
Citation: Michalek, J.; Oujezsky, V.;

Holik, M.; Skorpil, V. A Proposal for a

Federated Learning Protocol for

Mobile and Management Systems.

Appl. Sci. 2024, 14, 101. https://

doi.org/10.3390/app14010101

Academic Editor: Luis Javier Garcia

Villalba

Received: 12 November 2023

Revised: 14 December 2023

Accepted: 20 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Proposal for a Federated Learning Protocol for Mobile and
Management Systems
Jakub Michalek † , Vaclav Oujezsky *,† , Martin Holik and Vladislav Skorpil

Department of Telecommunication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic;
186140@vut.cz (J.M.); xholik11@vut.cz (M.H.); skorpil@vut.cz (V.S.)
* Correspondence: oujezsky@vut.cz
† These authors contributed equally to this work.

Featured Application: The proposed protocol can be applied to systems utilizing federated learning.
The design takes into account systems that necessitate both redundant and secure communication.

Abstract: In this research paper, we introduce a federated learning communication protocol tailored
for emergency management applications. Our primary objective is to tackle the communication
challenges that arise in such critical scenarios. In order to overcome the limitations associated with
centralized server architectures, we present an innovative communication protocol. This protocol
empowers the framework to effectively cooperate with multiple centralized servers, fostering efficient
knowledge sharing and model training while ensuring the utmost data privacy and security. By
harnessing this protocol, our framework elevates the performance and resilience of vital infrastructure
systems operating on the Android platform, thereby facilitating real-time operational scenarios. This
research makes a substantial contribution to the field of emergency management applications, as we
offer a comprehensive solution that optimizes communication and enables seamless collaboration
with numerous centralized servers.

Keywords: Android; communication protocol; federated learning; framework; machine learning; mobile

1. Introduction

Emergency management applications [1] play a critical role in maintaining the efficient
operation of various industries. For example, transportation emergency management sys-
tems play a pivotal role in significantly augmenting traffic safety and accruing substantial
experiential insights in the domain of transportation emergency management. Notably,
these systems facilitate expeditious information processing and environmental interaction
in the context of traffic accidents. Furthermore, they enable the expeditious estimation of
the temporal parameters associated with rescue operations and the evacuation of individu-
als in the aftermath of such incidents [2]. Thus, it is imperative to develop robust and secure
frameworks and communication protocols to enhance their performance and intelligence.
As the demand for crisis management grows, especially in terms of coordinated efforts
among emergency response teams, there is a pressing need for reliable and rapid informa-
tion access to address crisis situations effectively. Information systems (IS), particularly
web applications based on client–server principles, offer one approach to managing this
information. Database systems are essential for organizing logically related data for future
use. Modern systems handle complex structured and unstructured data, encompassing
IS programs, data analysis, and process management. Local and cloud systems, such as
Google Firebase Messaging [3] and MongoDB Realm [4], are employed for notifications,
remote configuration, and application management. Safeguarding the integrity of these
data is a paramount concern for programmers and institutions alike.

In recent years, federated learning [5,6] has emerged as a promising technique to
harness decentralized data sources while preserving data privacy. Research into using

Appl. Sci. 2024, 14, 101. https://doi.org/10.3390/app14010101 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14010101
https://doi.org/10.3390/app14010101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5504-7533
https://orcid.org/0000-0001-7629-6299
https://doi.org/10.3390/app14010101
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14010101?type=check_update&version=2

Appl. Sci. 2024, 14, 101 2 of 14

federated learning in emergency management applications is undergoing progressive
expansion. For example, a privacy-preserving federated transfer learning approach for
disaster classification (FedTL) has been proposed, which uses federated learning for disaster
analysis from an image from social networks [7], or an application using the FedResilience
algorithm that improves the resilience of resource-constrained critical infrastructures [8].
Even with these developments, the exploration of federated learning within emergency
management applications on the Android platform still needs to be explored. While
federated learning has shown promise in decentralized data utilization, its application and
exploration in the Android ecosystem for emergency management remain limited.

This paper introduces our proposed KI federated learning framework specifically pro-
posed for emergency management applications and mainly our proposed communication
protocol. The abbreviation KI is based on the Czech abbreviation for critical infrastructure.
The framework and the communication protocol are designed to tackle the unique chal-
lenges presented by these systems, which include limited computational resources, diverse
data sources, and rigorous security requirements.

The framework incorporates novel communication protocols and machine learning
techniques to facilitate collaborative model training while upholding data privacy. It
empowers distributed machine learning model training across multiple Android devices,
capitalizing on their collective intelligence without compromising the confidentiality of
sensitive data.

Furthermore, the framework features adaptive learning algorithms that can dynami-
cally adjust model updates to accommodate the changing characteristics of the infrastruc-
ture system. This adaptive capability ensures that the trained models remain accurate and
relevant in real-time operational scenarios. The scientific contribution is as follows:

• Introduction of the KI Federated Learning Framework: Development of a novel
framework, specifically designed for emergency management applications used with
Android systems.

• Innovative Communication Protocol: Proposal of a communication protocol compat-
ible with Apache Kafka and Firebase, contributing to structured communication in
federated learning systems.

• Adaptive Learning Algorithms: Integration of adaptive learning algorithms to dy-
namically adjust model updates, ensuring relevance and accuracy in real-time
operational scenarios.

• Expansion of Federated Learning in Android: Exploration and expansion of federated
learning applications within the Android platform, contributing to the evolving field
of Android-based emergency management systems.

• Simulation and Evaluation: Comprehensive simulation within MATLAB Simulink to
assess the efficacy of the proposed communication protocol and framework, ensuring
practical feasibility.

