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Abstract: This paper proposes a method to classify food types and to estimate meal intake amounts in
pre- and post-meal images through a deep learning object detection network. The food types and the
food regions are detected through Mask R-CNN. In order to make both pre- and post-meal images to a
same capturing environment, the post-meal image is corrected through a homography transformation
based on the meal plate regions in both images. The 3D shape of the food is determined as one
of a spherical cap, a cone, and a cuboid depending on the food type. The meal intake amount is
estimated as food volume differences between the pre-meal and post-meal images. As results of the
simulation, the food classification accuracy and the food region detection accuracy are up to 97.57%
and 93.6%, respectively.

Keywords: object detection; food classification; food volume estimation; meal intake amount
estimation

1. Introduction

For people who need strict dietary management such as diabetes, it is very important
to figure out the amount of eaten food. The meal state can be checked by asking or
directly looking at the meal plate. However, directly checking the meal state is not only
inconvenient, but also has problems where the meal intake measurement is inaccurate
and biased [1]. Various studies have been conducted on automated methods to objectively
recognize food types and meal intake amounts. After object detection improves noticeably
through artificial neural networks, various studies [2–5] have been conducted to detect
foods in an image through object detection networks. Even though the performance of
the food detection improves noticeably through the artificial neural networks, it is still
difficult to measure the food volumes in the single image. The typical RGB image contains
no 3D spatial information, so the 3D shape of the food is hard to reconstruct from the image.
Several attempts [6–11] have been made to estimate the food volumes using stereo vision
images or an RGB-D image. Some studies [12–17] estimate the food volume based on a
shape-known reference object in a single image. Nevertheless, these are unsuitable for
practical applications so far because the meal intake amount estimation is possible under
limited conditions.

Institutions such as welfare centers analyze the dietary status of people who are re-
ceiving certain meal services to manage their health. The health management is achieved
by checking the food types and measuring the meal intake amount. Since the meal intake
amount is measured in some fixed levels, a slight imprecision of the meal amount measure-
ment is acceptable. In this paper, we propose the methods of the food type classification
and the intake amount estimation through an image pair for pre- and post-meal.

The flow of the proposed method is as follows: Mask R-CNN [18], which detects object
regions in pixel units, finds the food regions and classifies the food types in the pre- and post-
meal images. The post-meal image is corrected by homography transformation through
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two meal plate regions in the images. For each food, the 3D shape type is determined as
one of a spherical cap, a cone, and a cuboid based on the food type. The food volume
is calculated through the 3D shape type and the food area. The meal intake amount is
estimated as the difference in the food volumes in the pre- and post-meal images.

The contributions of this paper are that only pre- and post-meal images are needed to
measure meal intake. That is, if a dedicated system attached with a camera takes a picture
of a meal plate before and after a meal or takes a picture of a meal plate before and after a
meal with a smartphone, then the food type can be automatically classified. In addition,
the meal volume can be measured based on the detected food region and its predefined 3D
shape without the need for a complex device to measure the volume.

2. Related Works for Food Detection and Meal Intake Amount Estimation

Research on the food type classification and the meal intake amount estimation is clas-
sified into methods by sensors and based on images. The food type and meal intake amount
can be calculated by the sensors that measure sound, pressure, inertia, and so on, caused by
eating food. The meal intake amount is measured by attaching weight or pressure sensors
to a tray where meal plates are placed [19,20]. However, the estimation methods by the
tray with the sensors have the disadvantage of extremely limited mobility. Some wearable
devices can be utilized to measure the meal intake amount [21–23]. Olubanjo et al. [21]
classifies the food type and measures the meal intake amount by template matching on
the characteristics of sounds generated by chewing. Thomaz et al. [22] recognizes the food
types and the meal intake amount through a smartwatch with a three-axis accelerometer.
However, these methods cannot estimate the meal intake amount while the wearable device
is not worn.

