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Abstract: Analyses of efficiency are vital for planning and monitoring the duration and costs of
construction works, as well as the entire construction project. This paper introduces a combined
quantitative (probabilistic) and qualitative (machine learning-based) approach to the problem. The
proposed approach covers probabilistic analysis based on fitting a triangular distribution to empirical
data, followed by the application of support vector machines (SVM). Following the theoretical as-
sumptions, the paper also presents an application of the proposed approach for formwork assembly
as an exemplary construction work. This is based on real-life data, including conditions, characteris-
tics, and features of formwork assembly work recorded on a construction site. As a result of the study,
triangular distributions were fitted to data representing efficiencies of formwork assembly for three
different types of structural members made of reinforced concrete. The parameters (a—minimum,
m—peak and b—maximum values of efficiency measured as square meters of an assembled formwork
per hour) of the fitted distributions for the particular real-life data were as follows: for columns
a = 0.100, m = 1.450, b = 1.900, for walls a = 0.700, m = 1.995, b = 3.300 and for slabs a = 0.200,
m = 2.125, b = 3.200. The obtained distributions allow us to assess the probability of achieving effi-
ciency not less than a certain assumed critical value. The study also developed two SVM models—the
first based on so-called C-classification and the second based on ν-classification—capable of recog-
nising with satisfactory accuracy whether the efficiency of formworks assembly works for certain
conditions, characteristics, and features of works are above or below median values computed based
on previously fitted distributions. The performance of both developed models in terms of proper
classification, either for training or testing, was above 80%.

Keywords: construction works; efficiency; formworks assembly; triangular distribution; machine
learning; support vector machines; classification

1. Introduction

Despite the fact that new technologies, equipment, and machinery are emerging,
as well as the implementation of automation and robotics, labour remains an important
resource in the construction industry. Actually, labour, as one of the active resources, drives
the duration of construction works in terms of single tasks or the whole construction stage
of a project. Construction work planning is of key importance and involves, among other
things, the definition of work tasks, the choice of technology, and the estimation of the
required resources and durations for individual tasks. Actual durations depend on the
efficiency, productivity, or performance achieved on a construction site.

The terms mentioned—efficiency, productivity, or performance—are used interchange-
ably (as seen in the state-of-the-art part of the paper) and refer to the results or output
of construction works measured against the use of resources engaged in executing these
works. The fact is that even in the case of the most careful planning performed by the
main contractor and/or subcontractors, schedules and baselines are verified by the actual
progress of works. Deviations from planned durations seem to be inevitable.
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The aim of the paper is to present an approach based on both quantitative and qualita-
tive analysis of construction work efficiency. Efficiency is understood herein as a work’s
output measured in units specific to certain construction work (representing weight, length,
surface) or volume per hour. The output of construction work is measured against labour
in terms of the number of engaged workers and the number of working hours spent on the
execution of construction work. The quantitative approach relies on the analysis of data,
including construction work efficiency measures, fitting triangular continuous distribution,
and probabilistic analysis of efficiency. On the other hand, the implementation of support
vector machines (SVM) as a machine learning tool is proposed for the qualitative approach.
As a result, the solution to the classification problem is expected, which allows recognising
whether the efficiency of construction work for a given combination of factors is above or
below a certain value called critical efficiency.

Another objective is to present the results of the application of the proposed approach
to an example of system formwork assembly works for the three types of reinforced
concrete structural members—columns, walls, and slabs. The applied analysis was carried
out with the use of real-life data obtained from a construction project as recorded on
a construction site. The application of a triangular distribution for quantitative work
efficiency analysis precedes the application of machine learning methods for qualitative
predictions of efficiency.

The paper’s content includes a brief discussion of the background and a state-of-the-art
review, a presentation of the approach for efficiency analysis, the introduction of the data
used in the course of the applied analysis, a case study and research results, a discussion of
the advantages and drawbacks of the presented approach, and conclusions.

2. Background and State-Of-The-Art

Issues related to efficiency and productivity in construction are widely discussed
and presented from different perspectives and at different levels. They are addressed as
problems of the construction industry branch, construction projects, specific technologies,
or the use of resources.

In [1], the authors presented a comprehensive study and review of numerous works
investigating factors affecting construction productivity. The study of works published
over 30 years allowed them to point out a set of factors influencing productivity in the con-
struction industry regardless of differences in various countries. These are: “non-availability
of materials, inadequate supervision, skill shortage, lack of proper tools and equipment,
and incomplete drawing and specifications.” They stated that some factors, namely,
“implications of technology, site amenities, process studies, project culture, and impacts of
physiological and psychological factors”, have not been thoroughly investigated so far.

The further paper [2] contributes to the construction management body of knowledge
by providing a comprehensive review of different productivity monitoring techniques.
The authors’ findings are that the most adopted data acquisition techniques are tradi-
tional, computer vision-based, and photogrammetry-based methods. These are being
combined with machine learning and BIM for the purposes of automated monitoring of
construction productivity.

Another work [3] focused on quantifying time waste in the architecture engineering
construction industry as an important factor that counteracts performance and efficiency.
The study provides a synthesis of the findings presented in several publications, which
showed that an average of 49.6% of the time in construction is wasted. The conclusion is
that there is considerable potential for improvement and reduction of wasteful activities.

