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Abstract: Due to the everchanging and evergrowing nature of programming technologies, the gap
between the programming industry’s needs and the educational capabilities of both formal and
informal educational environments has never been wider. However, the need to learn computer
programming has never been greater, regardless of the motivation behind it. The number of pro-
gramming concepts to be taught is increasing over time, while the amount of time available for
education and training usually remains the same. The objective of this research was to analyze the
source codes used in many educational systems to teach fundamental programming concepts to
learners, regardless of their prior experience in programming. A total of 25 repositories containing
3882 Python modules were collected for the analysis. Through self-organization of the collected
content, we obtained very compelling results about code structure, distribution, and differences.
Based on those results, we concluded that Self-Organizing Maps are a powerful tool for both content
and knowledge management, because they can highlight problems in the curriculum’s density as
well as transparently indicate which programming concepts it has successfully observed and learned
to recognize. Based on the level of transparency exhibited by Self-Organizing Maps, it is safe to say
that they could be used in future research to enhance both human and machine learning of computer
programming. By achieving this level of transparency, such an Artificial Intelligence system would
be able to assist in overall computer programming education by communicating what should be
taught, what needs to be learned, and what is known.

Keywords: content management; computer programming education; source code analysis;
self organizing maps; artificial intelligence; neural networks

1. Introduction

The Fourth Industrial Revolution is anticipated to foster a rise in skills gaps throughout
diverse industries. The relentless and expeditious progressions in artificial intelligence (AI),
robotics, and other nascent technologies have led to a paradigm shift in the job market,
necessitating a rapid transformation in the skills essential to perform them [1].

Before the pandemic, a degree alone was insufficient to secure a good job. The pan-
demic has caused a shift in recruitment patterns. The “new normal” has led to companies
seeking individuals with strong technical and soft skills, problem-solving abilities, creativ-
ity, confidence, excellent communication skills, good academic records, and innovative
thinking. As a result, there is a high demand for these skills to get a new or safeguard
an existing job, emphasizing the need to acquire these competencies to enhance future
prospects [2].

Many recent software engineering graduates often face difficulties when beginning
their professional careers due to a misalignment of skills learned during their formal
education at the university level with what is expected and needed in the industry [3–5].

A literature search suggests that Java and Python are the most commonly used pro-
gramming languages for teaching at the undergraduate level. A significant percentage
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(88%) of surveyed schools use one of four languages (Java, Python, C++, and C) for their
first two programming courses, with Python growing in popularity [6]. Java remains the
most popular choice for second programming courses. At the same time, research has
suggested that scripting languages like Python may be more suitable for teaching novices
than system programming languages like Java and C++ [7].

One way to cope with this trend could be to continuously learn and stay up-to-date
with the latest technologies and tools in the industry. This can be achieved through
various means such as taking online courses, attending conferences and workshops, and
participating in online communities.

As time progresses, the trend is clear: the quantity of programming-related concepts
that need to be taught tends to increase, while the duration of education and training
typically remains constant.

In formal education, it is possible that this could lead to a more condensed curriculum
and a need for more efficient teaching methods [8,9].

Concentrating on establishing a solid understanding of fundamental programming
concepts can aid in the adaptation to new technologies and tools with greater ease.

Students can establish a solid understanding of fundamental programming concepts
by studying computer science fundamentals, such as data structures, algorithms, pro-
gramming languages, and software engineering principles. They can also practice coding
exercises and work on programming projects to reinforce their knowledge and skills.

Additionally, during the onboarding procedure in firms, new employees can seek
guidance and feedback from experienced programmers or they can give and ask for
help by participating in coding communities to further solidify their understanding of
new concepts.

The final product of programming is the source code, based on programmers’ mental
models of programs [10], which can be used to analyze the concepts employed in the pro-
gram and provide feedback to curriculum designers. This study aims to examine the source
codes utilized in numerous educational systems for teaching fundamental programming
concepts to beginners without prior programming experience. Self-Organizing Maps are
a valuable tool for managing both content and knowledge, as they can identify issues in
curriculum density and clearly indicate which programming concepts have been effectively
recognized and learned.