Recently, the technology for object detection in images has greatly been improved
due to the development of artificial intelligence technology through deep neural networks.
Various studies [2–5] for the food type classification have been conducted through object
detection networks such as YOLO [24], VGG19 [25], AlexNet [26], and Inception V3 [27].
Wang et al. [28] pre-processes the meal image through morphological operators before
detecting foods through an object detection network. The food detection methods through
deep neural networks outperform the traditional methods [29], which are scale invariant
feature transform (SIFT), histogram of oriented gradients (HOG), and local binary patterns
(LBP). However, it is very difficult to measure the meal intake amount through only one
image.

For the image-based methods, the meal intake amount should be measured by images
captured from two or more viewpoints, an RGB-D image, or prior modeling of the foods.
The methods based on multiple images [6,7] measure the food volume by reconstructing
the 3D shape through correspondences among the pixels of images. Bándi et al. [6] finds
some feature points in the food images captured with stereo vision in order to generate a
point cloud that is a set of points on 3D space. The food volumes are measured through the
point cloud for images. The food volume can also be estimated through the RGB-D image,
which is added as a channel for the distance to subjects [8–11]. Lu et al. [8] detects the food
regions and classifies the food types through convolution layers through RGB channels of
the captured image. The food volumes are estimated by reconstructing 3D surfaces through
a depth channel that has distance information. The 3D shape can be predicted by pre-
modeling for the template of the food or bowl [30–32]. Hippocrate et al. [30] estimates the
food volumes based on a known bowl shape. The food volume estimation through a single
image requires a distinct reference object [12–14]. The meal intake amount can be estimated
by the ratio of the number of pixels between the food and the reference object regions [12].
However, this estimation method has a large error for thin food. Smith et al. [13] calculate
a projection model from a food object to the image through the reference object region.
After that, one 3D shape type among sphere, ellipsoid, and cuboid is manually assigned
to the food region to estimate the food volume. Liu et al. [14] crop a food region without
background through Faster R-CNN, Grabcut algorithm, and median filter. The relative
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food volume is estimated through the CNN network that learns the relationship between
the food image without background and the food volume. The actual volume is calculated
through the area ratio between the food and the size-known reference object. The estimation
methods based on the reference object have an inconvenience where the reference object
should be captured with food. In order to overcome this inconvenience, a shape-known
dish or bowl can be utilized as the reference object [15–17]. Jia et al. [15] generate a 3D
bowl model by measuring distances between line marks in the graduated tape attached at
the bowl to estimate the meal intake amount. Fang et al. [16] and Yue et al. [17] calculate
the camera parameters such as a camera pose and a camera focus length through the
shape-known dish. The 3D food shape is generated through the camera parameters to
calculate the food volume. However, these methods can only estimate the foods on certain
containers.

3. Food Classification and Meal Intake Amount Estimation through Deep Learning

The proposed method classifies food types and estimates meal intake amounts by
comparing pre- and post-meal images. Figure 1 shows the flow of the proposed method. In
both pre- and post- meal images, the regions of the food and the meal plates are detected
and the food types are classified through the object detection network. In order to compare
food amounts between two images under the same capturing environment, the post-meal
image is corrected by homography transformation through the detected plate regions in
the both images. For each food in the images, the 3D shape type is determined as one of a
spherical cap, a cone, and a cuboid based on the food type. The food volume is estimated
through the 3D shape types and the food area. The meal intake amount is estimated by
comparing the food volumes between the pre- and post-meal images.
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3.1. Dataset

Images with Korean food and the meal plate which are captured by ourselves are
utilized as the dataset for the proposed method. The dataset has 20 types of Korean food as
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shown in Table 1. The foods in the dataset are classified into three categories as follows: rice,
soup, and side-dish. The dataset has 520 images. The dataset is divided into 416 training
images and 104 validation images at a ratio of about 8:2. The foods are placed on the
concave surface within the designated meal plate as shown in Figure 2. The size of the
meal plate is 40.5 cm × 29.5 cm. The soup food is served in a separate bowl whose radius
is 3.5 cm.

Table 1. Categorization of foods in dataset.