There are also several studies aiming at the use of different methods and approaches
for the purposes of construction productivity, efficiency and performance investigation.
These are analytical hierarchy process (AHP) applications for the purpose of analysis
and improving productivity [4], descriptive and regression analyses along with a co-
relational study for investigation of training and motivation practices effects on teamwork
improvement and tasks efficiencies [5], performance metrics analysis and comparison with
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the use of queuing theory followed by simulation experiments for quantitative analysis
of rate-driven and due date–driven residential buildings projects [6], the introduction of
lean-based flow optimisation and Industry 4.0 concepts and principles for improving the
efficiency of road construction [7].

Literature studies have shown that labour efficiency in construction is a widely dis-
cussed topic. The efficiency is being investigated with regard to the conditions and distinct
character of regional and national construction markets. Several works have investigated
this topic, including cases of European countries [8], specifically Poland [9], the United
States of America [10], China [11], Turkey [12], Kuwait [13], Jordan [14], Uganda [15],
Egypt [16], and Zimbabwe [17], which have presented broad analyses of factors affecting
labour efficiency. From these works, it can be concluded that although some factors are
common, there are strong regional influences on the attitude towards the problem.

There is also a significant amount of attention given in published research to the
relationships between different factors and the efficiency of construction works. The focus
is on the influence of either certain specific factors or sets of factors on efficiency. However,
the research is predominantly carried out at a country level. In [18], the authors investigate
the relationship between change orders and labour efficiency. They develop a statistical
dependency capable of estimating the actual amount of labour efficiency lost due to change
orders. Several papers deal with thermal comfort as a factor, such as research on thermal
environment variations and their influence on the loss of workers’ productivity, along
with statistical models developed for the purpose of loss predictions, presented in [19].
This is followed by similar work from the same authors [20], which proposes productivity-
thermal environment relationship models for three different types of construction works.
A more specific analysis, presented in [21], reports an investigation of construction rebar
workers’ productivity against heat stress. The modelled dependency explains how heat
stress reduces productivity. Another paper [22] explores the relationships between the work
motivation of construction workers and their productivity. The study reveals motivation-
related factors influencing productivity. In [23], research on the efficiency of construction
workers in the carpentry trade is presented. The authors report the results of a two-year
study of workers’ efficiency with regard to human issues. One of the publications [24]
presents an analysis that aims to reveal how unsatisfactory working conditions negatively
affect the efficiency of workers, as well as the image of the construction industry.

An important trend in research is the development of models that can predict labour
efficiency, productivity, or performance using various mathematical methods. Fuzzy logic,
presented in [25], is believed to aid in the determination of construction workers’ pro-
ductivity. A regression model that explains the dependencies between identified factors
and construction workers’ labour productivity in Vietnam is presented in [26]. The study
focused on 17 factors influencing productivity (including environmental factors) and was
ordered into five groups relevant to construction workers, site operation and manage-
ment, motivation, working time, working tools, working conditions, health and safety,
project information, natural environment, and socio-economic conditions. Another study
introduces the application of artificial neural networks for formwork labour productivity
prediction [27]. Among the investigated types of models, including backpropagation
networks, general regression networks, radial basis function networks, and adaptive
neuro-fuzzy networks, the first mentioned appears to outperform the others for modelling
construction labour productivity. The concept of labour efficiency modelling based on an
ensemble approach and combining several neural networks into one predictive model is
presented in [28]. The analysis is provided for steel reinforcement works and is based on
data records from construction sites. The research resulted in the development of a model
based on a generalised ensemble averaging approach capable of predicting efficiency with
satisfactory accuracy within an acceptable range of errors. The application of a broad range
of machine learning tools for the analysis and prediction of construction masonry works
productivity is presented and discussed in [29]. The authors propose using subjective
measures referring to the compatibility of the personality of workers, together with other
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workers’ characteristics, external conditions, and site conditions, as efficiency driving fac-
tors. In the course of the research, k-nearest neighbours, deep neural networks, logistic
regression, support vector machines, and convolutional neural networks were examined to
discover the mapping between driving factors, and masonry works efficiency. Artificial
neural networks are also a tool used to build a predictive model in another study [30]. The
authors focus on the construction works efficiency prediction problem in Iran as a devel-
oping country and a specific type of project—namely, commercial-office complex projects.
Nineteen factors ordered into five groups, including individual, managerial, economic,
technical, and environmental aspects, were used as efficiency drivers. The study resulted in
the development of a hybrid model based on artificial neural networks and the grasshopper
optimisation algorithm capable of predicting construction work efficiency with satisfactory
precision.

The following general conclusions can be drawn from the literature review:

• Although there are some common factors affecting efficiency, productivity, or perfor-
mance across different regions and types of construction works, these analyses are
often dependent on regional specificity and environmental issues,

• Various models for predicting efficiency, productivity, or performance have been
investigated and developed, but there is no universal tool that can be applied to all
cases.

• The selection of tools for efficiency, productivity, or performance modelling is individ-
ual and should be motivated and justified by the availability of data.

3. Methods and Data

Figure 1 shows a conceptual scheme of the proposed approach, which starts with the
collection of data on actual construction works.
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The approach presented in the paper involves a series of steps that integrate both
quantitative and qualitative analyses of construction work efficiency. To make the analysis
of the actual (real-life) construction works efficiency possible, data collection is necessary.

In terms of quantitative analysis, it is sufficient to record data that are directly related
to efficiency, such as the work output, number of hours spent, and resources used in
executing a particular construction work. Based on these data, efficiency can be computed
using various measures, but in this study, it is defined as the work output per unit of time
(hour of work). This quantitative approach enables probabilistic analysis of construction
work efficiency, leading to computations of either the duration or output of construction
works, along with an assessment of the probability for a given case.