The primary contribution of this research is to demonstrate that Self-Organizing Maps
(SOMs) can serve as a valuable tool for identifying issues related to curriculum density.
The findings indicate that SOMs can effectively pinpoint areas in the existing curriculum
that require modifications to enhance student learning in programming. Furthermore, the
application of objective methods, such as SOMs, introduces transparency in the evaluation
of curricula, which is typically guided by grades and student perceptions.

2. Background

This section presents the outcomes of the literature review.

2.1. Literature Review

The study conducted a literature search utilizing three specific search terms, namely
“self-organizing maps”, “programming”, and “learning”. The most relevant citation
databases in the research field, namely the Web of Science, Scopus, and IEEEXplore, were
employed for this purpose. Through a systematic analysis of the abstracts retrieved, the liter-
ature search revealed a body of literature that indicated the potential of self-organizing maps
(SOMs) to facilitate the effective recognition and acquisition of programming concepts.

The literature highlights the flexible applications of self-organizing maps (SOMs) in
various fields. In the domain of education, SOMs have been used in intelligent tutoring
systems to provide tailored tuition to learners based on their preferred learning styles [11].
Furthermore, SOMs have demonstrated the potential to identify important elements of
object-oriented programming, such as classes and objects, by detecting common features
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in software code [12]. SOMs can also aid in the analysis of completed programming code,
such as computer games, to identify the development of computational thinking skills [13].

SOMs have also been used in different fields, such as student clustering based on aca-
demic grades [14] and course recommendations for e-learning systems [15]. Additionally,
SOMs have been used to group procedures with similar properties by identifying common
features in software code [12,16]. Furthermore, a study demonstrated that the variation
of SOMs can identify algorithms implemented as programs by converting source code
into syntax trees and computing similarities between them [17]. In conclusion, the studies
suggest that SOMs can effectively analyze and cluster programming code, making them a
valuable tool in this domain.

2.2. Research Question

The aim of this research was to use an SOM to give an answer to our research question
of whether or not a self-organization machine learning technique can be used to achieve
transparency. The SOM is just a representative of that technique.

The goal was set to reach the level of transparency in which each neuron of the trained
SOM represents at least one programming concept OR a class of programming concepts.
The purpose of the training was to categorize source codes and cluster them based on their
structure and complexity.

2.3. Google Colab

To run our experiment, we used the Google Colab collaborative coding tool. It en-
sures cross-team collaboration and consistency in results reproduction as well as effortless
management of available computer resources.

2.4. GitHub

We used GitHub as the source of training data. GitHub is an internet service for
open-source code hosting and version control and is currently the largest source code
host [18].

2.5. Abstract Syntax Tree

To eliminate subjective differences in source code, we used the Abstract Syntax Tree
(AST) to represent the programming concepts used in an objective and fully automated
manner. An AST is a tree data structure representing the abstract syntactic structure of the
source code written in a formal language [19], which was Python in our case [20].

2.6. Self-Organizing Map

A self-organizing map (SOM) is a neural network used for dimensionality reduction
that typically reduces higher dimensional data into a two-dimensional representation.
Unlike many other artificial neural networks, SOM uses competitive learning, rather than
error-correction learning, during training [21].

The following formula shows the weight calculation for each SOM neuron [22]:

Wv(s + 1) = Wv(s) + θ(u, v, s) ∗ α(s) ∗ (D(t)−Wv(s))

where:

• Wv is the current weight vector of node v
• s is the current iteration
• u is the index of the best matching unit (BMU) in the map
• v is the index of the node in the map
• θ(u, v, s) is the neighboring function used to restrain learning based on the distance
• α(s) is a learning decline due to iteration progress
• t is the index of the target input data vector in the input data set D
• D(t) is a target input data vector
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The quantization error is used to measure the distance between the final SOM value
and the original input value. It is calculated with the following formula [23,24]:

QE = 1/NΣN
i=1||φ(xi)− xi||

where N is the number of input vectors and φ : D 7→ M is the mapping from the input
space D to the SOM M.