Category Food Name No. of Images in
Training Set

No. of Images in
Validation Set

Rice Rice 412 95

Soup

Bean sprout soup 108 16
Miso soup 216 32

Radish leaf soup 80 12
Seaweed soup 68 12

Side-dish

Eggplant 86 13
Fruit salad 43 5
Grilled fish 246 43

Jeon 104 23
Kimchi 258 29

Pepper seasoned 81 11
Seastring seasoned 84 14

Stewed fish 185 20
Stir-fried fish cake 84 23

Stir-fried mushroom 121 29
Stir-fried octopus 58 5

Stir-fried pork 179 29
Stir-fried squash 87 8

Tofu 116 26
Yellow pickled radish 142 17
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Data augmentation is applied in order to increase the efficiency of the network training.
Data augmentation is a strategy to increase the number of the data for the network train-
ing. Data augmentation increases the data without disappearance of main characteristics
through image processing. In the proposed method, the image burring, the image rotation,
and the image flip are applied probabilistically for the data augmentation as shown in
Figure 3.
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3.2. Food Detection through Mask R-CNN

The bounding boxes detected by the usual object detection are inappropriate for
estimating the food volume since it does not have information on the shapes of the foods.
The food volume estimation requires the food region in pixel units. The proposed method
detects the foods through Mask R-CNN [18] which is possible for the object detection in
pixel units. ResNet-50 [33] is applied as the backbone of Mask R-CNN. Figure 4 shows
the flow for food detection through Mask R-CNN. ResNet-50 extracts the feature maps
from a meal plate image. The regions of interest (ROIs) are extracted by a region proposal
network (RPN) from the feature maps. ROIAlign crops and interpolates the feature maps
through ROIs. For each ROI, the food type and the bounding box are predicted through
fully connected layers (FC layers). The food region in pixel units for each ROI is predicted
through a fully convolutional network (FCN) [34]. Figure 5 shows the results of the food
type classification and the food region detection through Mask R-CNN.
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3.3. Image Correction for Food Amount Comparison

The size of an object in an image depends on the capturing environments such as the
camera pose and the distance. Therefore, both pre- and post-meal images should have
the same capturing environment for accurately comparing the food amounts. However,
the capturing environments of two meal images are often different in usual situations. In
order to match both images to the same capturing environment, the post-meal image is
corrected based on the meal plate regions in the both images. For each image, one rectangle
and its vertices are found that enclose the meal plate region through rotating calipers
algorithm [35]. A homography matrix is calculated from a pair of four vertices in two
images. The post-meal image is corrected by the homography transformation with the
calculated matrix as shown in Figure 6.
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3.4. Meal Intake Amount Estimation

The meal intake amounts are estimated as the differences in the food volumes between
the pre- and post-meal images. Estimating a volume from an image is known to be a
very challenging task. Nevertheless, we propose a method of the food volume estimation
by assuming that the foods on the meal plate have a few simple 3D shape types. In the
proposed method, the food is modeled in a 3D shape according to the type and the area as
shown in Figure 7.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 14 
 

capturing environments of two meal images are often different in usual situations. In 
order to match both images to the same capturing environment, the post-meal image is 
corrected based on the meal plate regions in the both images. For each image, one 
rectangle and its vertices are found that enclose the meal plate region through rotating 
calipers algorithm [35]. A homography matrix is calculated from a pair of four vertices in 
two images. The post-meal image is corrected by the homography transformation with 
the calculated matrix as shown in Figure 6. 

 
         (a)                   (b) 

 
           (c) (d)            (e) 

Figure 6. Image correction to have same capturing environment: (a) pre- and post-meal images; (b) 
rectangles and vertices enclosing meal plate regions; (c) corrected post-meal image by homography 
transformation; (d) food regions of post-meal image before correction; (e) food regions after correc-
tion. 

3.4. Meal Intake Amount Estimation 
The meal intake amounts are estimated as the differences in the food volumes be-

tween the pre- and post-meal images. Estimating a volume from an image is known to be 
a very challenging task. Nevertheless, we propose a method of the food volume estimation 
by assuming that the foods on the meal plate have a few simple 3D shape types. In the 
proposed method, the food is modeled in a 3D shape according to the type and the area 
as shown in Figure 7.  