To obtain a more comprehensive view and deeper insights, additional information
about the conditions, circumstances, organisation, and characteristics of construction works
must also be recorded. Such information is particularly crucial for qualitative analysis and
the application of machine learning tools. The qualitative approach follows probabilis-
tic analysis and is designed to enable the recognition of whether, under certain circum-
stances, the construction work efficiency being considered will be above or below a certain
critical value.

3.1. Assumptions for Quantitative Analysis and Probabilistic Approach

The collected and processed data are supposed to serve for calculations, resulting
in a series of discrete values representing actual efficiencies of construction works. The
calculated efficiencies should then be ordered according to the types of work. The discrete
empirical data should be processed to obtain an interval series (or so-called frequency distri-
bution) which, in turn, allows for fitting a continuous distribution of probability. The range
of empirical data must be divided into intervals, preferably of equal width. The next step
is fitting continuous distribution to the interval series. One may consider different types
of continuous distribution, such as beta, Kumaraswamy, metalog, quantile-parametrized,
trapezoidal, triangular, or others (continuous distributions are widely discussed in statisti-
cal literature, e.g., [31–33]).

In this study, the triangular distribution was chosen due to its simplicity and ease of
application. Moreover, the triangular distribution is expected to be understandable for
practising construction engineers.

To provide examples of how the triangular distribution is used in engineering, some
applications are mentioned in this paper: analysing and examining cost estimates for
electrical services contracts in government clinics in Hong Kong [34], deriving the occur-
rence probabilities of major construction project risk factors for proactive scheduling [35],
estimating the duration of horizontal directional drilling works [36], assessing the dura-
tion of construction works, such as finishing plastering [37], estimating the duration of
construction tasks for project evaluation and review techniques (PERT) [38], and analysing
construction cost risk for practical application in the bidding process [39].

The triangular distribution is a continuous probability distribution named after its
triangle-shaped density function. Some issues with its application are discussed in [40].
This distribution is characterised by three values: the minimum, peak, and maximum
(referred to as a, m, and b, respectively), and it is a simple and suitable model for skewed
distributions. By defining finite lower and upper limits, unwanted extreme values can be
avoided when the distribution is applied. The general form of the density function for the
triangular distribution is provided below.

f (x) =



0, x < a
2(x−a)

(b−a)(m−a) , x ∈< a; m)
b−a

2 , x = m
2(b−x)

(b−a)(m−a) , x ∈ (m; b >

0, x > b

(1)
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Following this, the expected value E(X), median Me, standard deviation σ, and mode
D can be computed, respectively. The equations for these calculations are given below.

E(X) =
a + m + b

3
(2)

Me =

a +
√

(b−a)(m−a)√
2

, m ≥ b−a
2

b−
√

(b−a)(b−m)√
2

, m ≤ b−a
2

(3)

σ =

√
a2 + m2 + b2 − ab− am−mb

18
(4)

D = m (5)

On the basis of the fitted distribution, it is possible to assess the probability of obtaining
an efficiency that is not less than a certain value, which can be denoted as xc and referred to
as critical. The formal notation for this is given below:

P(X > xc) =
∫ a

xc
f (x)dx (6)

Assuming the distribution allows for assessing a certain value of efficiency for which
a probability is assumed. Furthermore, it is possible to compute work duration, work
output, or gang size with the assumed probability. Examples of applications for formwork
assembly works based on real-life data are presented in Section 4 of this paper.

3.2. Assumptions for Qualitative Analysis—Application of Machine Learning

With the use of data that describes the circumstances, characteristics, and features of
construction works execution, it is possible to explore the prediction of efficiency. Machine
learning provides a wide variety of tools that can be applied in this area. Fundamental
knowledge and principles of machine learning can be found in the relevant literature,
such as [41–44].

During the initial studies, the option of efficiency predictions based on solving both
regression and classification problems was investigated. However, it was found that the
developed regression models’ performance was not satisfactory when using the collected
data. As a result, the decision was made to focus on classification problems. This is also an
explanation for why this part of the study was called qualitative analysis.

The main idea was to develop a machine learning-based tool that can differentiate
cases describing construction works execution and classify them based on their efficiency,
either greater or lower than a certain assumed critical value. The critical value of efficiency
can be determined based on previously fitted continuous distributions, and the records in
the dataset can be labelled for supervised training. There are several methods that can be
applied to this problem, such as neural networks, classification trees, naive Bayes method,
k-nearest neighbours, support vector machines (SVM), and others. SVM is a machine
learning tool whose theory is based on the principles of statistical learning, which are
broadly presented in [45,46].

SVM has the capability of learning from experience hidden in the data and knowledge
generalisation. The fundamentals, description, and methodology of the tools are discussed
in many works, e.g., [47–49]. Due to the advantages of SVM, it was decided to apply this
particular method in the study.

In particular, SVM is a supervised training algorithm that has been shown to have
good generalisation performance and is applicable to many problems. SVM is known to
perform well with limited datasets. Another important advantage to mention is the low
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number of free parameters in the learning machine, so the model architecture does not
need to be found by experimentation.

