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Abstract: Child drawing development optimization (CDDO) is a recent example of a metaheuristic
algorithm. The motive for inventing this method is children’s learning behavior and cognitive
development, with the golden ratio being employed to optimize the aesthetic value of their artwork.
Unfortunately, CDDO suffers from low performance in the exploration phase, and the local best
solution stagnates. Harmony search (HS) is a highly competitive algorithm relative to other prevalent
metaheuristic algorithms, as its exploration phase performance on unimodal benchmark functions is
outstanding. Thus, to avoid these issues, we present CDDO–HS, a hybridization of both standards of
CDDO and HS. The hybridized model proposed consists of two phases. Initially, the pattern size (PS)
is relocated to the algorithm’s core and the initial pattern size is set to 80% of the total population size.
Second, the standard harmony search (HS) is added to the pattern size (PS) for the exploration phase
to enhance and update the solution after each iteration. Experiments are evaluated using two distinct
standard benchmark functions, known as classical test functions, including 23 common functions
and 10 CEC-C06 2019 functions. Additionally, the suggested CDDO–HS is compared to CDDO, the
HS, and six others widely used algorithms. Using the Wilcoxon rank-sum test, the results indicate
that CDDO–HS beats alternative algorithms.

Keywords: CDDO; HS; CDDO–HS; metaheuristics; optimization

1. Introduction

The term “optimization” refers to the method used to pick the optimal solution
from a pool of possibilities. Each process may be optimized, and many difficult issues in
management, economics, science, and technology can be cast as optimization problems [1].
Due to the computational effort required by conventional numerical optimization methods,
it is most likely not possible to execute a thorough search of the optimal solution space
for challenging engineering optimization problems. In the past two decades, there has
been growing interest in the development of alternatives to traditional, mathematically
derived, and gradient-based optimization strategies. This interest stems from a desire
to discover more efficient methods for attaining optimal results [2]. In this scenario,
heuristic optimization algorithms are better approaches for resolving difficult engineering
optimization problems [3]. Due to this, heuristic optimization approaches have been
developed, which can be applied to problems that derivative methods are unable to solve.
As a result, a multitude of heuristic and metaheuristic algorithmic techniques has been
created [4].

Metaheuristics are effective optimization strategies that have gained popularity in
a variety of disciplines, including engineering, finance, and applied science [5,6]. The
vast majority of cutting-edge metaheuristics were developed in the years leading up to
the year 2000, when these algorithms were still considered to be “classical” metaheuristic
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algorithms [7]. The most common classical metaheuristics include genetic algorithms
(GAs), introduced by Goldberg in 1988, which are a population-based approach that mimics
natural selection and genetics to search for optimal solutions [8]. Kennedy and Eberhart
proposed particle swarm optimization (PSO) in 1995, which uses a swarm of moving
particles in the search space to find the best solution [9]. Kirkpatrick et al. introduced
simulated annealing (SA) in 1983 as a probabilistic method that employs the physical
process of annealing to seek out the optimal solution [10]. Tabu search (TS), introduced by
Glover in 1986, is a local search-based metaheuristic that uses a taboo list to avoid returning
to recently visited solutions [11]. Ant colony optimization (ACO), proposed by Dorigo and
Stützle in 1992, uses a population of artificial ants that deposit pheromones to communicate
and find the optimal solution [12]. Notwithstanding the successes of classical metaheuristic
algorithms, novel and innovative evolutionary techniques have been developed lately.
Throughout this age, metaheuristic algorithm research has resulted in the introduction of a
substantial number of new metaheuristics inspired by evolutionary or behavioral processes.
This new wave of metaheuristic techniques frequently delivers the best solutions for some
benchmark problem sets that have yet to be addressed [13]. These metaheuristics have
been applied to various optimization problems and have demonstrated their effectiveness
and efficiency in finding near-optimal solutions in a reasonable amount of time [14].

Based on the criteria, there are many classifications of inspired metaheuristic algo-
rithms [15–18]. Therefore, according to [18], five groups can be used to broadly categorize
inspired metaheuristic algorithms:

1. Evolution-based methods, such as the genetic algorithm (GA) [8], memetic algorithm
(MA) [19], genetic programming (GP) [8], biogeography-based optimizer (BBO) [20],
and virulence optimization algorithm (VAO) [21].

2. Swarm-based methods, such as krill herd (KH) [22], fitness-dependent optimizer
(FDO) [23], ant colony optimization (ACO) [12], bacterial foraging behavior (BFO) [24],
particle swarm optimization (PSO) [9], cuckoo optimization algorithm (COA) [25],
dolphin optimization algorithm (DOA) [26], dragonfly algorithm (DA) [27], bat algo-
rithm (BA) [28], group search optimizer (GSO) [29], ant nesting algorithm (ANA) [30],
and donkey and smuggler optimization (DSO) [31].

3. Physics-based methods, such as black hole (BH) [32], ray optimization (RO) [33],
charged system search (CSS) [34], simulated annealing (SA) [10], big-bang–big-crunch
(BBCB) [35], gravitational local search (GLSA) [36], central force optimization (CFO) [37],
thermal exchange optimization (TEO) [38], and the water strider algorithm (WSA) [39].

4. Human-based methods, such as the harmony search (HS) [40], group learning al-
gorithm (GLA) [41], firework algorithm (FA) [42], league championship algorithm
(LCA) [43], learner performance-based (LPB) [44], interior search algorithm (ISA) [45],
mine blast algorithm (MBA) [46], soccer league competition (SLC) [47], exchange
market algorithm (EMA) [48], and the social-based algorithm (SBA) [49].