 
Figure 7. Flow of food volume estimation. 

Food has a specific 3D shape depending on its food type. Foods in the rice and the 
soup categories are similar to a spherical cap shape as shown in Figure 8a. In Figure 8b, 
the foods which consist of bunches of an item are shaped like cones. Figure 8c shows that 
the shape of the food is close to cuboids if the food is one chunk. The proposed method 

Figure 7. Flow of food volume estimation.



Appl. Sci. 2023, 13, 5742 7 of 14

Food has a specific 3D shape depending on its food type. Foods in the rice and the
soup categories are similar to a spherical cap shape as shown in Figure 8a. In Figure 8b,
the foods which consist of bunches of an item are shaped like cones. Figure 8c shows that
the shape of the food is close to cuboids if the food is one chunk. The proposed method
determines the 3D shape types for the characteristic of food as a spherical cap, a cone, or a
cuboid shape. Table 2 shows 3D shape types by the food types.
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Table 2. 3D shape types for food types in proposed method.

Category Food Name 3D Shape Types Category Food Name 3D Shape Types

Rice Rice spherical cap

Side-dish

Fruit salad Cone

Soup

Bean sprout soup spherical cap Kimchi cone
Miso soup spherical cap Pepper seasoned cone

Radish leaf soup spherical cap Seastring seasoned cone
Seaweed soup spherical cap Stir-fried fish cake cone

Side-dish

Tofu cuboid Stir-fried mushroom cone
Jeon cuboid Stir-fried octopus cone

Stewed fish cuboid Stir-fried pork cone
Grilled fish cuboid Stir-fried squash cone
Eggplant cone Yellow pickled radish cone
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The food volume is estimated through the base area and the 3D shape types. The base
area is calculated through the actual meal plate area as follows:

A f ood =
n(p)
n( f )

× Aplate, (1)

where n(.) is the number of pixels; p and f are the regions of the meal plate and the food,
respectively; and Afood and Aplate are the base area and the meal plate area, respectively.

Even though the base area and the shape type are determined, the 3D shape can be
different. For example, the shape of a cone with a specific base depends on its height. It
is very difficult to estimate the height through one image. However, the foods cannot be
sloped beyond a certain angle, which is the angle of repose. Though the angles of repose
are different depending on the material of the food, the proposed method supposes that
the angle of repose is 30 degree which is the average angle [36]. In other words, the food is
assumed to have the slope angle of 30 degree.

The food volume is estimated through the 3D shape type of the food. For the food of
the spherical cap type, the food height h is equal to R − a as shown in Figure 9a, where R
is the radius of the whole sphere, and a is a distance between the spherical center and the
base area. The slope angle θslope is 30 degree; thus,√(

R
a

)2
− 1 = tan θslope = 1/

√
3, (2)

From (2), a and h are
a =
√

3R/2, (3)

h = R− a =
(

2−
√

3
)

R/2. (4)

The base area Afood is equal to πr2; then, r is

r =
√

A f ood/π. (5)

Since the angle between R and h is also equal to θslope, R is calculated as follows:

R = r× csc θslope = 2r = 2
√

A f ood/π. (6)

The result of substituting R into (4) is

h = 2
√

A f ood/π×
(

2−
√

3
)

/2 =
(

2−
√

3
)√

A f ood/π. (7)

The volume equation of the spherical cap is

Vsph =
1
3
πh2(3R− h). (8)

By substituting (6) and (7) into (8), the food volume Vsph for the spherical cap is
calculated as follows:

Vsph =
16− 9

√
3

3
√
π

(
A f ood

)3/2
≈ 0.08

(
A f ood

)3/2
. (9)
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Though the food in the soup category has the spherical cap shape, it is liquid contained
in a bowl. The slope angle of the food is not fixed at 30 degree but depends on the curvature
of the bowl. If R is given, h is calculated through the Pythagorean theorem as follows:

h = R−
√

R2 − r2. (10)