In summary, this research makes a significant contribution to the advancement of
federated learning in the context of critical infrastructure systems. It provides a commu-
nication protocol and practical and secure framework tailored to the Android platform,
opening up new possibilities for enhancing the performance and security of these systems.
Ultimately, this will increase reliability and resilience in critical operational scenarios.

The paper is structured as follows. Section 2 provides a comprehensive overview of
the current state of existing frameworks and tools in the realm of federated learning. In
Section 3, we introduce a novel Android federated learning framework tailored to critical
infrastructure systems. We delve into the crucial necessity for robust communication
between end devices and central servers and the adoption of multiple independent central
servers. The principles of our proposed communication protocol used in our framework are
elucidated in Section 4, and the results and protocol simulation are presented in Section 5.
This is followed by a detailed discussion of the outcomes and our proposed solutions in
Section 6. Finally, Section 7 offers a concluding perspective on the entire endeavor.

Appl. Sci. 2024, 14, 101 3 of 14

2. The State of the Art

As part of our research [6], we present a comprehensive overview and comparative
analysis of existing frameworks, along with an introduction to the fundamental princi-
ples of federated learning. Among the most prominent open-source federated learning
frameworks are TensorFlow Federated (TFF) [9] and Federated AI Technology Enabler
(FATE) [10]. TFF is tailored for decentralized data processing and boasts support for various
algorithms such as FedAvg and FedSGD. It provides both a Federated Learning Application
Programmable Interface (API) for high-level interfaces and a Federated Core (FC) API for
distributed computing. TFF has demonstrated its efficacy in practical applications, such as
mobile keyboard prediction [9]. FATE, on the other hand, places a strong emphasis on se-
cure computing protocols based on homomorphic encryption and multiparty computation.
It accommodates a broad spectrum of machine learning algorithms and traditional methods.
Notable projects leveraging federated learning include VisionAir [11] for air quality estima-
tion, an object recognition project by Jose Carbacho [12], and a privacy-preserving system
for Android malware detection. The Flower project, built on TFF, facilitates federated
learning across different servers and devices [13].

For addressing the challenge of heterogeneous data distribution, the Federated Learn-
ing with Dynamic Regularization (FedDyn) framework [14] has been developed. It tackles
the balance between minimizing the error on individual devices and minimizing the global
error by employing dynamic regularization to achieve convergence between local and
global errors. Hybrid Federated Dual Coordinate Ascent (HyFDCA) [15] is dedicated to
handling the intricacies of hybrid federated learning, where each client manages a spe-
cific subset of data samples or features. It utilizes a dual coordinate ascent approach to
tackle these challenges. Lastly, the KafkaFed [16] framework introduces an algorithm for
federated learning that harnesses Apache Kafka as its communication medium. KafkaFed
leverages the robust messaging capabilities of Kafka to facilitate seamless communication
and coordination among the participants in the federated learning process.

These diverse frameworks offer a range of approaches and techniques to address the
various aspects and challenges of federated learning.

Emergency management applications encompass a wide array of essential systems
and services crucial for a society and nation’s proper functioning. Android federated
learning can have significant applications and implications within the realm of emergency
management applications. The integration of federated learning on Android devices
within these applications offers several advantages, including improved privacy, localized
data processing, and real-time decision-making capabilities. However, it is imperative to
exercise meticulous consideration concerning security, resource constraints, data quality,
and compliance to ensure the successful and responsible implementation of federated
learning in the context of emergency management.

Android’s role in emergency management applications is an emerging field that has
not received substantial attention thus far. Nonetheless, the Android operating system is
gradually expanding beyond mobile devices and into the Internet of Things (IoT) domain.
Consequently, it becomes increasingly crucial to explore the implications and potential
applications of Android within emergency management systems.

Furthermore, aside from the traditional deployment options, novel Android deploy-
ment solutions are emerging, such as Waydroid [17] and LineageOS [18]. These platforms
enable the operation of a full-fledged Linux distribution with an Android compatibility
layer on Android devices. This breakthrough enhances flexibility and customization, allow-
ing users to leverage Android applications alongside Linux-based functionalities. These
evolving deployment options open up exciting new possibilities for Android-based sys-
tems in a variety of contexts. Beyond the Android-based systems mentioned above, the
current possibilities for implementing machine learning using Google TFlite cover a range
of other devices. This includes, for example, STM32 AI [19], where custom models can be
implemented on a range of microprocessors. However, this is beyond our research, and we
are primarily focused on Android systems.

Appl. Sci. 2024, 14, 101 4 of 14

As a part of our project, we conducted an anonymous survey aimed at exploring
the potential requisites and applications of integrating federated learning with Android
systems in the context of critical infrastructures. The survey outcomes unveiled several
pivotal requirements, with a pronounced focus on the imperative need for secure and
dependable data transmission. Notably, the quality of service and ensuring the unwavering
delivery of data emerged as critical facets within this domain.

Furthermore, the survey underscored the significance of services relating to data
management and machine learning. These services assume a central role in effectively har-
nessing data resources and deploying machine learning algorithms within the framework
of federated learning.

In sum, the survey illuminated the paramount importance of addressing security
concerns, establishing a dependable data transmission infrastructure, and providing robust
services for data management and machine learning. These elements are essential for
realizing the full potential of federated learning when integrated with Android systems for
emergency management applications. The subsequent sections elaborate on the proposed
framework, taking into account the insights derived from our survey and building upon
existing frameworks.

3. The Proposed Framework Components

A fundamental prerequisite in our design is the establishment of a reliable communica-
tion channel between the terminal devices and the central server. This channel is crucial for
transmitting loss calculations and model weights. Our design accounts for the versatility of
this system to be applied across various technologies and includes provisions for backup
communication methods. Furthermore, we must address the challenge of preventing
the central server from becoming overwhelmed by multiple client requests. To meet this
requirement, we accommodate the deployment of multiple independent central servers
that synchronize during the learning process. The conceptual framework for connecting
these central servers and end clients is depicted in Figure 1.

