as a plant model
for studying the toxicity of AgNPs. It was demonstrated that AgNPs, depending on their
concentration, can inhibit germination and restrict root growth [101].

4. Conclusions

The presented review highlights the importance of silver nanoparticles as an antifun-
gal agent against both plant and human fungal pathogens. Silver is well known for its
antibacterial properties, which are confirmed by numerous studies; but, currently, atten-
tion is increasingly being paid to its antifungal properties. There are far fewer scientific
publications on the antifungal activity of silver nanoparticles than those presenting their
antibacterial activity, but they all confirm the antifungal potential of silver nanoparticles
against a wide range of fungal species, including Candida sp., Fusarium sp., and Aspergillus
sp. It was also confirmed that silver nanoparticles are effective against fungal biofilm,
which is extremely resistant to treatment. In the discussion of the antifungal properties of
silver nanoparticles, it is impossible not to mention the green synthesis of these nanoparti-
cles. This is currently a common method of synthesis due to its significant environmental
benefits compared to the traditional chemical synthesis. Both plants and microorganisms
are used for this purpose. Silver nanoparticles synthesized in this way show excellent
antifungal properties against the tested species of fungi. In addition, research confirms
that silver nanoparticles can be successfully combined with antifungal drugs used so far,
enhancing their effect on fungal cells. All the studies presented in this review lead to the
conclusion that silver nanoparticles are a good candidate for antifungal treatment, both
as an alternative to the currently used antifungal drugs and in combination with these
medicines. Therefore, they can be used in the treatment of fungal diseases of plants, includ-
ing crops, and in the treatment of problematic human infections caused by resistant fungi.
Moreover, many articles indicate the potential of using AgNPs for anticancer treatment,
as research shows that AgNPs inhibit the proliferation of various cancer lines, including
breast, prostate, and lung cancer. Another possible medical application is the treatment
of wounds or use as a doping material for synthetic bone scaffolds or dental biomaterials,
providing protection against potential bacterial infections. Apart from medical applications,
other possible uses of AgNPs include the disinfection of surfaces, water, and air, as well as
food processing and storage. Despite the efforts of many researchers, and although more is
increasingly known about the mechanisms of action of AgNPs on cells, this knowledge is
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still not sufficient and further research is needed to understand the exact processes. The fac-
tor limiting the use of AgNPs is their toxicity to humans, which, however, largely depends
on the size of the particles, shape, method of synthesis, and the route and time of exposure.
The next challenge concerns the method of green synthesis of AgNPs. Although this is a
common, environmentally friendly method, it requires further development, including,
in order to obtain the homogeneity of nanoparticles, investigating how the substances
present in the plant extract affect the structure and stability of nanoparticles and the tech-
nological innovations that are necessary to enable the use of these methods on a larger
scale. Moreover, there are many plants and microorganisms in the environment whose
synthesis has not yet been tested; therefore, further searches are necessary to identify the
most efficient biological agent for this process. To conclude, AgNPs open a new path
towards the development of new drugs and therapies for many plant and human diseases,
even those with high mortality, such as cancer or treatment-resistant fungal infections.
However, nanotechnology is a constantly developing field, so further research is necessary
to make AgNPs not only effective but also safe, firstly, for ourselves and, secondly, for the
environment around us.
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