For the food with the cone shape, the radius of the base surface r is also estimated
through (5). The food height h is calculated to be rtan θslope =

√
A f ood/3π as shown in

Figure 9b. The food volume of the cone-shaped food Vcone is estimated as follows:

Vcone =
1
3

A f oodh ≈ 0.11
(

A f ood

)3/2
. (11)

Though the height of the cuboid is hard to estimate, it can be empirically predicted
that the food volume decreases in proportion to the base area of the food. Therefore, the
food volume for the cuboid shape is

Vcuboid = A f oodH f ood, (12)

where Hfood is the predefined height depending on the food type. For each food, the meal
intake amount is estimated by comparing the food volumes between the pre- and post-meal
images.
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4. Simulation
4.1. Simulation Results

We measure the accuracies of the food type classification and the meal intake amount
by the trained Mask R-CNN. In the training of Mask R-CNN, the batch size is set as 64 and
the epochs are set as 10,000, 30,000, 50,000, and 70,000. The performances of the proposed
method are measured through 65 images with 206 food objects. In addition, Mask R-CNN
and YOLOv8 [37] are applied as the food detection network to compare the performances
of the proposed method.

The accuracies of the food existence detection and the food type classification are
measured as shown in Table 3. The accuracy of the food existence increases as the epochs
increase up to 50,000. All foods are detected with Mask R-CNN trained over 50,000 epochs.
The accuracy of the food type classification is improved up to 97.57% until the food detection
network is trained with 50,000 epochs. The accuracy of the food type classification hardly
increases from the epochs greater than 50,000. Mask R-CNN is better than YOLOv8 for the
food existence detection and the food type classification.
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Table 3. Performance of food type classification for 206 foods.

Network Epochs
No. of Detected

Objects
(Accuracy %)

No. of Correct
Classification
(Accuracy %)

Mask R-CNN

10,000 202 (98.06%) 191 (92.72%)
30,000 204 (99.03%) 196 (95.15%)
50,000 206 (100%) 201 (97.57%)
70,000 206 (100%) 201 (97.57%)

YOLOv8

10,000 191 (92.72%) 183 (88.83%)
30,000 196 (95.15%) 190 (92.23%)
50,000 200 (97.09%) 196 (95.15%)
70,000 202 (98.06%) 197 (95.63%)

Table 4 shows the accuracies of the food type classification by the food categories
through Mask R-CNN trained with 50,000 epochs. All foods in the rice category are
accurately classified. However, some of the foods in the soup and the side-dishes categories
are misclassified as different food types within the same category. The food detection
network occasionally classifies foods as different food types with similar color.

Table 4. Performance of food type classification by food categories.

Food Category No. of Total Objects
No. of Detected

Objects
(Accuracy %)

No. of Correct
Classification
(Accuracy %)

Rice 63 63 (100%) 63 (100%)
Soup 18 18 (100%) 17 (94.44%)

Side-dish 94 94 (100%) 89 (94.68%)

The accuracies of the food region detection are measured by calculating intersection of
union (IoU) as follows:

IoU =
n(g ∩ d)

n(g) + n(d)− n(g ∩ d)
(13)

where g and d are the ground truth and the detected regions, respectively. Figure 10 shows
the accuracies of the food area detection. Similar to the food type classification, the accuracy
of the food area detection is also increased up to 93.6% until the food detection network is
trained with 50,000 epochs. Mask R-CNN is also more accurate than YOLOv8 for the food
area detection.
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Figure 11 shows the images of the meal plates with average meal intakes of about
40%, 80%, and 90% for the food, respectively. The meal intake amounts for Figure 11
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are estimated through the proposed method as shown in Table 5. The proposed method
estimates the meal intake amounts closely to the actual amounts for most foods except the
soup category. For foods in the soup category, the estimated intake amounts are smaller
than the actual. The soup bowl has a small curvature, that is, a large slope. Therefore, the
change in the food area is excessive small compared to the decrease in the food volume.