Car
Mobile client

Generic

Global model

Local model

Loss/Weights
updates

Tr
ai

ni
ng

 d
ev

ic
es

Deployment devices

Mobile client

Model transfer

Mobile client

Datastore

Kafka Broker

Global model

Firebase
Application

Load Balancer

Figure 1. The components of the conceptual framework.

Appl. Sci. 2024, 14, 101 5 of 14

In this design framework, multiple central servers are employed simultaneously, and
communication is facilitated using a combination of Apache Kafka [20] and a real-time
database. A real-time database is a data repository that actively gathers, processes, and
enhances data immediately upon their creation, ensuring that the database remains up-
to-date in real time. Kafka serves as an auxiliary communication source rather than the
primary one. This choice is motivated by the need to mitigate potential data loss in the event
of communication failures, necessitating the implementation of a mechanism for data re-
transmission. It is worth noting that our design departs from the common practice of using
the protobuffer method for data transfer, instead opting for text-based communication as
per the specified requirements.

For the real-time database component, we have chosen the Firebase Realtime Database [21]
for the development. Additionally, on the end clients, we utilize the default TensorFlow
Lite [22] framework provided by Google, while the servers employ TensorFlow as their
primary framework. These technology choices align with our intention to leverage the
capabilities and compatibility offered by Google technologies to ensure the efficient and
effective operation of the system.

4. The Proposed Communication Protocol

The communication protocol proposed in this design is designed to be compatible with
both Apache Kafka and the Firebase Realtime Database. In this protocol, all information,
including details about model weights, is transmitted in the JavaScript Object Notation
(JSON) format. This approach ensures that the data exchanged among the various compo-
nents of the system can be easily parsed, interpreted, and processed by both Apache Kafka
and the real-time database, enabling seamless communication and data synchronization
across the system. The learning model within this system encompasses several distinct
states, including:

• Recovering from a Checkpoint: Involves restoring the model to a previously saved state.
• Training: Entails the iterative process of optimizing the model’s parameters using

training data.
• Resaving the Model to a Checkpoint File: Preserves the updated state for future

reference.
• Exporting the Weights of the Trained Model to JSON Format: Facilitates their transfer

and storage in a human-readable format.
• Importing the Weights from the JSON Format Delivered by the Server: Allows

the model to incorporate the updated weights received from the server into its
current state.

These defined states enable the model to undergo checkpoint recovery, training, and
the exchange of model weights in a structured and coherent manner throughout the
learning process.

Furthermore, an additional feature currently in development involves two approaches
for calculating the average of the weights. Firstly, the average of the weights is calculated
directly on the clients. Secondly, the model itself utilizes TensorFlow functions to calculate
the average of the weights.

Figure 2 provides an illustration of the design and implementation of the commu-
nication protocol, which is followed by the client and server-side logic, as depicted in
Figures 3 and 4. The protocol commences when the client initializes and retrieves the con-
figuration information from the Firebase Realtime Database. This configuration includes
details like the current model version. Subsequently, the client queries the database to
select the server intended for training by sending a server selection message. All queries,
including this one, are sent to the Firebase Realtime Database and/or Kafka.

Furthermore, the communication protocol incorporates a “learning exchange message”
designed to convey critical information related to model training. This message comprises
several essential components, including a designated client number, priority level, sequence
number, and a type entry specifying the message’s nature. The type entry distinguishes

Appl. Sci. 2024, 14, 101 6 of 14

between messages containing computed model loss and those intended to transmit updated
weights for the global model.

By incorporating these elements into the learning exchange message, the protocol
establishes a well-structured format for transmitting vital information relevant to model
training. The client number helps identify the sender, while the priority and sequence
numbers aid in organizing and prioritizing messages. The type entry allows for the precise
interpretation and handling of different data types, ensuring clarity and consistency in
the communication process. This standardization promotes effective coordination and
synchronization in the learning exchange process between clients and servers.

KEEPALIVE

clientID

status

serverID

status

CONFIGURATION

ipv4AddressServer

modelVersion

future use

LEARNING EXCHANGE

clientSpecificNumber

priority

loss

weights

sequence number

SERVER SELECTION

clientID

serverID

type

task
Server Client

Figure 2. Protocol implementation.

INIT

do / getConfiguration

exit / setConfiguration

READY

do / waitingJob

exit / job

CONFIGURATION

do / serverSelection

Data

do / gatherData

exit / data

TRAINING

enter / job

do / train

exit / loss, weights

RESTORE

enter / weights

do / restore, save

SERVER

Start app

Figure 3. Client site logic.

Appl. Sci. 2024, 14, 101 7 of 14

DISTRIBUTION

do / redistributeModel

exit / waitForNewModel,
Initialization

MODEL

do / createModel,
updateModel

exit / model

TRAINING

enter / clientsWeights

do / average, train

exit / selected loss, weightsRESTORE

enter / weights

do / restore, save
CLIENT

Server INITIALIZATION

enter / modelVersion

do / clientsSelection

exit / clientsTasks

Figure 4. Server site logic.

5. Communication Protocol Simulation

To assess the efficacy of the communication protocol design, a simulation was imple-
mented within the MATLAB R2022a Simulink software [23]. The simulation resources are
available in ref. [24]. The simulation comprised three fundamental components: a server, a
database, and clients. The operational characteristics of these components are delineated
through state transitions, collectively constituting a comprehensive state graph for each.
Inter-component communication is facilitated through the transmission of messages and
events, grounded in the reciprocal exchange of states.