• Let’s assume that:
• xi is an n-dimensional vector of independent variables,
• yi takes values 1 or −1 denoting the class to which the i-th point belongs, respectively,
• w is the weight vector,
• b is the bias.
• During the SVM training process, the weight vector and bias are computed. To allow

solving problems which are not linearly separable:
• slack variables ξi, which aim is to measure the degree of misclassification, are introduced,
• the use of a kernel function ϕ (which may be polynomial, Gaussian radial basis or sig-

moid) allows nonlinear mapping of the nonlinear input space to the high-dimensional
feature linear space.

• SVM classification can be performed using two variants—C-classification or ν-
classification [50]. In the case of C-classification (later referred to as classification
type 1), optimisation of the following objective function takes place:

1
2

wTw + C ∑
i

ξi → min (7)

subject to following constraints:{
yi
(
wT ϕ(xi) + b

)
≥ 1− ξi

ξi > 0, i = 1, . . . , n
(8)

where C is a constant called capacity—a parameter that determines the trade-off between
the margin size and the amount of error in training. The parameter C > 0, which means it
may take any positive value.

For ν-classification (later referred to as classification type 2) objective function is given:

1
2

wTw− νρ +
1
n ∑

i
ξi → min (9)

subject to: 
yi
(
wT ϕ(xi) + b

)
≥ ρ− ξi

ξi > 0, i = 1, . . . , n
ρ ≥ 0

(10)

where ν ∈ [0, 1] is a parameter which represents an upper bound on the fraction of margin
errors and a lower bound of the fraction of support vectors relative to the total number
of training examples. An additional variable to be optimised is ρ. (Hyperparameters of
kernel-based classification are discussed, e.g., in [51]).

By using SVM-based classification, the study aimed to develop a machine learning
tool that could distinguish cases describing construction works execution and classify the
cases based on their efficiency, either greater or lower than a certain assumed value of
efficiency. This tool would allow for the assessment of whether certain circumstances of
work execution, as described by the features and parameters, are likely to result in efficiency
lower or higher than the assumed value.

In Section 4 of the paper, the author presents examples of the applications of this tool
for formwork assembly works based on real-life data. These examples demonstrate how
the SVM-based classification method can be used to identify the key factors that influence
the efficiency of construction work execution and to predict the likely efficiency of future
construction works based on these factors.
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3.3. Data

Formworks are critical components in the construction of reinforced concrete struc-
tures, and the selection of the appropriate formwork system is essential for achieving the
desired results. Various types of formwork systems have been developed over the years,
and their advantages and limitations have been extensively studied. In [52], one may
find an introduction and overview of the various forming systems used for reinforced
concrete structures. A comprehensive overview of formwork systems, including their raw
materials, flexibility, fabrication methods, applications in concrete structures, and environ-
mental impacts, is provided in [53]. This review compares and discusses the advantages
and limitations of various formwork systems, including traditional timber and plywood
formwork, aluminium formwork, and modular formwork systems. In [54], the concept
of adaptive design of formworks is introduced, with a case study for building renovation.
The authors investigate the use of building information modelling (BIM) environment for
the adaptive design of formwork elements in the context of sustainability. The selection
of the appropriate formwork system is a complex process that involves various criteria.
In [55], the focus is put on the criteria for selecting a certain formwork system. Following
that, a structural equation is developed and presented in [56]. The analysis reveals the
quantitative interrelationships among criteria for formwork system selection.

The approach proposed in the previous subsections was applied to analyse the ef-
ficiency of construction works based on real-life data recorded on a construction site in
Kraków, Poland. (Details about site location, name of the project and name of the contractor
have been restricted by the party that shared the data for research purposes.) The project
included the erection of several mid-rise residential buildings.

The data included information related to a specific type of construction work—the
assembly of formworks for structural members of a building superstructure, such as
columns, walls, beams, and slabs, as part of the construction of several residential buildings.
The data were collected by site engineers responsible for the supervision of formworks
assembly in collaboration with foremen. They recorded information about the completed
quantities of work, actual activity duration in working hours, number of workers assigned,
gang experience and skills, and weather conditions.

The data for beams were excluded from further analysis due to the relatively low
cardinality of records in the dataset and the different measure of work quantity (i.e., meters
of length) compared to the other elements. For walls, columns, and slabs, the quantity of
work was measured in units of assembled formwork surface (square meters).

Finally, the dataset contained 152 records. Table 1 presents basic information about
the dataset in terms of the number of records with regard to the type of structural member
and their shares.

• The dataset included several types of information related to the features of formwork
assembly works, including details on the organisation, time, circumstances of works
execution, and performance. It’s important to note that the data were recorded during
the autumn period. The obtained dataset consisted of nine features recorded on a
construction site, with an additional two features requiring simple calculations. The
features are mentioned and explained concisely below:

• type of structural member—called “Element”(which took one of the values: COLUMN
or WALL or SLAB);

• building storey—called “Level” (the values varied from 0 to 2);
• size of a gang assigned to a certain task—called “Number of workers” (the values

varied from 2 to 5);
• Gang experience and skills (which took the values: MS for moderately skilled and

experienced gang or AS for the averagely skilled and experienced gang, or HS for
highly skilled and experienced gang);

• duration of work within one working day in hours—called “Duration” (which varied
from 2 to 10 h);
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• “Total labour”—calculated as follows:

Total labour = Number or workers × Duration, (11)

• (standing for a number of hours spent by a certain number of workers to
complete work);

• The temperature in ◦C for a certain working day—called “Temperature” (the values
varied from −2 ◦C to 14 ◦C);

• information about the occurrence of falls on a certain working day—called “Falls”
(which took one of the values: YES or NO);

• information whether the work took place at the beginning, middle or end of a week—
later called “Day of the week” (which took values M—for Monday, TWT—for Tuesday
or Wednesday or Thursday, FS—for Friday or Saturday);

• the output of work—called “Total quantity” given in m2 of assembled formwork’s
surface in a certain day (values varied from 3.60 m2 to 133.5 m2);

• “Efficiency”—calculated as follows:

Efficiency = Total quantity/Total labour (12)

Table 1. Number of observations according to the type of element.