4.2. Discussion

The proposed method can accurately detect food regions in the meal image and classify
food types. In addition, the meal intake amount can be estimated through a pair of images
of the pre- and post-meal when foods are on the designated meal plate. RGB-D images or
images from multiple viewpoints are not necessary to estimate the food volumes in the
proposed method. However, the proposed method does not assume different foods mixed
in a single dish as shown in Figure 12. The proposed method is not suitable for estimating
precise food volume estimation with an extremely small tolerance.

Even though Korean foods are only covered, the proposed method can be applied
to foods from other countries. The type detection for another nation foods is possible by
training the object detection network with images of the corresponding foods. The 3D
shape types for another nation’s foods are similar to the types presented in this paper as
shown in Figure 13. Therefore, this meal intake amount estimation can be widely applied
for foods of various countries.
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Table 5. Results of food volume estimation through proposed method.

Target Food Category Food Name
Food Volume of
Pre-Meal Image

(cm3)

Food Volume of
Post-Meal Image

(cm3)

Meal Intake
Amount

(cm3)

Figure 11a

Rice Rice 89.12 48.51 40.61
Soup Seaweed soup 104.81 82.80 22.01

Side-dish 1 Stir-fried octopus 50.74 23.58 27.16
Side-dish 2 Fruit salad 26.41 17.15 9.26
Side-dish 3 Stir-fried squash 36.31 23.58 12.73
Side-dish 4 Stir-fried mushroom 50.74 36.31 14.43

Figure 11b

Rice Rice 89.12 26.41 62.71
Soup Sirak soup 104.81 49.69 55.12

Side-dish 1 Stir-fried pork 50.74 5.69 45.05
Side-dish 2 Stir-fried squash 36.31 5.69 30.62
Side-dish 3 Pepper seasoned 17.15 3.30 13.85
Side-dish 4 Seastring seasoned 36.90 17.15 19.75

Figure 11c

Rice Rice 89.12 17.15 71.97
Soup Seaweed soup 104.81 37.73 67.08

Side-dish 1 Stir-fried octopus 50.74 4.54 46.20
Side-dish 2 Fruit salad 26.41 3.30 23.11
Side-dish 3 Stir-fried squash 36.31 4.54 31.77
Side-dish 4 Stir-fried mushroom 50.74 12.84 37.90

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 14 
 

Side-dish 1 Stir-fried octopus 50.74 4.54 46.20 
Side-dish 2 Fruit salad 26.41 3.30 23.11 
Side-dish 3 Stir-fried squash 36.31 4.54 31.77 
Side-dish 4 Stir-fried mushroom 50.74 12.84 37.90 

4.2. Discussion 
The proposed method can accurately detect food regions in the meal image and clas-

sify food types. In addition, the meal intake amount can be estimated through a pair of 
images of the pre- and post-meal when foods are on the designated meal plate. RGB-D 
images or images from multiple viewpoints are not necessary to estimate the food vol-
umes in the proposed method. However, the proposed method does not assume different 
foods mixed in a single dish as shown in Figure 12. The proposed method is not suitable 
for estimating precise food volume estimation with an extremely small tolerance. 

 
Figure 12. Various foods mixed in a single dish. 

Even though Korean foods are only covered, the proposed method can be applied to 
foods from other countries. The type detection for another nation foods is possible by 
training the object detection network with images of the corresponding foods. The 3D 
shape types for another nation’s foods are similar to the types presented in this paper as 
shown in Figure 13. Therefore, this meal intake amount estimation can be widely applied 
for foods of various countries. 

 
(a) (b) (c) 

Figure 13. 3D shape types for foods of various countries: (a) spherical cap shape; (b) cuboid shape; 
(c) cone shape. 