The topographic error measures how well individual data points are mapped to the
SOM’s nodes following the formula [23,24]:

TE = 1/NΣN
i=1t(xi)

t(x) =

{
0 if µ(x) and µ′(x) are neighbors
1 otherwise

µ(x) and µ′(x) are the best-matching unit and the second-best matching unit, respectively.
The process of training a SOM, presented in Figure 1, consists of these four steps:

1. Initialization—a vector of the same dimensionality as the input vector is assigned to
each neuron.

2. Competition—SOM nodes compete, and the best matching unit is considered a winner.
The winner node’s vector values are updated to learn from the input vector and get
closer to it.

3. Cooperation—The winner node cooperates with its neighbours to propagate the
change it underwent.

4. Adaptation—Neighboring nodes adapt to the change on the winner node, but the
magnitude of this change decreases with time and grid distance from the winner node.

Figure 1. The process of SOM utilization.

The algorithm for the last three steps of the training process can be viewed in Figure 2.

Figure 2. The process of source code transformation with the input vector for the SOM network.

The benefit of using a SOM is that it keeps the structural information of the training
data set (programming code) intact. The main drawback is that a value for each dimension
of the input vector is needed for each member of the input data set in order to generate a
SOM. Since we provide either 0 or 1 for each dimension, this drawback does not affect our
research. Another problem is that every SOM is different and finds different similarities
among the sample vectors.

Thus far, we have not found any references in research on this type of source code
analysis with a focus on the extraction of the programming concepts from the content.
SOMs are typically used for visualization and exploratory data analysis [25–27], but they
are rarely, if ever, used on the source code.

3. Methodology
3.1. Data Collection

By filtering data on the GitHub web page, our focus was on source codes written in
Python programming language. Since Python is a general-purpose language, we had to
further narrow our search by defining the categories of interest, which are
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• Python project
• Problem-solving
• Object-oriented programming
• Artificial Intelligence
• Data Science
• Python tutorial

These categories cover three levels of programming education, from introductory
programming (Python tutorial, Problem-solving) to intermediate programming (Python
project, Object-oriented programming) and narrow domain programming (Artificial Intelli-
gence, Data Science).

Even though we relied on GitHub to be the source of our training data, since it can
provide a large data set of open data, we set our focus on a rather closed subset of narrow-
domain programming code, focusing on topics of educational interest, topics which are
currently taught at many universities worldwide, including the Faculty of Science at the
University of Split.

Once cloned, code repositories were organized into directories named after the afore-
mentioned categories. Since some code repositories contain non-Python source code, it
was imperative to extract only the code that can be parsed by Python’s native AST parser,
i.e., *.py and *.ipynb source code files.

3.2. Data Preparation

The process of data collection and preparation was performed in accordance with
the methodology described in Algorithm 1. Prior to organizing the collected data using
a Self-Organizing Map (SOM), the data was parsed and transformed into a binary vector
utilizing a custom Python Abstract Syntax Tree (AST) Transformer

Algorithm 1 Datacollection and preparation

1: git clone the selected repository
2: for all *.py and *.ipynb files within the cloned repository do
3: if file has *.ipynb extension then
4: convert the file to Python source code
5: end if
6: convert Python source code into the AST representation using the native Python

AST parser
7: parse the AST to form the SOM input vector
8: end for
9: add metadata (source repository, category, number of files)

The first problem we had to solve was to determine the best vector representation of
the collected source code. Initially, the vector consisted of frequency values for each Python
AST node. However, such a metric did not represent the complexity of the source code due
to the fact that the large quantity of a single AST node in a source code does not indicate a
more complex code. As an alternative, a binary vector was used to aggregate the indicator
values, representing the existence or lack of an AST node within a source code.