5. Natural disaster algorithms, such as the earthquake algorithm (EA) [50].

Child drawing development optimization (CDDO), as a human-based metaheuristic
algorithm, is one of the latest metaheuristic algorithms. CDDO depends on the behavior
of children learning to draw at an early age [51]. This algorithm demonstrated superior
performance in locating the optimal global solution for optimization problems tested
using classical benchmark functions. Its results were compared to multiple cutting-edge
algorithms, such as PSO (particle swarm optimization) [9], DE (differential evolution) [52],
the WOA (whale optimization algorithm) [53], GSA (gravitational search algorithm) [36],
and FEP (fast evolutionary programing) [54]. The effectiveness of the CDDO was evaluated.
This demonstrated that the CDDO was exceptionally resilient when acquiring a new
solution. It also employs a random search mechanism to change the position to find the
best solution [13]. According to [51], CDDO performs well in terms of convergence time
and balancing exploration and exploitation.

Although the method performs well compared to other algorithms, several restrictions
affect how well it performs in particular circumstances. When an algorithm, for instance,
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becomes trapped in local optima, it finds a solution that is optimal within a specific region
of the search space, but not necessarily the optimal solution overall. As the encircling
mechanism is used in the search space, CDDO’s performance in escaping from local
solutions is poor, and convergence and speed are inefficient in both. This means that CDDO
has issues relating to the balance between exploration and exploitation.

In addition, not improving the best solution more effectively is a problem associated
with the encircling mechanism, and the CDDO exploitation phase must be enhanced to
obtain better solutions [14,51].

The following are the primary motivations for hybridizing CDDO with HS in this paper:

1. Due to CDDO employing an encircling search mechanism, thus, suffering from the
inability to avoid local optima.

2. CDDO performs poorly during the exploitation phase.
3. Improving the CDDO solution after each iteration is insufficient.

The authors came up with the hybridized algorithm as a solution to the CDDO con-
cerns that were described previously, as well as the standard harmonic search algorithm’s
great exploitability in the execution of multimodal benchmark functions. As a consequence
of this, the authors decided to go with a hybrid approach that combines CDDO and global
HS to provide higher performance in the exploitation phase with global HS, particularly
when tested using unimodal benchmark functions. Thus, the purpose of this paper is to
propose a hybridized approach to overcoming CDDO problems by employing two effective
mechanisms: The first mechanism for improving CDDO performance is updating the pat-
tern memory iteratively by using the standard HS mechanism during the exploitation phase
and comparing new experiences (pattern memory) with the current child’s drawings. The
second is to save the best solution for each iteration and then compare each new solution to
the best solution in the exploration phase. If the outcome is better than the best solution,
the child’s drawings are changed; otherwise, they remain in their current drawings. This
hybridization combines two completely different algorithm mechanisms, CDDO and HS,
and adds an update condition during the exploitation phase. The child’s drawings can then
be updated during the exploitation phase, utilizing HS approach. As a result, CDDO–HS is
a newly proposed hybridization that enhances CDDO’s performance.

This paper is organized as follows: In Sections 2 and 3, we sequentially describe
CDDO and HS with their mechanisms. Section 4 describes the novelty and contribution
of our work. Section 5 presents our proposed approach, CDDO–HS, including a detailed
description of the hybridized algorithm. We provide experimental results and analyses in
Section 6, assessed with two benchmark test functions (the classical and CEC 2019 bench-
mark functions), and compare it to other recent algorithms, such as FOX (FOX-inspired
optimization algorithm) [55], Choa (chimp optimization algorithm) [56], BOA (butterfly
optimization algorithm) [57], DCSO (dynamic cat swarm optimization algorithm) [58],
WOA–BAT [59] (hybrid WOA (whale optimization algorithm) [53] with BAT (bat algorithm
optimization) [28]), and GWO–WOA [60] (hybrid GWO (grey wolf optimization) [61] with
WOA (whale optimization algorithm) [53]). Finally, Section 7 provides the conclusions and
prospective research recommendations.

2. CDDO

CDDO was developed by Sabat Abdulhameed and Tarik A. Rashid in 2021 as a
metaheuristic strategy for solving optimization issues with a single object. CDDO takes
inspiration from children’s natural tendencies to learn and grow intellectually and applies
the principles of the golden ratio to their work to bring out their maximum capabilities
for beauty [14]. CDDO uses the golden ratio and mimics cognitive development and the
steps a youngster takes to improve from unskilled scribbling to proficient pattern drawing.
The “golden ratio”, a mathematical relationship between any two consecutive numbers in
the Fibonacci sequence, is ubiquitous in nature, art, architecture, and design. If a child’s
hand pressure is adjusted for width, length, and the golden ratio, the resulting drawing
becomes more aesthetically beautiful. This fosters a child’s natural development, raises
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their intelligence, and teaches them how to work together towards a common goal [14,51].
Table 1 shows the formulation of CDDO optimization [51].

Table 1. The formulation of CDDO optimization.

Statement Description

f(x) The cost function to obtain the best drawing.

Xij

The current solution is X, which is a child’s drawing that is influenced by factors
such as hand pressure, the golden ratio, length, and width.
i represents the number of decision variables (the population number).
j represents the number of dimensions that differ.

PM
Pattern memories are abilities that are acquired through experience. They use the
feedback to identify patterns in the drawings, strive to give the pictures meaning,
and exercise through copying, practicing, and being enthusiastic (with a trial).

GR The ratio between a child’s drawing’s length and width, serving as the two
components of the solution, is known as the golden ratio.

HP Current solutions exert pressure between the lower boundary (LB) of the
problem and the upper boundary (UB) of the solution (UP).

RHP The children’s drawings each have hand pressure, and one of those hand
pressures is chosen at random.

LB, UB The lower boundary (LB) of the problem and the upper boundary (UB) of the
problem are the width and length of a child’s artwork, respectively.

RAND The expression RAND is used to symbolize the action of producing a random
number from a set of parameters.

This algorithm is divided into five phases [51]:

• Stage one: The scribble initialization, as shown below.