5. Conclusions 
In this paper, we proposed the methods of the food type classification and the meal 

intake amount estimation. The food regions and the food types were detected through the 
Mask R-CNN. The post-meal image was corrected to have the same capturing environ-
ment based on the vertex points of the meal plate in the two images. The 3D shape type 
was determined as one of a spherical cap, a cone, and a cuboid for each food in the images. 
The food volumes were estimated through the detected area sizes and the 3D shape types. 
The meal intake amounts were estimated as the food volume differences between pre- and 
post-meal. In the simulation results, the accuracies of the food type classification and the 
food region detection were up to 97.57% and 93.6%, respectively. The proposed method 
can be applied not only to Korean food, but also to other countries’ foods, such as other 
Asian countries or countries in Europe. It is possible to analyze the ingested nutrients 

Figure 12. Various foods mixed in a single dish.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 14 
 

Side-dish 1 Stir-fried octopus 50.74 4.54 46.20 
Side-dish 2 Fruit salad 26.41 3.30 23.11 
Side-dish 3 Stir-fried squash 36.31 4.54 31.77 
Side-dish 4 Stir-fried mushroom 50.74 12.84 37.90 

4.2. Discussion 
The proposed method can accurately detect food regions in the meal image and clas-

sify food types. In addition, the meal intake amount can be estimated through a pair of 
images of the pre- and post-meal when foods are on the designated meal plate. RGB-D 
images or images from multiple viewpoints are not necessary to estimate the food vol-
umes in the proposed method. However, the proposed method does not assume different 
foods mixed in a single dish as shown in Figure 12. The proposed method is not suitable 
for estimating precise food volume estimation with an extremely small tolerance. 

 
Figure 12. Various foods mixed in a single dish. 

Even though Korean foods are only covered, the proposed method can be applied to 
foods from other countries. The type detection for another nation foods is possible by 
training the object detection network with images of the corresponding foods. The 3D 
shape types for another nation’s foods are similar to the types presented in this paper as 
shown in Figure 13. Therefore, this meal intake amount estimation can be widely applied 
for foods of various countries. 

 
(a) (b) (c) 

Figure 13. 3D shape types for foods of various countries: (a) spherical cap shape; (b) cuboid shape; 
(c) cone shape. 

5. Conclusions 
In this paper, we proposed the methods of the food type classification and the meal 

intake amount estimation. The food regions and the food types were detected through the 
Mask R-CNN. The post-meal image was corrected to have the same capturing environ-
ment based on the vertex points of the meal plate in the two images. The 3D shape type 
was determined as one of a spherical cap, a cone, and a cuboid for each food in the images. 
The food volumes were estimated through the detected area sizes and the 3D shape types. 
The meal intake amounts were estimated as the food volume differences between pre- and 
post-meal. In the simulation results, the accuracies of the food type classification and the 
food region detection were up to 97.57% and 93.6%, respectively. The proposed method 
can be applied not only to Korean food, but also to other countries’ foods, such as other 
Asian countries or countries in Europe. It is possible to analyze the ingested nutrients 

Figure 13. 3D shape types for foods of various countries: (a) spherical cap shape; (b) cuboid shape;
(c) cone shape.

5. Conclusions

In this paper, we proposed the methods of the food type classification and the meal
intake amount estimation. The food regions and the food types were detected through the
Mask R-CNN. The post-meal image was corrected to have the same capturing environment
based on the vertex points of the meal plate in the two images. The 3D shape type was
determined as one of a spherical cap, a cone, and a cuboid for each food in the images.
The food volumes were estimated through the detected area sizes and the 3D shape types.
The meal intake amounts were estimated as the food volume differences between pre- and
post-meal. In the simulation results, the accuracies of the food type classification and the
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food region detection were up to 97.57% and 93.6%, respectively. The proposed method can
be applied not only to Korean food, but also to other countries’ foods, such as other Asian
countries or countries in Europe. It is possible to analyze the ingested nutrients through
the proposed method. The ingested nutrients are identified through the classified food
types. The amounts of the ingested nutrients are calculated through the food types and the
estimated meal intake amount. The nutrient analysis through the proposed method allows
us to suggest a diet that provides a balanced nutrient intake. The adherence of a patient
to dietary restrictions can be checked by analyzing the ingested nutrients. Moreover, it
is possible to recommend the intake of the corresponding food for the part lacking in a
specific nutrient.
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