The prepared data set consists only of syntactically correct Python source code, which
was ensured due to the fact that the AST transformer would not be able to parse an incorrect
syntax tree.

Given that there are n available AST nodes within the ast native Python module at any
time, the resulting vector would be

u = (u0, ..., un−1) ∈ {0, 1}n
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3.3. Data Analysis

The vector produced in the subsequent step served as input data to the SOM network.
Table 1 shows the configuration settings of our SOM network.

Table 1. SOM configuration.

Configuration Field Configuration Value Explanation

Number of columns 15 Number of weeks within a semester.

Number of rows 10 Number of semesters in the entire CS
program at the Faculty of Science.

Input length 114 Number of Python’s AST nodes.

Neighborhood function Gaussian Gaussian neighborhood function was used to
weigh the neighborhood of the winner node.

Sigma 1.5 Spread of the neighborhood function.

Learning rate 0.5 Initial learning rate.

Activation distance Euclidean
The Euclidean distance was used to make a

decision on which neurons are activated
during each step of the training process.

The best matching unit using the Euclidean distance is determined by finding the
neuron or unit in a neural network that has the smallest Euclidean distance to a given
input vector.

The Euclidean distance between two vectors is the square root of the sum of the
squared differences between their corresponding elements.

For example, suppose we have a neural network with three output units and we
want to find the best matching unit for an input vector x = (x1, x2, x3), we first cal-
culate the Euclidean distance between x and the weight vectors of each output unit
w1 = [wi1 , wi2 , wi3 ], where i = 1, 2, 3. The Euclidean distance between x and wi is given by

di =
√

∑3
j=1(xj − wi,j)2 We then select the output unit with the smallest Euclidean distance

as the best matching unit, that is the unit i that minimizes di. Bestmatchingunit = argminidi.
The concept of the Euclidean distance is used to group the features according to the

best neuron or winning neuron with the Best Matching Unit (BMU) approach.
Once the input vectors have been produced, the training of the SOM begins and

lasts until all training data have been utilized. The SOM training process is elaborated in
Algorithm 2. The result of the training is a rectangular grid of nodes or neurons, where
each neuron is assigned a weight vector Ws.

Algorithm 2 The SOM training process

1: for all vectors in the training data set do
2: Provide the vector as input to the SOM
3: Find the best matching unit within the SOM
4: Find the neighbors of the best matching unit
5: Update the best matching unit and its neighbors
6: end for

3.4. SOM Test and Evaluation

To test the SOM and evaluate its results, we used the data set compiled at the Faculty
of Science, University of Split, in the scope of the introductory-level programming course
where we used Python programming language. Since our teaching program has been re-
accredited and the course has been declared as the core or compulsory course, the validity
of the test data set has been proven.

Appendixes A.1–A.3 show examples of source codes used for the testing and evalua-
tion of the SOM results.
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4. Results

Table 2 shows the amount of cloned GitHub repositories and the amount of parsed
Python modules for each category. Additionally, Table 3 showcases the results of training
data aggregations.

Table 2. Quantity of collected data.

Code Category Number of Repositories Number of Python Modules

Python project 2 153

Problem solving 2 113

Object-oriented programming 7 297

AI 7 2306

Data science 2 179

Python tutorial 5 834

Table 3. Results of training data aggregations.