X(i,j) =


X(1,1) X(1,2) · · · X(1,j)
X(2,1) X(2,2) · · · X(2,j)
X(3,1) X(3,2) · · · X(3,j)

...
... · · ·

...
X(i,1) X(i,1) · · · X(i,j)

 (1)

In the equation above, i stands for the population size and j stands for the number of
variable dimensions. Within the allowed range, all population member dimensions can be
set freely.

• Stage two: Exploitation

This stage teaches the child to control the movement and direction. Equation (2)
generates the RHP. The RHP is a random number that is used to evaluate the current
solution’s hand pressure (HP). This number is located between the lower boundary of the
problem (LB) and the upper boundary of the solution (UP). Where HP denotes the pressure
applied with the hand and j refers to the parameters of the solution, Equation (3) can select
the HP.

RHP = RAND(LB(LowerBoundary), UP(UpperBoundary)) (2)

HP = X(i,RAND(j)) (3)

(i,RAND(j)) represents the current solution’s i hand pressure among several drawing
solutions (j). RAND generates a random number between two or more variables.

• Stage three: The golden ratio

The golden ratio (GR) is also utilized to update and enhance the efficacy of the solution.
The ratio of a child’s artwork’s width to its length is one of the elements that are considered
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when determining how to solve a problem (see Equation (4)). Using Equation (5), each of
these two elements can be chosen at random from among all the problem factors.

XGRi =
XL(i,M) + XW(i,N)

XL(i,M)
(4)

To calculate the golden ratio, which is based on a random selection of two drawings
for each population (i), we first added the first and second drawings together and then
divided the result by the second drawing using Equation (4).

XL(i,M), XW(i,N) = X(i,RAND(j)),XL(i,M) 6= XW(i,N) (5)

To ensure that the first and second drawings were different, we utilized Equation (5)
to choose the drawings (dimension) (j) randomly from a population (i).

The child would now use the knowledge and abilities they gained from previous ex-
periences and criticisms by trying to analyze the patterns in the actual pictures, attempting
to give the drawings some sort of significance, and honing their drawing skills through
copying, practicing, and being passionate about their work (with trial).

To start implementing these behaviors, first, the child’s competency can be measured
by having them measure their hand pressure (HP). If the current hand pressure is lower than
the RHP, the outcome can be recalculated using Equation (3), which takes into consideration
both the child’s skill rate (SR) and level rate (LR).

In Equation (6), Xilbest is a child’s best drawing thus far, and Xigbest is the children’s
consensus on the globe’s best solution, as determined by the conditions in their surround-
ings. In addition, as mentioned previously, the golden ratio (GR) is the proportion of the
length (L) to the width (W) of a child’s drawing (W).

Xi+1 = GR + SR ∗ (Xilbest− Xi) + LR ∗ (Xigbest− Xi) (6)

• Stage four: Creativity

Children gain creativity and skills through experience and observation. Every artwork
benefit from creativity. At this level, the child revises the golden ratio solutions. Regrettably,
there is no meaningful hand pressure in the answer, indicating that a child’s talents are
not yet established and need to be improved upon by utilizing the creative factor and
golden ratio. Every child remembers the best learning methods and attempts to reproduce
them to progress. Each algorithm solution has a pattern memory (PM), the size of which
is determined by the problem. Using a random solution from the PM array to update
underperforming solutions can boost the algorithm’s convergence rate and accelerate
children’s learning for a long period.

Equation (7) uses CR and PM to update the current solution and converge to the ideal
solution. The creative factor, CR = 0.1, improves performance. Later on, the child’s SR and
LR can both be set to a low value (between 0 and 0.5), indicating that the kid has a poor skill
rate and inaccurate knowledge, but that their originality and pattern memory can grow.

Xi+1 = XiPM + SR ∗ (Xigbest) (7)

• Stage five: Pattern Memory

This pertains to adding more specifics and increasing the level of precision, as well
as comparing the results to the most accurate drawings possible while drawing on prior
experience and expertise. The current drawing can have an accurate golden ratio, but be
unaffected by the hand pressure of the user because the algorithm randomly selects one of
the child’s best drawings to use as the basis for the update. This stage emphasizes drawing
in finer details. The algorithm applies the agent’s own optimal updating mechanism’s
behavior. If better solutions exist, the population’s global best solution would be revised.
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This also applies to updating the pattern memory with each iteration’s best global answer.
CDDO’s pseudocode demonstrates how the CDDO algorithm works [51] (see Algorithm 1):

Algorithm 1: Child drawing development optimization (CDDO) algorithm

Start
Create a population of children’s drawings Xi (i = 1, 2, . . . , j)
Calculate the fitness of each drawing, then create personal and global benchmarks.
Compute each drawing’s golden ratio using Equation (4)
Create a pattern memory (PM) array
Select a pattern memory index at random
If (t < maximum number of iterations)

Utilize Equation (2) to calculate RHP
Choose at random the hand pressure using Equation (3)

If (hand pressure (HP) is low)
Utilize Equation (6) to update the drawings
Set LR and SR to HIGH (0.6–1)

Else if
XiGR is near to golden ratio (GR)
Consider the learned patterns, LR and SR using
Equation (7)
Set LR and SR to low (0–0.5)

End if
Evaluate the fitness function of cost values
Update local (personal) best
Update global best
Update pattern memory (PM)
Store the best cost value

Increase t
End if
Return global best

End

3. HS

The harmony search algorithm is a metaheuristic optimization technique inspired by
the process of musical improvisation, where a musician generates a melody that follows
a certain harmony. The HS algorithm was first proposed by Geem et al. in 2001 [40], and
has since been applied to solve various optimization problems in engineering, finance, and
other fields. The HS algorithm simulates a group of musicians who generate new melodies
by improvising and adjusting their playing style based on their previous experiences
and the harmony of the melody. The algorithm searches for the optimal solution by
adjusting the harmony among the variables of the problem. The HS algorithm is effective
in solving complex optimization problems, especially in situations where the problem
space is continuous and high-dimensional. The HS algorithm has been used in various
applications, such as design optimization, image processing, and signal processing. Several
modifications and extensions of the HS algorithm have also been proposed to improve its
performance and applicability [62–65].