The constituent elements of the simulation were constructed based on the logic pro-
posed in the communication protocol, augmented by additional logic essential for testing
all conceivable scenarios that may arise during their interaction. The simulation itself was
formulated to enable the emulation of communication involving any quantity of clients
with a single server through a real-time database. The structural details of the individual
foundational components are explicated in the subsequent sections.

The state graph corresponding to the client is illustrated in Figure 5. Upon commence-
ment of the simulation, the client initially transitions to the INIT state, wherein it requests
configuration information from the database and awaits a response. Subsequent to the
configuration retrieval, the client progresses to the CONFIGURATION state, wherein it
selects the server for communication. Following this, the client enters the READY state,
signaling its preparedness to receive a job for processing and awaits such a job from the
server. Upon receipt of a task, the client enters the GATHER_DATA state, wherein client
data are collated for learning. Another state, TRAINING_MODEL, involves training the
model acquired during configuration, resulting in the creation of a new local model specific
to the client. Post each training round, local weights are transmitted to the server, and the
client anticipates the reception of new global weights. This iterative process persists until
the completion of all rounds specified in the job assignment. Subsequently, the training
concludes, and the client, in the RESTORE state, obtains the newly trained global model
before reverting to the READY state. This cyclic process repeats periodically, contributing
to the refinement of the global model. The OFF state was incorporated into the status
graph, which the client enters if it is deactivated in the simulation, thereby facilitating the
simulation of random login and logout events of client devices.

The state graph corresponding to the server is depicted in Figure 6. Upon activation,
the server transitions to the MODEL state, where a default data model is generated for
subsequent enhancement by clients. It then proceeds to the SERVER_INTERFACE state,
awaiting job requests from individual clients. Upon receipt of job requests from all reg-

Appl. Sci. 2024, 14, 101 8 of 14

istered clients, jobs are dispatched to clients in the INITIALIZATION state. The server
subsequently awaits local weights from clients and, upon reception, transitions to the
TRAINING_GLOBAL_MODEL state, wherein these weights are amalgamated into global
weights. This process iterates until the conclusion of all rounds specified in the job. Follow-
ing the overall training, a novel global model is formulated and disseminated to clients.
The server reverts to the SERVER_INTERFACE state, awaiting further client task applications.

The state graph for the database, as delineated in Figure 7, is formulated to consist
of message and event forwarding between the server and the database. It preserves
information pertaining to the status and quantity of clients. Additionally, each component
encompasses a state graph for KEEPALIVE messages, which is integral for sustaining
the connection between the client and the server via the database. Within the simulation,
keepalive messages are periodically dispatched from both clients and the server to the
database, which, in turn, monitors potential outages of clients or the server itself, reacting
accordingly to these alterations.
Client_1_box

Client_1

TRAINING_MODEL
MODEL_TRAINED
entry:
c1_state	=	"model_trained"
c1_rounds	=	c1_rounds	+	1;
c1_model_ready	=	false;
send(C_localWeights,Database)

TRAINING
entry:
c1_state	=	"training"

after(10,sec)

RESTORE
entry:
c1_state	=	"restore"
c1_model_ready	=	false;
send	(C_getGlobalModel,Database)
during:
if	s1_model_version	>	c1_model_version
				c1_model_ready	=	true;
				c1_model_version	=	s1_model_version;
end

CONFIGURATION
entry:
c1_state	=	"configuration"
exit:
C_serverSelection.data	=	"server1"
send(C_serverSelection)
send(C1_serverSelection,Database)

INIT
READY
entry:
c1_state	=	"online"
exit:
C_getConfiguration.data	=	"client1"
send(C_getConfiguration)
send(C1_getConfiguration,Database)

WAIT_FOR_CONFIGURATION
entry,during:
c1_state	=	"wait_for_configuration"
if	receive(C_configuration)	&&	C_configuration.data	==	"client1"
				c1_set_configuration	=	true
				c1_model_version	=	s1_model_version
				c1_model_ready	=	true
end

after(60,sec)2
[c1_on==1]2

READY

WAIT_FOR_JOB
entry,during:
c1_state	=	"wait_for_job"
if	s1_state==	"send_job"
				c1_job	=	true;
				c1_rounds	=	0;
end

READY_TO_JOB
entry:
c1_state	=	"ready"
send(C1_readyToJob,Database)

[c1_on	==	1] 2

OFF
entry:
if	c1_set_configuration	==	true
				s1_clients	=	s1_clients	-	1;
				c1_set_configuration	=	false;
end

WAIT_FOR_DATA
entry,during:
c1_state	=	"model_trained"
if	c1_rounds	==	3
				c1_job	=	false
end
if	s1_state	==	"global_round_trained"
				c1_model_ready	=	true;
end

GATHER_DATA
entry:
c1_state	=	"gather_data"

[c1_model_ready	==	true]
2

[c1_on	==	1]
2

after(10,sec)

[c1_job	==	true]

2

[c1_job==	false]

3

[c1_on	==	0] 1

[c1_on	==	0]

1

[c1_model_ready	==	true]

2

[c1_on	==	1] 2

[c1_set_configuration	==	true]
[c1_on	==	0]

1

[c1_on	==	0]
1

[c1_on	==	0]1

[c1_on	==	0]

1

[c1_on==1]

[c1_on	==	0]

1

[c1_on	==	0]

1

1 Client_1_keepalive

SENDING
entry:
if	c1_on	==	true
				send(C1_keepAlive,	Database_keepalive)
end

WAITING

after(20,sec)

2
1

Figure 5. Client state graph.