Tree Depth Node Count

Category Min Max Mean Median Min Max Mean Median

AI 1 119 10.532 11.0 1 17307 919.138 534.5

Data Science 1 22 8.849 10.0 1 8893 787.888 581.0

OOP 1 22 9.252 9.0 1 253,206 1613.66 124.0

Problem solving 6 18 11.283 12.0 15 690 187.752 152.0

Python project 1 17 8.071 9.0 1 5594 169.104 46.0

Python tutorial 1 22 9.486 9.0 1 8343 497.285 227.0

Figure 3 shows us that there is a significant difference in the complexity of source
code within the categories observed in our research. There are three reasons for this. The
first reason lies in the fact that scientific programming, covered by AI and Data Science
categories, tends to result in Interactive Python notebooks, which hold the entire application
within a single file. The second reason is due to the problem’s complexity. Educational
programming problems, covered by object-oriented programming and problem-solving
categories, tend to solve an oddly specific problem, and the code is usually held within a
single module for self-sustainability. The third reason takes root in software development
practices, which can be observed within the Python project. In software development, there
is a tendency to keep things simple and separate concerns, which means that there are
usually more Python modules found in such source codes.

Our SOM, configured as specified in Table 1 produced both distributional and dif-
ferential data, representing the distribution of programming concepts and the differences
between them, respectively. A visualization of those data can be seen on Figure 4.

Figure 5 depicts that one SOM neuron will be activated for 98% of the AST nodes
when our test codes consist of just one concept. This shows that SOMs consider such code
to be trivial in complexity and ultimately very similar.

The following two outputs come from SOM, after their weight vector has been ex-
pressed with Python’s abstract syntax:

• Module Assign Constant Name Store
• Module Assign Expr Call Constant Name Load Store
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Figure 3. Visualization of training data aggregations.

It can be observed that we successfully trained the SOM to make a distinction between
the following two programming concepts:

• Using a variable to store a value
• Reusing the variable to utilize the stored value

Figure 6 shows us that training resulted in a relatively high quantization error (2.025)
and a relatively low topographic error (0.2).

The following source codes provide a solution to the same problem: calculating and
printing the sum of list elements.
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Figure 4. Code distribution within the SOM based on categories.

Figure 5. SOM activation when facing individual AST nodes.
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Figure 6. Quantization and topographic error of the trained SOM.

Based on the source code provided in Appendix A, Table 4 shows us that the SOM
acts as a sieve of sorts, with the code structure being a distinguishable feature that impacts
which of the SOM’s neurons are the best fit to represent the code. Only one neuron can
be the winner, and that decision is based on the conceptual density of the source code in
our example.

Table 4. Different nodes activated for different solutions to the same problem.

Source Code Coordinates of the Winner Node

Appendix A.1 (3, 6)

Appendix A.2 (1, 6)

Appendix A.3 (5, 5)

Table 5 shows the number of SOM nodes that contain each of the fundamental pro-
gramming concepts, as well as Python AST nodes we associate with each of the program-
ming concepts.

Table 5. The abundance of programming concepts within the SOM.

Programming Concept Python AST Node Abundance

Value assignment Assign 84%

Function definition FunctionDef 71.33%

Branching If 62.67%

Loops For, While 42.67%

Class ClassDef 34.67%

Table 6 shows the memory consumption in the scope of our experiment. Included in
the table is the size of the input data, both after collection and after transformation into the
input vector form. Aside from those values, the table includes the sizes of the exported
values obtained after the SOM was trained.
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Table 6. The memory consumption.

Data Type Size

Collected source code 3.81 GB

SOM input vector 3.61 MB

SOM in the memory 142.92 KB

Exported trained SOM 141 KB

Table 7 shows the execution times of the key steps of the experiment. SOM self-
reflection is the step in our experiment in which the SOM network is requested to self-
explain what it has learned post-training. SOM classification is the step in which we used a
single item from the test data set in order to classify it using the trained SOM network.

Table 7. Execution times.

Experiment Step Duration

SOM training 2.9 s

SOM self-reflection 1.44 s

SOM classification 362 µs

5. Discussion

Since technology is everchanging, educational environments have a problem keeping
up with the industry’s tempo; thus, a system for data collection and the analysis of bleeding-
edge topics and technologies would be beneficial. The everchanging nature of technology,
however, might lead to a large number of new variables being unrepresented in the training
data set, which would lead to the overfitting of any neural network.