The initialized population members of the HS algorithm are independent in each
dimension and fall within the allowable range. The algorithm only creates one new member
in each iteration. Then, using either a memory consideration rule and a pitch adjustment
factor or all random reinitializations in the permitted range of dimensions, each dimension
of the new point is generated from all of the solutions in the HM. The population member
with the highest cost function value is compared to the new generation of solutions, and if
the new solution has a lower cost, the population member is replaced. Up until one of the
termination criteria is satisfied, this process is repeated [40,66].

The following is a description of the HS algorithm sequence [67,68]:
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1. Define the cost function (f (x)) that needs to be reduced to achieve the algorithm’s
objective.

2. Set the parameters as shown below to begin.

HM =



X1
1 X1

2 · · · X1
j

X2
1 X2

2 · · · X2
j

X3
1 X3

2 · · · X3
j

...
... · · ·

...
XHMS

1 XHMS
2 · · · XHMS

j

 (8)

The population number in the above equation is the HS memory (HMS) and the
number of variable dimensions is (j). All population member dimensions can be set at
random within the authorized range. The initial values of the HS consideration rate
(HMCR) and pitch adjustment rate (PAR) are often set to (0.995) and (0.1).

3. Generate a new point (Xnew = Xnew
1 , Xnew

2 , Xnew
3 , . . . , Xnew

j ) by performing the following:

A corresponding member dimension is chosen at random using HMCR for each of the
n dimensions. The value of the new point is chosen at random from the authorized range:

Xnew
i =

{
Xnew(i) ∈ {X1

j , X2
j , X3

j , . . . , XHMS
j }i f rand(0, 1) ≤ HMCR

Xnew(i) is random i f it isn′t
(9)

Xnew
i = Xnew(i)+ RAND (−1, 1)× bw, i f rand(0, 1) ≤ PAR

where bw = 0.04
(10)

4. If the new harmony vector Xnew has a lower cost, replace the worst member of the
population with it.

5. Verify the termination criteria; if they are satisfied, move on to step three; otherwise,
the optimum point is identified. The HS pseudocode demonstrates how the HS
algorithm works [69] (see Algorithm 2):

Algorithm 2: Harmony search (HS) algorithm

Begin
Define objective function f(x), x = (x, x2, . . . , xa)
Define harmony memory considering rate (HMCR)
Define pitch-adjusting rate (PAR) and other parameters
Generate harmony memory with random harmonies
While (t < max number of iterations)

While (≤number of variables)
If (RAND < HMCR)

Choose a value from HM for variable i (Equation (9))
If (RAND < PAR)

Adjust the value by adding a certain amount
(Equation (10))

End if
Else

Choose a random value
End if

End while
Accept the new harmony (solution) if better

End while
Find the current best solution

End
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4. The Novelty and Contribution

The goal of our study is to introduce a novel hybrid metaheuristic algorithm for
optimization, which combines two existing approaches: child drawing development op-
timization (CDDO) and global harmony search (HS). By combining the best features of
CDDO and HS, the suggested hybrid algorithm, CDDO–HS, can improve upon the op-
timization process. Our most significant achievement thus far has been the creation of a
novel hybridization method for the efficient joint use of CDDO and conventional HS. To
be more specific, we suggest a new hybridization strategy that integrates CDDO’s local
search capabilities with traditional HS’s worldwide exploration potential. The solution
space can be efficiently searched with this method, resulting in faster convergence and
better solutions overall.

The suggested CDDO–HS algorithm is also subjected to a thorough performance
evaluation on a variety of benchmark optimization tasks. In terms of solution quality, con-
vergence speed, and robustness, the CDDO–HS algorithm is shown to excel in experimental
settings, compared to both CDDO and baseline HS. The CDDO–HS algorithm outperforms
many other state-of-the-art metaheuristic algorithms, including some that were developed
relatively recently. These include the FOX (FOX-inspired optimization algorithm), Choa
(chimp optimization algorithm), BOA (butterfly optimization algorithm), DCSO (dynamic
cat swarm optimization algorithm), and GWO–WOA (hybrid grey wolf optimization with
whale optimization algorithm).

5. CDDO–HSF

Based on the previous sections on CDDO and the standard HS, the proposed approach
was described in this section by combining CDDO and HS to improve the performance
of CDDO in terms of efficiency during the exploitation phase to produce gain advantages.
In general, the standard CDDO is capable of locating the optimal solution. Unfortunately,
it is not sufficient in refining the optimal solution with each iteration. Hence, CDDO was
hybridized with global HS to enhance its performance. The name of the hybridization
algorithm was decided as CDDO–HS. Thus, the CDDO was hybridized by including
two strategies:

First, we moved the pattern size (PS) to the algorithm’s core, where it changed with
each iteration. The CDDO algorithm assumed that drawing skills from childhood to
adolescence are stored in memory once and do not need to be refreshed, which is incorrect.
As a result, children’s drawings are regenerated as they draw and throughout their life,
which means that the pattern size is constantly renewed and aids the child in the subsequent
stages of drawing. In each sketching session, the child learns new skills that are far superior
to and distinct from previous sessions.

To achieve the best exploration, we set the pattern size to 80% of the overall population
size when we started. On the other hand, we attempted to update the pattern size of
the algorithm that would power CDDO using a mechanism or technique. We used the
global harmony search technique to update the pattern size after multiple experiments and
different algorithms. Moreover, the harmony search algorithm offered various advantages,
such as its balance of exploration and exploitation, adaptability, simplicity, and resilience.
The HSA hybridization with other algorithms could assist in overcoming its limits and
improving its performance.