Appl. Sci. 2024, 14, 101 9 of 14

Server__box

Server_1_keepalive

WAITING
SENDING
entry:
if	s1_on	==	1
				send(S1_keepAlive,	Database_keepalive)
end

after(10,sec)

2

Server_1

TRAINING
GLOBAL_MODEL_TRAINED
entry:
s1_state	=	"global_model_trained"
s1_model_version	=	s1_model_version	+	1;
send(S_globalModel,Database)
exit:
s1_client_weights=0;
s1_ready_to_job	=	false;

TRAINING_GLOBAL_MODEL
entry:
s1_state	=	"global_round_trained"
s1_ready_to_train	=	false;
exit:
send(S1_globalWeights,Database)

[s1_rounds==3]1

SERVER_INTERFACE
entry,during:
s1_state	=	"waiting_for_clients";
s1_clients_ready=0;
if	(c1_state==	"wait_for_job")
				s1_clients_ready	=	s1_clients_ready	+	1;
end
if	(c2_state	==	"wait_for_job")
				s1_clients_ready	=	s1_clients_ready	+	1;
end
if	(s1_clients_ready==s1_clients	&&	s1_clients_ready>0)
				s1_ready_to_job	=	true;
end

MODEL
entry:
s1_state	=	"online";
exit:
s1_model_version	=	s1_model_version+1;

INITIALIZATION

SEND_JOB
entry:
s1_state	=	"send_job"
s1_rounds=0;
send(S1_sendJob,Database)

RECIEVE_JOBS
entry,during:
s1_client_weights=0;
if	c1_state==	"model_trained"
				s1_client_weights	=	s1_client_weights	+	1;
end
if	c2_state	==	"model_trained"
				s1_client_weights	=	s1_client_weights	+	1;
end
if	s1_client_weights	==	s1_clients
				s1_ready_to_train	=	true;
				s1_rounds	=	s1_rounds	+	1;
				send(S1_ready_to_train,Database);
end

C_localWeights

[s1_ready_to_train	==	true]

1

after(10,sec)

2

[c1_state	==	"restore"]
2

[s1_ready_to_job	==	true]

1

4

Figure 6. Server state graph.

Database

GLOBAL_MODEL
entry:
if	c1_state	==	"model_trained"
				send(S1_globalWeights,Client_1_box.Client_1.WAIT_FOR_DATA)
end
if	c2_state	==	"model_trained"
				send(S1_globalWeights,Client_2_box.Client_2.WAIT_FOR_DATA)
end

LOCAL_MODEL
entry:
send(C_localWeights,Server__box.Server_1)

GLOBAL_MODEL1
entry:
				send(S_globalModel,Client_1_box.Client_1.RESTORE)
				send(S_globalModel,Client_2_box.Client_2.RESTORE)

JOB
entry:
if	c1_state	==	"wait_for_job"
				send(S1_sendJob,Client_1_box.Client_1.READY.WAIT_FOR_JOB)
end
if	c2_state	==	"wait_for_job"
				send(S1_sendJob,Client_2_box.Client_2.READY.WAIT_FOR_JOB)
end

SERVER_SELECTION
entry:
switch	C_serverSelection.data
				case	"server1"
								if	c1_on	==1	&&	c2_on	==1
												s1_clients	=2;
								else	s1_clients=1
								end
end

CONFIGURATION
entry:
C_configuration.data	=	C_getConfiguration.data
exit:
send(C_configuration)
switch	C_getConfiguration.data
				case	"client1"
								send(configuration,Client_1_box.Client_1.INIT.WAIT_FOR_CONFIGURATION)
				case	"client2"
								send(configuration,Client_2_box.Client_2.INIT.WAIT_FOR_CONFIGURATION)
end

DATABASE_INTERFACE

C_getGlobalModel
6

S1_globalWeights
5

C_localWeights
4

C_getConfiguration
1

C_serverSelection
2

S1_sendJob
3

3

Figure 7. Database state graph.

Appl. Sci. 2024, 14, 101 10 of 14

5.1. The Simulation Results

To evaluate the designed simulation, coverage analysis was employed, specifically
Modified Condition/Decision Coverage (MCDC). This analysis method assesses the extent
to which the simulation testing encompasses the design, thereby gauging the effectiveness
and comprehensiveness of the testing. Furthermore, MCDC aids in identifying any testing
gaps, missing requirements, or unintended features by leveraging coverage data acquired
during requirements-based testing. This analysis assumes particular significance in the
development of systems characterized by stringent security and reliability prerequisites.

For the analysis, a model featuring a server, a database, and two clients was selected.
Throughout the analysis, the clients were subjected to random on-and-off operations. The
resultant summary of the analysis, encompassing over 250,000 state transitions for each
component of the simulation, is presented in Figure 8. Notably, the analysis indicates the
stability of the simulation, as it did not yield any error states during the examination.

Summary

Model Hierarchy/Complexity Run 17

Decision Condition MCDC Execution

1. FederatedSystem 158 86% 79% 50% 100%

2. . . . Federated system 157 86% 79% 50% NA

3. SF: Federated system 156 86% 79% 50% NA

4. SF: Client_1_box 48 81% 88% 50% NA

5. SF: Client_1 45 79% 88% 50% NA

6. SF: INIT 9 75% 88% 50% NA

7. SF: READY 4 75% NA NA NA

8. SF: TRAINING_MODEL 2 100% NA NA NA

9. SF: Client_1_keepalive 3 100% NA NA NA

10. SF: Client_2_box 48 80% 63% 25% NA

11. SF: Client_2 45 78% 63% 25% NA

12. SF: INIT 9 58% 63% 25% NA

13. SF: READY 4 88% NA NA NA

14. SF: TRAINING_MODEL 2 100% NA NA NA

15. SF: Client_2_keepalive 3 100% NA NA NA

16. SF: Database 21 91% 50% 0% NA

17. SF: Database_keepalive 10 100% NA NA NA

18. SF: Server__box 29 94% 100% 100% NA

19. SF: Server_1 26 95% 100% 100% NA

20. SF: INITIALIZATION 8 100% NA NA NA

21. SF: TRAINING 2 100% NA NA NA

22. SF: Server_1_keepalive 3 83% NA NA NA

Details

1. Model "FederatedSystem"

Child Systems: Federated system

Metric Coverage (this object) Coverage (inc. descendants)