In our research, a SOM was used as a tool for programming content self-organization.
We used the SOM’s sensitivity to the data structure, which some perceive as its major
disadvantage, to our advantage. While the SOM was not able to predict or generate
anything from the data, it was able to learn what the code consists of and highlight the
problems of the input data set in relation to the time frame represented by the dimensions
of the SOM.

For the purposes of this research, we perceived AST nodes to be basic programming
concepts that are taught in many programming courses, both formally and informally.
Thus, our binary input vector represents knowledge of the existence of all fundamental
programming concepts within a source code. This was achieved through AST traversal via
a custom-made AST transformer.

The output of each SOM neuron is a vector of the same dimensionality as the input
vector. In this way, each neuron is able to communicate which programming concept it
represents. Aside from that, our trained SOM can be used to classify new Python code after
it has been transformed into an SOM-compatible input vector.

Once faced with a source code, the SOM can declare which neuron is a winner. In Table 4,
we can see that using a for loop (Appendix A.1) or a built-in function (Appendix A.2) to
calculate a sum of integers produces results that are conceptually much closer to each other,
while implementing a recursion to do the same thing (Appendix A.3) is in the vicinity of
those solutions, but conceptually produces a different solution, slightly distanced from
both, although being much closer to the for loop solution (Appendix A.1).

A high quantization error is expected, because it indicates that SOM is not large enough
to hold all the different types of programming code. The low topographic error indicates
that SOM neurons can be considered representative of all the different programming code
conceptual classes found within the input data set by the SOM.

Aside from that, due to the established transparency of our SOM, it has been proven
that the differences in the code structure are driving the clustering process successfully.
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Every SOM neuron was able to use Abstract grammar to communicate what activates
it, i.e., what it has learned. However, this approach to content management is not fully
automated, since it is not a generative AI model able to learn new technologies from syntax,
documentation, and source code.

The purpose of this system is not to create a system that manages content better than
a content manager, be it an educator or a programming expert; rather, it is necessary to
design a system that can assist content managers to manage the content in an unbiased
way. To satisfy this purpose, future research goals will be to ensure that the concepts to
be taught are represented by the data set. AI transparency continues to be the main goal.
The learning process should be transparent to all users (content managers, educators, and
learners) as well as the auto-generated content (feedback) that drives the process.

When a source code is represented abstractly as a graph, the nodes of the graph
represent programming concepts in a language-agnostic but paradigm-aware way. Most
of the concepts represented by the SOM are actually patterns for using fundamental
programming concepts, i.e., programming competencies, with the purpose of solving
specific class(es) of programming problems.

The abundance of programming concepts reported in Table 5 shows that the SOM can
be used to analyze which programming concepts are fundamental and the order in which
they should be taught. What makes the programming code complex is the combination
of the fundamental programming concepts, in other words, the ability to use various
fundamental programming concepts in tandem to solve a problem.

Limitations of This Research

The main limitation comes from the fact that not all programming concepts can be
represented by the AST nodes. By limiting ourselves to only those nodes that are part of
the native AST Python library, we were able to train the SOM to be sensitive to only those
source code features represented by AST nodes.

Aside from that, our research is limited to the programming concepts that are present
within the source codes collected from GitHub. However, there are many other unrepre-
sented concepts that also impact the content self-organization.

Even though we used the predetermined size of the SOM to our advantage to depict
the density of programming concepts within our SOM, we were also limited by this because
we could not provide an answer to the question of how big a SOM we would need to truly
contain the knowledge. SOM should have a growth quality to allow it to expand itself
upon reaching a certain level of intranodal density.

6. Conclusions
6.1. Answer to the Research Question

We answered our research question by showing that an SOM aided by AST parsing
(transformation) can be used to achieve the necessary level of transparency. One of the goals
of this system was to assist in the creation of a concept map supplemented by educational
content. The concept map was derived from the SOM neural network once it had been
labeled using the names of the AST nodes to form custom competency names. Each
competency could be represented by a graph (more specifically, an AST). However, this
merits further study.