Element Formwork Type Number of Observations Observations Shares
in the Dataset

COLUMN system formwork 37 24.34%
WALL system formwork 51 33.55%
SLAB system formwork 64 42.11%

standing for output of work per one hour with respect to the number of workers
assigned to a certain scope of work.

Altogether, the dataset includes 11 types of features for each record. Table 2 presents
a random sample of dataset records, including the discussed 11 features and their corre-
sponding values.

Table 2. Random data sample including all types of collected information.

Element Level Number of
Workers

Gang
Experience
and Skills

Duration
[Hours/Day]

Total Labour
[Hours]

Temperature
[◦C] Falls Day of

the Week
Total Quantity

[m2]
Efficiency
[m2/Hour]

WALL 0 5 AS 9 45 9 YES FS 80.60 1.79
SLAB 2 3 HS 7.5 22.5 8 YES FS 46.00 2.04

COLUMN 2 4 AS 7.5 30 0 NO FS 40.10 1.34
WALL 0 3 AS 7 21 6 YES TWT 43.00 2.05

COLUMN 1 3 AS 4.5 13.5 3 NO TWT 19.00 1.41
SLAB 2 2 MS 7 14 −2 NO FS 4.50 0.32
WALL 0 3 MS 9 27 5 NO TWT 43.40 1.61

COLUMN 2 3 MS 8 24 0 NO FS 30.50 1.27
COLUMN 1 3 MS 4 12 3 NO TWT 17.50 1.46

SLAB 1 3 HS 7 21 3 NO FS 48.00 2.29
COLUMN 0 4 MS 10 40 1 YES TWT 21.90 0.55

WALL 0 3 AS 7 21 6 YES TWT 45.20 2.15
SLAB 1 3 AS 8 24 11 YES M 50.00 2.08
WALL 1 4 AS 8 32 11 YES TWT 59.50 1.86

COLUMN 0 3 AS 4 12 6 NO TWT 17.00 1.42
WALL 0 5 MS 9 45 9 YES FS 80.60 1.79

In the case of the three features presented in Table 2, some additional comments
seem necessary. “Gang experience and skills” were assessed, taking into account the
individual abilities of workers belonging to a certain gang. The contractor’s site engineers
simply put an average score expressed by one of the three possible values into the dataset.
Concerning “Temperature”, the values represented the temperature measured in the middle
of a particular working day. The ranges of the temperatures are adequate for the autumn
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period when the data were collected and recorded. Finally, “Falls” values are elementary
information about the occurrence of any kind of falls.

Although the way the data were recorded is disputable (some subjective judgements
and inaccuracies are inevitably present), it was decided to use it for this study as is. The
issue is addressed in the discussion section of the paper.

The dataset discussed above was used for the application of the approach presented
in Sections 3.1 and 3.2. Firstly, a probabilistic analysis of work efficiency was carried out.
From that point of view, it was necessary to present descriptive statistics computed for
empirical data. This was performed with regard to the type of element. This division is
important from a technical point of view since the formworks assembly works for columns,
walls, and slabs (as reinforced concrete structural members) differ.

Table 3 presents descriptive statistics for the efficiency of formworks assembly with
regard to the type of element.

Table 3. Descriptive statistics for observed values of efficiency 1.

Element Min Mean Max Median Standard Deviation

COLUMN 0.19 1.250 1.81 1.360 0.402
WALL 0.80 1.869 3.18 1.880 0.615
SLAB 0.28 1.728 3.14 1.901 0.721

1 All values for descriptive statistics are given as [m2/hour].

The second step involved using the dataset for quantitative analysis by utilising SVM
as a machine learning tool.

The results of the applied analysis are presented in Section 4 and discussed in Section 5.

4. Results

Following the assumptions given in Section 3.1, the observed efficiencies were ordered
into interval series with respect to the type of element. The results of this operation are
presented in the following Tables 4–6. It is noteworthy that the number of intervals k for
each type of element was assessed using the following equation:

k = 1 + 3.3 log m (13)

where m stands for the number of observations presented in Table 1. The ranges of the
intervals resulted from an even division of efficiency value ranges by k (with the lower and
upper ends rounded down and up, respectively).

Table 4. Interval series based on observed efficiencies for column formworks assembly works.

Intervals’ Ranges
[m2/Hour]

Middle of the Interval
[m2/Hour]

Number of
Observations

Accumulated
Number of

Observations
Share [%] Accumulated Share [%]

0.10 ÷ 0.40 0.25 2 2 5.405 5.405
0.40 ÷ 0.70 0.55 2 4 5.406 10.811
0.70 ÷ 1.00 0.85 5 9 13.513 24.324
1.00 ÷ 1.30 1.15 6 15 16.216 40.540
1.30 ÷ 0.60 1.45 16 31 43.243 83.783
1.60 ÷ 1.90 1.75 6 37 16.217 100.000

Table 4 shows that for column formworks, the observed values were grouped into
six intervals, with a range of 0.3 for each interval.