These modifications resulted in improved performance for obtaining the optimum
fitness function. Algorithm 3 and Figure 1 show the CDDO–HS pseudocode and flow-
chart, respectively.
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Algorithm 3: Child-drawing-development-optimization–harmony-search-based
hybrid algorithm

Start
Create a population of children’s drawings Xi (i = 1, 2, . . . , j)
Calculate the fitness of each drawing, then create personal and global benchmarks.
Compute each drawing’s golden ratio using Equation (4)
Create an array of pattern memory (PM)
Select a pattern memory index at random
If (t < maximum number of iterations)

If (i ≤ number of variables)
If (RAND < HMCR)

Choose a value from updated pattern memory for variable, using
Equation (9)

If (RAND < PAR)
Increase the value by a given amount, using
Equation (10)

End if
Else

Choose a random value
End if

End if
Update the pattern memory
Utilize Equation (2) to calculate the RHP
Choose at random the hand pressure using Equation (3)

If (hand pressure (HP) is low)
Utilize Equation (6) to update the drawings
Set LR and SR to high (0.6–1)

Else if
XiGR is near to the golden ratio (GR)
Consider the learned patterns, LR and SR using
Equation (7)
Set LR and SR to low (0–0.5)

End if
Evaluate the fitness function of cost values
Update local (personal) best
Update global best
Update pattern memory (PM)
Store the best cost value

Increase t
End if
Return global best

End
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6. Testing, Results, and Discussion

To verify the efficacy of a novel method and determine meaningful comparisons to
state-of-the-art and classical algorithms, optimization researchers employ a conventional ap-
proach. In optimization research, this method is frequently employed to assess candidates
for optimization on a sizable test set. Therefore, the CDDO–HS method was implemented
and examined with 23 classical benchmark functions and 10 benchmark functions from
CEC 2019. The parts that follow detail the CDDO–HS’s evaluations in comparison to
other metaheuristic algorithms, as well as its benchmark functions, experimental results,
evaluations, and statistical data.

6.1. Benchmark Functions

To ensure the accuracy of our proposed CDDO–HS, we tested it using two sets of
standard benchmark functions. As an initial standard, we used a set of 23 different classical
functions. The CEC-C06 2019 standard was the benchmark function’s second component.
Some examples of these operations include the multimodal function, the unimodal function,
the expanding multimodal function, and the hybrid composition operation. You can view
these standard test functions in [23].
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6.2. Experimental Setup

MATLAB R2020a was used to implement the code on Windows 11. To achieve a better
and more accurate outcome, the first population was randomly selected. The parameter
initialization for the implementation was set as follows:

1. Population size = 40.
2. The number of iterations = 500.
3. Run of Algorithms = 30.

6.3. Evaluation Criteria

CDDO–HS could be evaluated in a variety of ways. The following were the evalu-
ation points:

1. The average and standard deviations were displayed.
2. When comparing CDDO–HS to CDDO.
3. When comparing CDDO–HS to HS.
4. CDDO–HS vs. other metaheuristic algorithms (FOX, Choa, DCSO, WOA–BAT.

and WOAGWO).
5. Making a box and whisker plot to compare CDDO, HS, and CDDO–HS.

6.4. CDDO–HS vs. CDDO and HS

To validate the performance of CDDO–HS, two types of benchmark functions were
used: classical benchmark functions and CEC-C06 2019. Hence, the obtained results’
average (Ave), probability value (p-value), and standard deviation (Std) were utilized to
evaluate the performance testing.

6.4.1. Classical Benchmark Functions

The classical benchmark functions are a set of standard functions used to evaluate
the performance of optimization algorithms. These functions are commonly used in the
field of optimization and have been studied extensively [70]. Functions f1–f7 are called the
unimodal functions because they only have one global optimum and no local optimums.
They have a single solution and can be exploited as variants (see Tables A1–A3). Therefore,
using these unimodal functions, it was possible to assess the CDDO–HS exploitation
capabilities. Table 2 demonstrates that, compared to the CDDO in these functions, CDDO–
HS had improved exploitation capabilities in two of the seven. We also discovered that all
seven equations had significant outcomes when we compared the results of this hybrid
algorithm to those of the HS algorithm. The results of the CDDO algorithm’s transitions
were denoted with boldface type, while those of the HS algorithm’s transitions were
denoted with underlining.

To evaluate our suggested algorithm’s performance in terms of exploration, we used
multimodal functions ranging from F8 to F13 (see Tables 1 and A2) to analyze the local
optimum avoidance. The ability to start from the local optima and continue the search
across a wide range of regions of the search area could be tested by utilizing multimodal
features in an exploration capacity test. To put it another way, they ranked the depth of
the variation investigation for a broad set of local optimums. Five out of six multimodal
functions (Table 2) suggested that CDDO–HS performed better. Hence, it could be asserted
that CDDO–HS enhanced CDDO’s exploratory capabilities. Consequently, when the results
of this method were compared to the results of the HS algorithm, six out of seven outcomes
were significant.

The third section of these benchmark functions included fixed-dimension functions
ranging from F14 to F19 (see Tables 3 and A3). Hence, avoiding the local minima was
one of the most difficult challenges, because only by finding an optimal balance between
exploration and exploitation could a local minimum be avoided to some extent. Due to
the large number of local minima, the multimodal fixed-dimension benchmark functions
were employed to test the algorithm’s ability to avoid them. The numerical results of the
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benchmark functions from F14 to F19 showed that CDDO–HS outperformed the CDDO
and standard HS algorithms in terms of local minima avoidance, except for F14 and F18,
where the CDDO–HS algorithm performed worse than the other algorithms. After a while,
CDDO–HS was shown to compete with other cutting-edge metaheuristic algorithms, as
evidenced by its remarkable findings.