Cyclomatic Complexity 1 158

Decision NA
86% (231/270) decision
outcomes

Condition NA
79% (22/28) condition
outcomes

FederatedSystem Coverage Report file:///C:/Users/bubuk/OneDrive/Dokumenty/MATLAB/slcov_output/F...

2 z 63 10.11.2023 20:09

Figure 8. The summary of model coverage analysis.

Decision condition coverage is a crucial metric for tracking whether all decision
conditions and branches within the model have been adequately tested and whether a
range of input conditions and their combinations have been effectively addressed. This
coverage metric exceeds 80 percent for the majority of components. Additionally, condition
coverage analysis produced favorable results for testable conditions, thereby indicating
a high degree of reliability within the model. In aggregate, the analysis underscores the
well-conceived design and successful implementation of the communication protocol in
the SIMULINK-based simulation. Consequently, it signifies the viability of deploying this
protocol in practical operational scenarios.

5.2. Implementation

In the case of the implementation of the proposed protocol, we have so far im-
plemented it on Android devices and performed initialization tests with the Firebase
database [21]. For the implementation on Android devices, we used the TensorFlow

Appl. Sci. 2024, 14, 101 11 of 14

Lite [22] version (org.tensorflow:tensorflow-lite) for the machine learning implementa-
tion [25] and created our own functions for exporting and restoring model weights. Creat-
ing functional exports and imports of weights was the biggest challenge. The TensorFlow
Lite has (at the time of writing) some limitations, discussed in Section 6. We also im-
plemented a custom state machine that matches the design discussed above. To create
Firebase functions on Android devices, we use Firebase libraries and bill of materials (BOM)
com.google.firebase:firebase. The minimized version of JSON is shown in Figure 9. This
format is used in the Firebase database as well as being sent to a specific topic in Kafka. All
Android programming code is in Kotlin.

{"configuration":["",{"modelAddress":"","modelVersion":""}],"learningExchange":{"
clientID":{". priority":"","client":"","loss":"","type":""},"clientSpecificNumber":
{"client":"","loss":"","priority":"","sequenceNumber":"","type":"","weights":""}},
"serverSelection":["specificKey",{"clientID":"","serverID":"","task":"","type":""}
],"statusKeepAlive":{"clients":{"clientID":"","status":""},"serverID":{"status":""
}}}

Figure 9. The format of JSON messages.

The server part is developed in the Quart [26] environment. The reason is that it is
necessary to use asynchronous functions for communication with the Firebase database
and Kafka manager. The mentioned Firebase software development kit (SDK) provides
tools for automatic updates when the database content changes.

6. Discussion

The incorporation of Apache Kafka and the Firebase Realtime Database ensures a
versatile and reliable communication channel, addressing potential challenges such as
data loss. However, it is essential to acknowledge and discuss certain limitations and
considerations. The proposed framework assumes a certain level of compatibility and
integration with Google technologies, such as TensorFlow and Firebase. While this enables
efficient operation within the Android ecosystem, it may pose challenges for organizations
or systems using alternative technologies.

Furthermore, the simulation results demonstrate the effectiveness of the communi-
cation protocol within a controlled environment. However, real-world implementation
may introduce additional complexities and unforeseen challenges that require continuous
evaluation and adaptation.

TensorFlow Lite on Android devices does come with several limitations and constraints:

• Constraints on Compatibility: TensorFlow Lite may not be fully compatible with all
TensorFlow models and operations, especially more complex ones. Modifications or
retraining might be necessary to adapt models to work with TensorFlow Lite.

• Limitations on Model Size: TensorFlow Lite imposes restrictions on model size to
accommodate the memory and storage limitations of mobile devices. This constraint
can affect the types and sizes of models that can be deployed on Android.

• Challenges with Custom Operations: TensorFlow Lite has limited support for cus-
tom operations, which can be challenging when working with models that rely on
such operations.

• Dynamic Models: Models with variable inputs or architectures may require additional
considerations to ensure compatibility with TensorFlow Lite.

Despite these limitations, TensorFlow Lite offers significant benefits, including im-
proved performance, reduced model size, and offline inference capabilities. This makes it a
valuable choice for running machine learning models on Android devices.

Additionally, during the implementation, a limitation was encountered with the
Firebase Realtime Database. This limitation is specifically related to naming restrictions,
which enforce specific conventions to ensure compatibility. To work effectively with the
Firebase Realtime Database, it is crucial to adhere to the prescribed naming conventions
and structure names accordingly, especially for weights and biases. By following these

Appl. Sci. 2024, 14, 101 12 of 14

naming restrictions, the limitations associated with the Firebase Realtime Database can be
effectively managed, ensuring smooth and consistent operation within the implemented
communication protocol.

The proposed KI Federated Learning Framework distinguishes itself from KafkaFed [16]
through its versatile approach to communication channels. While KafkaFed primarily relies
on Apache Kafka, the proposed framework integrates both Apache Kafka and the Firebase
Realtime Database. This dual integration not only ensures robustness but also provides
a backup communication method, mitigating potential data loss concerns. Additionally,
the choice of Firebase Realtime Database facilitates real-time updates and synchronization,
fostering efficient communication and coordination among distributed components.