In the case of wall formwork assembly efficiencies, the observed values were grouped
into seven intervals, as shown in Table 5. The range of each interval was 0.37.

Table 6 shows the results for slab formworks, where the observed assembly efficiencies
were also grouped into seven intervals. The range of intervals was 0.43.
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Table 5. Interval series based on observed efficiencies for wall formworks assembly works.

Intervals’ Ranges
[m2/Hour]

Middle of the Interval
[m2/Hour]

Number of
Observations

Accumulated
Number of

Observations
Share [%] Accumulated Share

[%]

0.70 ÷ 1.07 0.885 8 8 15.686 15.686
1.07 ÷ 1.44 1.255 3 11 5.882 21.568
1.44 ÷ 1.81 1.625 10 21 19.608 41.176
1.81 ÷ 2.18 1.995 17 38 33.333 74.509
2.18 ÷ 2.55 2.365 8 46 15.686 90.197
2.55 ÷ 2.93 2.740 0 46 0.000 90.197
2.93 ÷ 3.30 3.115 5 51 9.803 100.00

Table 6. Interval series based on observed efficiencies for slab formworks assembly works.

Intervals’ Ranges
[m2/Hour]

Middle of the Interval
[m2/Hour]

Number of
Observations

Accumulated
Number of

Observations
Share [%] Accumulated Share

[%]

0.20 ÷ 0.63 0.415 4 4 6.250 6.250
0.63 ÷ 1.06 0.845 10 14 15.625 21.875
1.06 ÷ 1.49 1.275 7 21 10.938 32.813
1.49 ÷ 1.91 1.700 11 32 17.187 50.000
1.91 ÷ 2.34 2.125 20 52 31.250 81.250
2.34 ÷ 2.77 2.555 8 60 12.500 93.750
2.77 ÷ 3.20 2.985 4 64 6.250 100.000

In the next step, triangular distributions were fitted to the observed efficiencies. Table 7
presents the minimum value a, the peak value m and the maximum peak b values. Moreover,
based on Equations (2)–(4), the expected value E(X), median Me and standard deviation σ

were computed for the fitted distributions and presented in the table as well.

Table 7. Characteristic values for fitted triangular distributions 1.

Element a m b E(X) Me σ

COLUMN 0.100 1.450 1.900 1.150 1.202 0.382
WALL 0.700 1.995 3.300 1.998 1.997 0.531
SLAB 0.200 2.125 3.200 1.842 1.899 0.621

1 All values given as [m2/hour].

The fitted distributions are visually depicted in Figures 2–4, where the horizontal
axes represent the efficiency of column, wall, and slab formwork assembly, respectively,
given in [m2/hour] (compare with Equation (12) and Tables 4–7). The vertical axes indicate
the values of the probability density function f (x), computed using Equation (1) and the
parameters a, m, and b from Table 7.

For the efficiencies of column formwork assembly f (x = m) = 1.11. From Figure 2 it is
evident that the distribution is left-skewed.

In the case of the distribution fitted for wall formwork assembly efficiencies,
f (x = m) = 0.769. Figure 3 shows that the distribution is almost symmetric.

For slab formwork assembly efficiencies, the value of the fitted distribution function
f (x = m) = 0.667. Figure 4 shows that the distribution is slightly left-skewed.

Fitting the distributions to the data allowed for further considerations. Based on
Equations (1) and (6) and the parameters a, m and b presented in Table 7, the probability
of the chance that the efficiency of formwork assembly works would be no less than an
assumed critical value xc was assessed. In Table 8, three hypothetical values of xc for each
of the elements are presented, along with computed probabilities. (It is noteworthy that
probability may be computed for any assumed value of xc that falls into the range <a; b>).
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With the knowledge of the probabilities, it was also possible to assess the duration of work
or total quantity (output). This was performed on the basis of Equations (11) and (12) or
their simple transformations. The results of these exemplary calculations are also presented
in Table 8.
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Table 8. Results of probabilistic analysis for hypothetical critical values of formwork assembly
works efficiencies.

Element xc P(X > xc) Number of Workers Duration 1 [Hours /Day] Total Quantity 1 [m2]

COLUMN 0.8 0.798 2 8 h 12.8 m2

1.0 0.667 2 8 h 16 m2

1.2 0.502 2 8 h 19.2 m2

WALL 1.6 0.759 3 8.33 h 40 m2

1.8 0.641 3 7.41 h 40 m2

2.0 0.498 3 6.67 h 40 m2

SLAB 1.2 0.827 5 7.5 h 45 m2

1.4 0.751 4 9 h 50.4 m2

1.6 0.661 3 6.5 h 31.2 m2

1 Some of the values were assumed and some computed; the latter are underlined.

The computations, which results are presented in Table 8, were performed based on
hypothetical critical efficiencies, xc, and a given number of workers. Either duration or
total quantity had to be assumed in order to compute the other. Similar computations can
be carried out for any reasonable and justifiable assumptions about the combination of
values describing the number of workers, planned quantity of work, or duration of the
task. The assessed probability is an added value for operational planning and day-to-day
scheduling purposes.