Table 2. Table comparing CDDO–HS with CDDO and standard HS.

Fun
CDDO–HS CDDO HS

Avg. Std. Avg. Std. Avg. Std.

F1 5.087E−33 1.057E−32 1.328E−57 8.635E−73 2.850E+02 9.021E+01
F2 4.921E−17 4.033E−17 2.453E−32 4.385E−32 3.005E+00 5.355E−01
F3 1.249E−29 2.238E−29 2.736E−39 5.168E−40 1.754E+04 5.815E+03
F4 1.986E−16 1.920E−16 7.815E−33 2.784E−48 2.214E+01 1.787E+00
F5 2.298E+00 6.935E+00 2.419E+01 1.023E+01 2.040E+04 8.759E+03
F6 5.589E−04 1.439E−04 7.074E−01 6.787E−01 2.834E+02 1.023E+02
F7 2.901E−03 1.497E−03 1.361E−03 1.123E−03 2.042E−01 5.145E−02
F8 −1.178E+04 3.098E+03 −1.244E+04 5.537E+02 −1.240E+04 7.638E+01
F9 2.222E+00 6.070E+00 1.060E+01 1.724E+01 1.968E+01 3.683E+00

F10 6.809E−15 1.703E−15 7.875E−15 4.118E−15 5.095E+00 5.702E−01
F11 0.000E+00 0.000E+00 5.688E−01 1.532E+00 3.513E+00 8.925E−01
F12 1.161E−06 3.112E−07 3.167E−01 9.0046E−01 7.060E+00 2.147E+00
F13 1.555E−05 5.271E−06 4.128E−01 3.745E−01 1.622E+02 1.596E+02
F14 5.372E+00 4.241E+00 9.981E−01 3.686E−04 9.980E−01 3.448E−11
F15 6.249E−04 2.502E−04 1.181E−03 1.022E−03 6.699E−03 9.110E−03
F16 −1.032E+00 3.777E−10 −1.029E+00 3.247E−03 −1.032E+00 1.889E−07
F17 3.979E−01 2.675E−09 4.231E−01 4.814E−02 3.979E−01 6.467E−06
F18 5.700E+00 8.238E+00 3.117E+00 1.579E−01 3.900E+00 4.930E+00
F19 −3.863E+00 1.554E−10 −3.728E+00 1.075E−01 −3.863E+00 4.714E−08

Table 3. Table comparing CDDO–HS with CDDO and standard HS on CEC-C06 2019.

Fun
CDDO–HS CDDO HS

Avg. Std. Avg. Std. Avg. Std.

F1 5.317E+04 8.142E+03 4.104E+05 3.377E+05 2.232E+10 2.295E+10
F2 1.835E+01 6.390E−03 1.898E+01 3.663E−01 1.875E+01 2.090E−01
F3 1.370E+01 5.785E−13 1.370E+01 1.633E−05 1.370E+01 4.987E−10
F4 5.746E+01 3.066E+01 2.221E+03 8.515E+02 3.976E+01 2.003E+01
F5 2.170E+00 2.109E−01 3.350E+00 1.421E−01 2.039E+00 2.623E−02
F6 1.130E+01 1.591E+00 1.238E+01 7.803E−01 1.139E+01 1.091E+00
F7 5.440E+01 1.300E+02 1.040E+03 1.841E+02 1.708E+02 2.455E+02
F8 3.150E+00 7.640E−01 6.710E+00 3.515E−01 4.543E+00 1.082E+00
F9 3.484E+00 1.912E−01 1.790E+02 8.510E+01 3.634E+00 1.742E−01

F10 1.554E+01 7.609E+00 2.155E+01 1.127E−01 2.146E+01 1.050E−01

This showed that the algorithm could avoid the local minima because it looked at a lot
of good places in the design space and chose the best one. The method used to avoid the
local minima was that all of the search agents would change suddenly in the early stages of
the optimization process and then progressively converge towards the best solution. This
strategy later ensured that cooperative search agents eventually converged on a spot in the
search space.

6.4.2. CEC-C06 2019 Benchmark Test Functions

CEC-C06 2019 Benchmark Test Functions are a set of 10 mathematical functions com-
monly used to evaluate the performance of optimization algorithms. These functions were
specifically designed for the IEEE Congress on Evolutionary Computation (CEC) 2019
competition to provide a more challenging and diverse set of test functions compared to
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previous years. These functions cover a wide range of optimization problems, including
unimodal, multimodal, separable, and non-separable functions. Some of the functions
also incorporate features such as rotation, scaling, and shifting to further increase their
complexity. Each function is defined over a set of input variables and has a known global
minimum or maximum, which allows for optimization algorithms to be evaluated based
on their ability to find the optimal solution. Thus, they are widely used in the field of
optimization and evolutionary computation to compare the performance of different algo-
rithms and to benchmark new algorithms. They are also used to evaluate the effectiveness
of various optimization techniques, such as metaheuristics, swarm intelligence, and genetic
algorithms [71].

The CDDO–HS algorithm was also evaluated using the CEC-C06 2019 benchmark
function. Table 3 and Figure 2 demonstrate that CDDO–HS outperformed CDDO in all
functions. Similarly, when we compare the outcomes of this approach to the standard HS
algorithm, we found that CDDO–HS outperformed the HS algorithm in all except three
functions: F4, F5, and F6. Overall, CDDO–HS outperformed CDDO and standard HS in
eight multimodal benchmark functions.
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Figures 3 and 4 shows the simulation results comparing CDDO–HS to CDDO and the
standard HS method. The simulated convergence curves for the accepted testing functions
showed that, when compared to CDDO and the standard HS algorithm, the convergence
velocity and optimization precision of CDDO–HS was the best.
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6.5. Statistical Analysis

To figure out if the performance of the algorithm was significant or not, we needed
to use a statistical analysis. Therefore, we used the p-value to figure out how important
a result was from a statistical point of view and to decide whether or not to reject the
null hypothesis.