In terms of adaptability to the Android ecosystem, the KI Federated Learning Frame-
work stands out as it is specifically tailored for emergency management applications on
Android devices. Leveraging TensorFlow Lite and Firebase, it seamlessly integrates within
the Android environment, contributing to enhanced privacy and real-time decision-making
capabilities. The structured communication protocol proposed by the KI Federated Learn-
ing Framework, utilizing the JSON format, adds a layer of clarity and interpretability.

The integration with Firebase Realtime Database in the KI Federated Learning Frame-
work, while not explicitly emphasized in TFF [9], plays a crucial role. Firebase provides
tools for automatic updates, enhancing the efficiency of communication between clients
and the server. Moreover, the proposed framework goes a step further by incorporating
adaptive learning algorithms. This feature dynamically adjusts model updates based on
the changing characteristics of the infrastructure system, ensuring relevance and accuracy
in real-time operational scenarios.

7. Conclusions

In conclusion, this article presents a novel and comprehensive Android federated
learning framework and communication protocol designed specifically for emergency
management applications. This framework addresses the unique challenges posed by such
systems, including limited computational resources, diverse data sources, and rigorous
security requirements. By facilitating collaborative model training while preserving data
privacy and incorporating adaptive learning algorithms, this framework promises to
significantly advance the field of federated learning within critical infrastructure systems.

The communication protocol, which combines Apache Kafka and a real-time database,
ensures seamless and efficient data exchange, further enhancing the framework’s capa-
bilities. TensorFlow Lite on end clients and TensorFlow on servers provide an effective
platform for machine learning and model training, aligning with the goals of this project.

The practical implications of the KI federated learning framework are manifold, par-
ticularly in the realm of emergency management. By dynamically adapting to real-time
conditions, the framework enhances collaboration among response teams, ensuring more
efficient emergency management systems. The real-time coordination facilitated by the
communication protocol, compatible with Apache Kafka and Firebase, proves invaluable
during crises, providing reliable collaboration channels. Moreover, the focus on Android
deployment solutions broadens the framework’s applicability, offering flexibility across
various devices and extending its reach within emergency management scenarios. Impor-
tantly, the framework addresses privacy concerns through decentralized data processing,
guaranteeing confidentiality in sensitive emergency management situations.

On the theoretical front, the research significantly contributes to the advancement of
federated learning. It introduces novel communication protocols and machine learning
techniques, fostering the evolution of the federated learning landscape. The proposed com-
munication protocol establishes a theoretical foundation for effective communication within
federated learning systems. Its clear structure and defined states provide a framework for
structured communication, ensuring clarity and coherence in information exchange.

Looking toward implementation and commercialization, the adaptable nature of the
framework extends its utility beyond emergency management. Industries with critical

Appl. Sci. 2024, 14, 101 13 of 14

infrastructure systems stand to benefit from its cross-industry applications. The protocol’s
compatibility with widely used technologies facilitates seamless integration into existing
information systems, offering a practical solution for organizations looking to enhance
their data processing capabilities. Furthermore, the framework holds potential for commer-
cialization, especially for companies specializing in data analytics, machine learning, and
emergency management solutions.

The research also opens avenues for specialized data security solutions, particularly
relevant for cybersecurity companies. The emphasis on privacy-preserving federated
learning suggests opportunities to develop tailored security solutions to safeguard sensitive
information. Additionally, as federated learning gains importance, organizations seeking
guidance in its implementation may create a demand for consultation and training services.
This growing significance underscores the diverse commercialization possibilities stemming
from the research. In summary, the research not only contributes to federated learning
theory but also provides practical solutions with broad applications, presenting promising
opportunities for commercialization across various sectors.

This research offers a valuable contribution to the field, with potential applications
and implications for emergency management on Android devices. It opens up new possi-
bilities for enhancing the performance and security of these systems, ultimately leading to
increased reliability and resilience in critical operational scenarios.

Future work includes the implementation of features like checkpoint recovery, training,
and structured weight exchange. With ongoing development and research, this framework
holds the promise of improving emergency management applications on the Android
platform, making them more secure, efficient, and reliable.

Author Contributions: Conceptualization, V.O.; methodology, V.O. and J.M.; software, J.M. and M.H.;
validation, V.S.; investigation, V.O.; resources, V.S.; writing—original draft preparation, V.O. and
J.M.; writing—review and editing, V.O.; visualization, V.S.; supervision, V.O.; project administra-
tion, V.O.; funding acquisition, V.O. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the grant of the Ministry of the Interior of the Czech Repub-
lic, Open challenges in security research, VK01030152, Android federated learning framework for
emergency management applications.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programmable Interface
BOM Bill of Materials
FedDyn Federated Learning with Dynamic Regularization
FC Federated Core
FATE Federated AI Technology Enable
HyFDCA Hybrid Federated Dual Coordinate Ascent
IoT Internet of Things
IS Information Systems
JSON JavaScript Object Notation
MCDC Modified Condition/Decision Coverage
SDK Software Development Kit
TFF TensorFlow Federated

Appl. Sci. 2024, 14, 101 14 of 14

References
1. Jin, W.; Fang, Y.; Liu, Y.; Yang, J.; Yu, J. Research on Emergency Management Information Business and Information System

Framework. In Proceedings of the IEEE 13th International Conference on Electronics Information and Emergency Communication
(ICEIEC), Beijing, China, 14–16 July 2023; pp. 53–59. [CrossRef]

2. Chen, N.; Liu, W.; Bai, R.; Chen, A. Application of computational intelligence technologies in emergency management: A
literature review. Artif. Intell. Rev. 2019, 52, 2131–2168. [CrossRef]

3. Firebase Cloud Messaging. Available online: https://firebase.google.com/docs/cloud-messaging/ (accessed on 12 November
2023).