At the moment, the language for achieving transparency is limited to Python’s AST
abstract grammar, which means that the output vector of each neuron can be transformed
into a set of AST nodes, forming a primitive but effective way of communicating what has
been machine learned by the SOM.

This research paper shows us that through self-organization and the use of SOMs, we
can analyze source codes, which are the most common type of content in programming
education. As a workaround to the potential problem of ending up with an unmaintainable
training data set, our focus in future research will be to create data sets that focus on one
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programming concept or a group of similar programming concepts to be taught. We plan
to use more complex source codes for evaluation.

6.2. Future Research

The goal of this system is not to serve as a replacement for any of the existing automatic
AI systems that work with programming code, but rather, it can be used as a supplement
to ensure the transparency of AI system’s knowledge. Currently, our SOM produces
educationally-valuable metadata as an output, because it indicates where the content
should reside in the curriculum based on its structural complexity. Aside from that, a
SOM can be perceived as a way of extracting knowledge from the content by forming a
neural representation of abstract programming concepts, thus providing a representation
of programming knowledge. In this research, we formed a rudimentary knowledge base
by using a dictionary to store programming concepts as key: value pairs. Future research
should revolve around making this knowledge base more sophisticated and scalable. Since
K-means and Self-Organizing Maps (SOMs) are popular clustering methods, it would be
valuable to compare them in the context of this research. K-means is widely used because it
is fast and easy to implement. However, it has significant limitations. In K-means, clusters
are formed based on the movement of individual nodes that are not directly related to
each other. On the other hand, SOMs are artificial neural networks that arrange nodes in a
grid and establish direct relationships between them. SOMs can be useful for visualizing
high-dimensional data and creating categories within data sets. K-means forms clusters
through the use of centroids and cluster size, while SOMs use a geometric approach that
seems more appropriate for curriculum design and analysis. The importance of our
findings lies in the fact that, with this level of established transparency within a SOM, it
is possible to establish a value system from educational content as well as a glossary of
programming concepts that could be used to express programming needs, prerequisites,
and what is known and unknown to a learner. Our future work will also focus on using
the SOM to measure how well can it reinforce programming education. Before integrating
a SOM or a similar self-organizing system in a learning environment, it would be beneficial
to test its abilities within a learning simulation. NetLogo is one of the options for simulating
a learning process since it has a solid interoperability layer with the Python programming
language, which we used in this research. Through a simulation, we would establish
a hybrid AI system consisting of agent-based, machine-learning, and knowledge-based
approaches to represent content, learning, and knowledge management, respectively.

In our future research, we plan to use this semi-automatic approach to content man-
agement in cases where people, as well as AI systems, have to be trained or educated about
programming. In subsequent studies, the potential for utilizing the present research to
provide students with feedback on their work will be explored. Furthermore, the feasibility
of employing self-organizing maps for the automated generation of program code, while
maintaining transparency, will be investigated. Aside from that, orienting towards the
reduction of the quantization error by using a growing SOM or a similar technique with
the ability to grow based on a heuristic is also necessary.
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Appendix A. Examples from the Test Data Set

Appendix A.1. Sum of Integers Using a for Loop

1 numbers = [1, 2, 3, 4, 5]
2 sum_of_numbers = 0
3 for number in numbers :
4 sum_of_numbers += number
5 print(sum_of_numbers )

Appendix A.2. Sum of Integers Using a Built-In Function

1 numbers = [1, 2, 3, 4, 5]
2 print(sum(numbers))

Appendix A.3. Sum of Integers Using a Recursion

1 def sum_of_list(l, n):
2 if n == 0:
3 return l[n];
4 return l[n] + sum_of_list(l, n-1)
5

6 numbers = [1, 2, 3, 4, 5]
7 print(sum_of_list(numbers , len(numbers) - 1))
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