To show whether the results were significant or not, Table 4 was used to find the
p-values for both benchmark tests: the classical benchmark and the CEC-C06 2019 bench-
mark functions.

The results showed that CDDO–HS performed better than CDDO in 11 of the classi-
cal benchmark’s nineteen functions. Furthermore, the findings showed that CDDO–HS
outscored CDDO in all 10 functions of the CEC 2019 benchmark.

Table 5 was utilized to generate the p-values for both benchmark tests, the classical
benchmark and the CEC-C06 2019 benchmark functions, while we compared CDDO–HS to
standard HS to demonstrate if the results were significant or not.

Furthermore, the results showed that CDDO–HS beat standard HS in 16 functions, as
opposed to 19 in the classic benchmark functions. As a result, the findings showed that
CDDO–HS outperformed regular HS in seven of the CEC-C06 2019 benchmark functions.
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Table 4. The p-value of CDDO–HS against CDDO for classical benchmark functions and CEC-
C06 2019.

Function Classical Benchmark Functions CEC-C06 2019

1 - 2.99373E−07
2 - 3.10921E−13
3 - 3.94470E−13
4 - 3.97091E−20
5 9.44415E−14 3.87125E−33
6 4.16584E−07 1.43887E−03
7 - 9.09047E−32
8 2.54526E−01 5.07244E−31
9 1.48536E−02 2.82731E−16

10 5.58851E−02 6.02103E−05
11 4.66181E−02
12 5.88921E−02
13 1.18387E−07
14 -
15 5.29812E−03
16 1.31944E−05
17 5.69975E−03
18 9.13712E−02
19 4.87510E−09

Table 5. The p-value of CDDO–HS against HS for classical benchmark functions and CEC-C06 2019.

Function Classical Benchmark Functions CEC-C06 2019

1 1.41157E−24 1.69507E−06
2 1.38125E−37 6.92112E−15
3 1.31874E−23 5.89563E−08
4 5.90033E−57 -
5 1.80505E−18 -
6 7.63997E−22 7.89851E−01
7 3.13914E−29 2.54399E−02
8 2.75280E−01 3.36825E−07
9 1.68215E−19 2.36583E−03

10 7.24212E−49 7.52043E−05
11 2.24778E−29
12 1.98825E−25
13 6.98511E−07
14 -
15 5.62412E−04
16 2.21129E−05
17 3.26857E−02
18 3.08727E−01
19 3.55345E−04

6.6. The CDDO-CD Algorithm in Context with Hybrid and Metaheuristic Approaches

Using the CEC2019 test functions, the CDDO–HS hybrid algorithm was contrasted
with six new hybrid and metaheuristic approach algorithms (ChOA, BOA, FOX, GWO–
WOA, WOA–BAT, and DCSO).

According to Table 6, the gardened algorithm outperformed all six metaheuristic
approach algorithms in six out of ten benchmarks (CEC04, CEC05, CEC07, CEC08, CEC09,
and CEC10), while five algorithms yielded 1.370E+01 in CEC03.

However, when contrasting each of the six algorithms with CDDO–HS separately,
CDDO–HS gave superior results, and we used the ranking sort to encapsulate the findings
(see Table 7).
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Table 6. Table comparing CDDO–HS with ChOA, BOA, FOX, GWO–WOA, WOA–BAT, and DCSO
on CEC-C06 2019.

Function CDDO–HS ChOA BOA FOX WOAGWO WOA–BAT DCSO

F1 5.317E+04 4.240E+09 5.890E+04 2.580E+04 4.760E+04 7.600E+07 3.863E+04
F2 1.835E+01 1.841E+01 1.890E+01 1.834E+01 1.834E+01 1.750E+01 1.834E+01
F3 1.370E+01 1.370E+01 1.370E+01 1.370E+01 1.370E+01 1.270E+01 1.370E+01
F4 5.746E+01 5.933E+03 2.090E+04 1.060E+03 2.537E+02 2.120E+03 7.266E+01
F5 2.170E+00 4.209E+00 6.180E+00 5.315E+00 2.426E+00 2.440E+00 2.493E+00
F6 1.130E+01 1.215E+01 1.180E+01 5.033E+00 1.137E+01 1.110E+01 8.864E+00
F7 5.440E+01 1.007E+03 1.040E+03 3.068E+02 5.876E+02 6.060E+02 3.291E+02
F8 3.150E+00 6.785E+00 6.340E+00 5.462E+00 5.587E+00 5.720E+00 5.160E+00
F9 3.484E+00 4.493E+02 2.270E+03 3.796E+00 5.671E+00 2.280E+01 6.104E+00

F10 1.554E+01 2.150E+01 2.150E+01 2.098E+01 2.156E+01 2.120E+01 2.113E+01

Table 7. The ranking sort of CDDO–HS, ChOA, BOA, FOX, GWO–WOA, WOA–BAT, and
DCSO algorithms.

Function 1st 2nd 3rd 4th 5th 6th 7th

F1 FOX DCSO GWO–WOA CDDO–HS BOA WOA–BAT ChOA
F2 WOA–BAT GWO–WOA FOX DCSO CDDO–HS ChOA BOA
F3 WOA–BAT BOA ChOA DCSO DCSO CDDO–HS FOX
F4 CDDO–HS DCSO GWO–WOA FOX WOA–BAT ChOA BOA
F5 CDDO–HS GWO–WOA WOA–BAT DCSO ChOA FOX BOA
F6 FOX DCSO WOA–BAT CDDO–HS GWO–WOA BOA ChOA
F7 CDDO–HS FOX DCSO GWO–WOA WOA–BAT ChOA BOA
F8 CDDO–HS DCSO FOX GWO–WOA WOA–BAT BOA ChOA
F9 CDDO–HS FOX GWO–WOA DCSO WOA–BAT ChOA BOA

F10 CDDO–HS FOX DCSO WOA–BAT ChOA BOA GWO–WOA

The ranking score could be used to evaluate the performance of various algorithms
and determine which one would be most effective for a particular task. In this case, better
performance was indicated by a lower-ranking score, whereas worse performance was
shown by a higher-ranking score.