4. MongoDB. Available online: https://www.mongodb.com/ (accessed on 10 November 2023).
5. Li, L.; Fan, Y.; Tse, M.; Lin, K.Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [CrossRef]
6. Michalek, J.; Skorpil, V.; Oujezsky, V. Federated Learning on Android-Highlights from Recent Developments. In Proceedings of

the 14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Valencia,
Spain, 11–13 October 2022; pp. 27–30. [CrossRef]

7. Zhang, Z.; He, N.; Li, D.; Gao, H.; Gao, T.; Zhou, C. Federated transfer learning for disaster classification in social computing
networks. J. Saf. Sci. Resil. 2022, 3, 15–23. [CrossRef]

8. Imteaj, A.; Khan, I.; Khazaei, J.; Amini, M.H. FedResilience: A Federated Learning Application to Improve Resilience of
Resource-Constrained Critical Infrastructures. Electronics 2021, 10, 1917. [CrossRef]

9. TensorFlow Federated: Machine Learning on Decentralized Data. Available online: https://www.tensorflow.org/federated
(accessed on 18 October 2023).

10. An Industrial Grade Federated Learning Framework. Available online: https://fate.fedai.org/ (accessed on 19 October 2023).
11. Sharma, D.; Diddee, H.H.; Jindal, S.; Grover, S. VisionAir: Using Federated Learning to Improve Model Performance on

Android. Available online: https://medium.com/visionair/visionair-using-federated-learning-to-improve-model-performance-
on-android-11c6c8014cf4 (accessed on 20 October 2023).

12. Corbacho, J. Federated Learning. Available online: https://proandroiddev.com/federated-learning-e79e054c33ef (accessed on
20 September 2023).

13. Mathur, A.; Beutel, D.J.; de Gusmão, P.P.B.; Fernandez-Marques, J.; Topal, T.; Qiu, X.; Parcollet, T.; Gao, Y.; Lane, N.D. On-device
Federated Learning with Flower. arXiv 2021, arXiv:2104.03042.

14. Acar, D.A.E.; Zhao, Y.; Navarro, R.M.; Mattina, M.; Whatmough, P.N.; Saligrama, V. Federated Learning Based on Dynamic
Regularization. arXiv 2021, arXiv:2111.04263.

15. Overman, T.; Blum, G.; Klabjan, D. A Primal-Dual Algorithm for Hybrid Federated Learning. arXiv 2022, arXiv:2210.08106.
16. Bano, S.; Tonellotto, N.; Cassarà, P.; Gotta, A. KafkaFed: Two-Tier Federated Learning Communication Architecture for Internet

of Vehicles. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops and
other Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2022; pp. 515–520. [CrossRef]

17. Waydroid. Available online: https://waydro.id/ (accessed on 17 October 2023).
18. LineageOS Android Distribution. Available online: https://lineageos.org/ (accessed on 16 October 2023).
19. STMicroelectronics. Find the Right Solution to Integrate AI into Your Application. Available online: https://stm32ai.st.com/

products/ (accessed on 12 November 2023).
20. Apache Software Foundation. Kafka. Available online: https://kafka.apache.org (accessed on 16 October 2023).
21. Moroney, L., The Firebase Realtime Database. In The Definitive Guide to Firebase: Build Android Apps on Google’s Mobile Platform;

Apress: Berkeley, CA, USA, 2017; pp. 51–71. [CrossRef]
22. TensorFlow Lite. Available online: https://www.tensorflow.org/lite (accessed on 12 November 2023).
23. Documentation, S. Simulation and Model-Based Design. Available online: https://www.mathworks.com/products/simulink.

html (accessed on 11 November 2023).
24. Michalek, J.; Vaclav, O. Ouje/KiProtocolSimulation: Publication (Publication). Zenodo. Available online: https://zenodo.org/

records/10101429 (accessed on 10 November 2023).
25. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems, 2015. Software. arXiv 2016, arXiv:1603.04467.
26. Jones, P. Quart. Available online: https://quart.palletsprojects.com/en/latest/ (accessed on 12 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ICEIEC58029.2023.10200798
http://dx.doi.org/10.1007/s10462-017-9589-8
https://firebase.google.com/docs/cloud-messaging/
https://www.mongodb.com/
http://dx.doi.org/10.1016/j.cie.2020.106854
http://dx.doi.org/10.1109/ICUMT57764.2022.9943382
http://dx.doi.org/10.1016/j.jnlssr.2021.10.007
http://dx.doi.org/10.3390/electronics10161917
https://www.tensorflow.org/federated
https://fate.fedai.org/
https://medium.com/visionair/visionair-using-federated-learning-to-improve-model-performance-on-android-11c6c8014cf4
https://medium.com/visionair/visionair-using-federated-learning-to-improve-model-performance-on-android-11c6c8014cf4
https://proandroiddev.com/federated-learning-e79e054c33ef
http://dx.doi.org/10.1109/PerComWorkshops53856.2022.9767510
https://waydro.id/
https://lineageos.org/
https://stm32ai.st.com/products/
https://stm32ai.st.com/products/
https://kafka.apache.org
http://dx.doi.org/10.1007/978-1-4842-2943-9_3
https://www.tensorflow.org/lite
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://zenodo.org/records/10101429
https://zenodo.org/records/10101429
https://quart.palletsprojects.com/en/latest/

	Introduction
	The State of the Art
	The Proposed Framework Components
	The Proposed Communication Protocol
	Communication Protocol Simulation
	The Simulation Results
	Implementation

	Discussion
	Conclusions
	References