For the purpose of applying SVM-based classification to a real-life dataset describing
formwork assembly works, this study assumed a critical value of xc = Me. Note that Me
was taken separately for each element type (column, wall, or slab) according to the fitted
triangular distributions. It is also important to note that for Me, it can be assessed that
the probability of achieving an efficiency greater than Me is 0.5, and the same probability
would be for achieving an efficiency lower than Me. Based on these assumptions, all cases
in the dataset were labelled as follows:

• A (above the median value) for efficiency > Me,
• B (below the median value) for efficiency < Me.

Thus, for the purpose of supervised training, two classes, A or B, were defined to
represent yi. It is important to mention that the vector xi consisted of eight variables, namely
“Element”, “Level”, “Number of workers”, “Gang experience and skills”, “Duration”,
“Temperature”, “Falls”, and “Day of the week”, as presented in Table 2. SVM models for
classification problem type 1 (Equations (7) and (8)), as well as type 2 (Equations (9) and (10)),
were trained using the TIBCO® StatisticaTM 13.3 software suite (developed by TIBCO
Software Inc. 3307 Hillview Avenue, Palo Alto, CA 94304, USA, distributed by StatSoft
Polska Sp. z o.o., 30-110 Cracow, Kraszewskiego 36, Poland).

Before initiating the training, the dataset was randomly divided into training and test-
ing subsets in the ratio of 70% to 30%, respectively. All variable values were automatically
scaled for the purpose of SVM training.

The models’ parameters were determined using the grid method and 10-fold cross-
validation, with a maximum of 2000 epochs for the training process. For the purposes of
cross-validation, the dataset was randomly divided into 10 equal-sized subsets. In each
fold, a single subset was retained as the validating data, and the remaining 9 subsets were
used for training. The cross-validation process was repeated ten times for each point on
the grid, which was defined by the lower and upper boundary of parameter values and
the step size. The goal was to find the optimal value of the C parameter for the type 1 and
ν parameter for the type 2 SVM-based classification. The considered range of parameters,
including lower and upper boundary values and the step size, is presented in Table 9.

The considered kernel functions ϕ included: polynomial, Gaussian radial basis and
sigmoid. The best results and performance, however, were obtained in the case of the
Gaussian radial basis kernel function implementation.
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Table 9. Parameters range considered for SVM-based classification problem.

SVM Based Type
of Classification 1 Parameter Lower Boundary Step Upper Boundary

type 1 C 1 1 10
type 2 ν 0.1 0.1 0.5

1 With regard to Equations (7)–(8) and (9)–(10).

As a result of the supervised training, two SVM-based models were obtained—one for
each of the classification problem types. The models are later referred to as SVMct1
(developed as a result of solving type 1 problem) and SVMct2 (developed as a result of
solving type 2 problem). The characteristics of the two models are presented in Table 10.

Table 10. Characteristics of SVM-based classification models.

Model Parameters Support Vectors Bounded
Support Vectors

Cross Validation
Relevance

SVMct1 C = 5.0, b = 0.9057 69 (A: 34, B: 35) 52 73.58%
SVMct2 ν = 0.3, b = 0.2319 57 (A: 26, B: 31) 16 72.61%

General performance of the obtained SVM-based models in terms of proper
classification—either class A or class B is given below:

• model SVMct1: 80.19% for the training subset and 84.78% for a testing subset,
• model SVMct2: 91.51% for the training subset and 84.78% for the testing subset.

Results are also presented in Table 11 in a more detailed way. The table depicts the
confusion matrix. Underlined values stand for properly classified cases.

Table 11. Confusion matrix.

Model
Training Testing

A: B: A: B:

SVMct1 A: 42 11 22 3
B: 10 43 4 17

SVMct2 A: 43 5 26 4
B: 4 54 3 13

Further classification performance measures were computed based on the confusion
matrix and are presented in Table 12. The measures include accuracy of classification
for classes A and B, sensitivity for class A, and specificity for class B. The measures are
presented separately for the training and testing processes.

Table 12. Performance of classification.

Model
Training Testing

Class A B A B

SVMct1 accuracy 79.25% 81.13% 88.00% 80.95%
sensitivity/specificity 80.77% 79.63% 84.62% 85.00%

SVMct2 accuracy 89.58% 93.10% 86.67% 81.25%
sensitivity/specificity 91.49% 91.53% 89.66% 76.47%

The results of classification are satisfactory. Especially the accuracy of classification in
the case of testing, which verifies the performance and ability of knowledge generalisation
by the models, was above 80%. This suggests that the models have the ability to generalise
and make satisfactory predictions for new cases. (Nonetheless, it is important to note that
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the models were trained on a specific dataset and may not perform as well on datasets with
different characteristics).

The developed SVM models were used to assess work efficiencies for six new cases,
which were neither used in the training nor testing processes. The results are presented
in Table 13.

Table 13. Application of the for new cases of formworks assembly works.

Element Level Number of
Workers

Gang
Experience
and Skills

Duration
[Hours /Day] Temperature [◦C] Falls Day of the

Week

Class
Identified
by SVM

Expected Total
Quantity [m2]

COLUMN 2 4 AS 9.0 −2 NO FS A Not less than 43.3
COLUMN 1 4 MS 2.5 8 YES TWT B No more than 13.6

WALL 0 3 HS 9 14 NO M A Not less than 47.0
WALL 1 2 MS 10 6 NO FS B No more than 28.0
SLAB 1 3 AS 9 11 NO M A Not less than 51.3
SLAB 2 4 AS 10 −1 YES TWT B No more than 76.0

Table 13 presents the classification for the new cases. It must be pointed out that some
values were planned (specifically: Element, Level, Number of workers, Gang experience
and skills, Duration, and Day of the week), and some had to be forecasted as there is
no influence on their actual values (namely: Temperature and Falls). For the new cases
as presented in the table, either class A or B was recognised by the developed models.
(It is noteworthy that classification results were consistent between the two models, that is,
SVMct1 and SVMct2, for the new case.) Classes identified by SVM models for each new
case are presented in the relevant column. The classification was followed by a qualitative
assessment of the daily output of formworks assembly. The results of this step of analysis
are given in the column “Expected total quantity” in m2 of assembled formworks.