Tables 7 and 8 show that CDDO–HSA had the highest-ranking score of 2.5, followed
by DCSO with a score of 2.8. FOX had a score of 3.1, which was higher than the scores of
the other three algorithms: GWO–WOA (3.6), WOA–BAT (3.8), and ChOA (5.8). Finally,
BOA had the lowest ranking score of six.

Table 8. The ranking score of CDDO–HS, ChOA, BOA, FOX, GWO–WOA, WOA–BAT, and
DCSO algorithms.

Function CDDO–HS ChOA BOA FOX GWO–WOA WOA–BAT DCSO

Subtotal 2.5 5.8 6 3.1 3.6 3.8 2.8

7. Conclusions

To summarize, both CDDO and global HS, together with their algorithmic features,
were thoroughly discussed. The CDDO-HS technique was given. The experimental data
were described to evaluate CDDO–HS’s performance. Numerous tests were carried out
to evaluate CDDO–HS. CDDO–HS was evaluated using 19 traditional benchmark test
functions in both exploitation and exploration. When compared to CDDO and standard
HS, CDDO–HS outperformed in 11 of 19 functions. CDDO–HS was also evaluated using
CEC-C06 2019 benchmark functions. As a result, CDDO–HS performed admirably in seven
of the ten functions. Despite conventional HS outperforming CDDO–HS in the remaining
three functions, and having a better overall outcome, CDDO–HS outperformed standard
HS in seven of the ten functions.
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Additionally, CDDO–HS was statistically evaluated using the Wilcoxon rank-sum
test, and it achieved overall significant results in the classical and CEC-C06 2019 bench-
mark functions. The CDDO–HS algorithm was then compared to the ChOA, BOA, FOX,
GWO–WOA, WOA–BAT, and DCSO algorithms, and it outperformed all six metaheuristic
approach algorithms in six of the ten benchmarks.

As a result, CDDO–HS’s performance in terms of its exploration capability enhanced.
Generally, CDDO–HS improved the solution’s quality with each iteration while avoiding
the local optima.

Finally, the following potential research projects could be undertaken in the future:

1. Addressing real-world difficulties, such as medical, applied science, and engineering
issues.

2. Mixing different methods to improve the results we already have.
3. Change the standard HS parameters to improve the exploration and exploitation

phases and achieve better performance as a result.
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Appendix A

The mathematical formulation of the conventional benchmark functions utilized in
this work is shown in Tables A1–A3.

Table A1. Unimodal test functions [72].

Function Dimension Range fmin

F1(x) =
n
∑

i=1
X2

i
10 [−100, 100] 0

F2(x) =
n
∑

i=1
|Xi|+

n
∏
i=1
|Xi| 10 [−10, 10] 0

F3(x) =
n
∑

i=1

(
i

∑
j=1

Xj

)2
10 [−30, 30] 0

F4(x) = maxi{|Xi|, 1 ≤ i ≤ n} 10 [−100, 100] 0

F5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
1
)2

+ (xi − 1)2
]

10 [−30, 30] 0

F6(x) =
n
∑

i=1
([xi + 0.5])2 10 [−100, 100] 0

F7(x) =
n
∑

i=1
ix4

i + random[0, 1] 10 [−1.28, 1.28] 0

Table A2. Multimodal test functions [72].

Function Dimension Range fmin

F8(x) =
n
∑

i=1
−X2

i sin
(√
|xi |

)
10 [−500, 500] 0

F9(x) =
n
∑

i=1

[
x2

i − 10cos (2πxi) + 10
] 10 [−10, 10] 0
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Table A2. Cont.

Function Dimension Range fmin

F10(x) = −20exp

(
−0.2

√
n
∑

i=1
x2

i

)
−exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

10 [−32, 32] 0

F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+1 10 [−600, 600] 0

F12(x) = π
n

{
10sin (πy1) +

n−1
∑

i=1
(yi − 1)2

[1 + 10sin
(
πyi+1

)2
] + (yn − 1)2

}
+

n
∑

i=1
µ(xi, 10, 100, 4), yi

= 1 + x+1
4 , µ(xi, a, k, m)

=


k(xi − a)mxi > a
0− a < xi < a

k(−xi − a)mxi < −a

10 [−50, 50] 0

F13(x) = 0.1
{

sin (3πx1)
2

+
n
∑

i=1
(xi − 1)2 [1 + sin(3πxi + 1)2 ]

+(xn − 1)2 [1 + sin(2πxn)
2 ]

}
+

n
∑

i=1
µ(xi, 5, 100, 4)

30 [150, 50] 0

Table A3. Fixed-dimension multimodal benchmark functions.

Function Dimension Range fmin

F14(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6

−1
2 [−65, 65] 1

F15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.0003

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2

+ 10
(

1− 1
8π

)
cos x1 + 10

2 [−5, 5] 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2

+6x1x2 + 3x2
2)]

× [30
+(2x1 − 3x2)

2

×(18− 32x1 + 12x2
1 + 48x2

−36x1x2 + 27x2
2)]

2 [−2, 2] 3

F19(x) = −
4
∑

i=1
ciexp

(
−

3
∑

j=1
aij

(
xj − pij

)2
)

3 [1, 3] −3.86
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