Based on the results presented in Table 13, the developed SVM models were able to
accurately classify the new cases and allowed for the assessment of work duration or output.
Overall, the SVM models demonstrated their usefulness for predicting the efficiency of
formworks assembly based on various input factors.

5. Discussion

The possibility of practical application of the proposed approach for the purposes
of construction works efficiency analyses depends on the available data. Data collection
remains on the contractor’s side as the most interested party, which, in turn, usually means
an additional effort and, inevitably, cost. However, the effort put in may be counterbalanced
by benefits in terms of better insight and understanding of construction works efficiency
and knowledge of the issue.

The study presented herein did not have an influence on the data collection process.
There was no chance to decide what kind of data were collected, in what way and how
relevant information was recorded. The data were used as is. The problem of collecting
and recording efficiency-related data and information, however, is interesting in itself,
particularly given the development of tools and technologies capable of automatically
recording information on a construction site. Although this is not the main focus of this
particular research, some works and their results are worth mentioning. For example,
there is the use of the Global Positioning System (GPS) for the spatiotemporal recording
of construction equipment location and timestamps [57], combining several tools, such as
external cloud computing servers, access points, monitoring bands, smartphones, beacons,
and radio-frequency identification devices into a system for monitoring construction work-
ers on a site [58], the application of Bluetooth Low Energy (BLE) technology for tracking
and collecting data for production control in construction projects [59], and a review and
comprehensive discussion of the best practices in unoccupied airborne systems (UAS)
aerial imagery collection and processing for construction research, including tasks, such
as preconstruction planning, material tracking, project progress tracking, safety, as-built
documentation, and building/structure inspection [60].
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When it comes to efficiency modelling, the relevant literature review revealed that in
studies reported from different countries, some of the factors that play a role as efficiency
drivers are common; however, some of them result from regional conditions. Moreover,
the scope of data, specifically the types of considered efficiency drivers, is also influenced
by the type of construction work or the type of construction project.

For the purpose of the quantitative-probabilistic approach, the triangular distribution
appears to be a reasonable choice. While the beta distribution was originally proposed for a
similar problem, i.e., the probabilistic analysis of construction work durations in the case of
the PERT method, the triangular distribution is simpler and easier to apply for the specific
problem of formwork assembly works. However, a limitation of the study is that the results
of the applied probabilistic analysis are dependent on the data, and the fitted distributions
presented in this paper are specific to the analysed cases of formwork assembly works and
the project.

For the qualitative approach and classification problem, SVM is proposed as a machine
learning tool. When compared to previously published research, most of which focused
on solving regression problems, ANN seemed to be the most frequent choice. However,
the selection of SVM for this study is justified by its capabilities, number of training data,
and applicability for classification problems. The limitations of the application results are,
again, a consequence of the use of particular data. It is worth noting that the study focused
on recognising only two classes of efficiency, which is a limitation. In the future, if a large
enough dataset including real-life efficiency-related information is available, it is planned
to investigate the possibility of recognising at least three classes covering low, moderate,
and high efficiencies. Additionally, the use of other machine-learning tools will also
be explored.

The proposed approach has limitations, and its results are data-dependent. However,
if applied to similar types of construction works with efficiency-related data, it can be
useful for operational analysis and day-to-day planning of formworks assembly. It can also
be used for short-term control of construction progress. Moreover, if data from a specific
construction company are processed, this approach can serve as a basis for setting efficiency
standards within the company.

6. Summary and Conclusions

The paper presents an approach for analysing the efficiency of construction works.
The approach involves using triangular distribution for quantitative probabilistic analysis,
followed by qualitative analysis using a support vector machine (SVM) as a machine
learning tool to classify cases of construction works execution based on their assumed
critical efficiency.

This is followed by an application of this approach to real-life data analysis, namely
formworks assembly works recorded on a construction site. The outcome of this analysis
was the fitting of triangular distributions for column formworks assembly, wall formworks
assembly, and slab formworks assembly. Considering each of these element types sepa-
rately, specific distribution parameters were computed. This makes it possible to conduct
probabilistic analyses of construction works efficiencies, planned daily durations, and
planned daily output of works.

The research also aimed to explore the application of the SVM method as a tool for
processing efficiency-related data. The study addressed the classification problem in terms
of recognising whether certain circumstances, features, and characteristics of formworks
assembly works allow for achieving efficiency greater than or lower than median values.
The accuracy of classification was found to be satisfactory, with over 80% accuracy for both
developed models based on C-classification (type 1) and ν-classification (type 2).

The results of the analysis were obtained using data that were collected for a specific
construction project, a particular type of construction work, and recorded in certain cir-
cumstances. Despite these limitations, the results of the study were satisfactory, and it can
be concluded that the proposed approach has positive applicative potential. Furthermore,
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the results suggest that more advanced analyses could be conducted if more extensive and
informative data were available.
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