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Abstract: To conduct the ultrasonic weld inspection of polyethylene pipes, it is necessary to use
low-frequency transducers due to the high sound energy attenuation of polyethylene. However, one
of the challenges in this process is that the blind zone of the ultrasonic transducer may cover a part of
the workpiece being tested. This leads to a situation where if a defect appears near the surface of the
workpiece, its signal will be buried by the blind zone signal. This hinders the early identification of
defects, which is not favorable in such a scenario. To address this issue, we propose a new approach
to detect and locate the near-surface defects. We begin by performing a synchro-squeezing transform
on the original A-scan signal to obtain an accurate time-frequency distribution. While successful
in detecting and localizing near-surface defects, the method alone fails to identify the specific type
of defect directly: a limitation shared with other signal processing methods. Thus, an effective
and lightweight defect identification model was established that combines depth-wise separable
convolution and an attention mechanism. Finally, the performance of the proposed model was
compared and visually analyzed with other models. This paper successfully achieves the detection,
localization, and identification of near-surface defects through the synchro-squeezing transform
and the defect identification model. The results show that our model can identify both general and
near-surface defects with an accuracy of 99.50% while having a model size of only 1.14 MB.

Keywords: near-surface defect; synchro-squeezing transform; convolutional neural network;
polyethylene pipe; ultrasonic testing

1. Introduction

Polyethylene (PE) is widely utilized in oil and gas transmission pipelines due to its
high-impact strength, heat resistance, corrosion resistance, ease of installation, and excellent
electrical properties. Hot melt welding is a commonly used method for welding PE pipes.
However, due to PE’s low sound speed and significant sound energy attenuation, it is
necessary to inspect the weld quality using a low-frequency ultrasonic transducer after
hot melt welding [1]. The transducer’s blind zone widens with decreasing frequency,
making it difficult to identify near surface defects that are buried within this zone. This
issue also affects inspectors using water immersion ultrasonic testing [2], where near-
surface defect signals can overlap with front-wall echoes, causing inaccurate evaluations of
workpiece quality.

Scholars have attempted to address the issue of near-surface defect testing from
two main perspectives. Firstly, some researchers have attempted to reduce the influence
of the blind zone by enhancing the performance of the transducer. Hernandez et al. [3]
presented a new coding mode based on Golay complementary pairs, which helped to
reduce the range of the blind zone. Another study by Qi et al. [4] utilized an opposite phase
superposition method to reduce the pulse signal duration, and Wang et al. [5] proposed
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a novel ultrasonic transducer that utilized a rectangular membrane with a large aspect
ratio and multiple resonant modes to obtain a wide-band signal. However, despite these
hardware modifications, the elimination of the blind zone remains challenging. At the same
time, many researchers have turned to signal processing methods to analyze the features of
the defect echoes, including Hilbert transform [6], energy cepstrum [7], split spectrum [8],
cross-correlation functions [6], wavelet packet decomposition [9], deconvolution [10-12],
and pulse compression [13]. Nonetheless, these methods require strict linearity of the
defect signals. Thus, Fritsch et al. [14] used a time-domain phase analysis method for
detecting blind zone defects; however, the amplitude information was not retained during
the binary processing. Song [15] designed a low-pass digital filter to filter out signals
unrelated to defects, but it required horizontal movement of the defect signal and reference
signal to align the peaks for defect detection. Also, Huang et al. [2] used a pulse-echo trans-
verse wave backscatter measurement to detect near-surface defects with sub-wavelength.
Guan et al. [16] employed intrinsic time-scale decomposition to decompose an ultrasonic
signal into proper rotation components and a monotone trend signal. These components
were then combined with a genetic algorithm-optimization support vector machine (GA-
SVM) to allow for quantitative testing of near-surface defects. Zilidou et al. [17] used the
analytic signal and its instantaneous parameters to suppress the front- and back-surface
reflections of the ultrasonic echoes through response subtraction and substitution. These
methods effectively demonstrate the potential of signal processing to extract useful infor-
mation regarding near-surface defects. Although synchro-squeezing transform (SST) is a
promising signal processing technique, it has not been extensively employed for ultrasonic
defect detection. Inspired by the aforementioned studies, the synchro-squeezing transform
(SST) [18] was introduced to detect and locate near-surface defects in this paper. However,
it should be noted that like prior studies, this method is unable to directly identify the
specific type of defect.

A convolutional neural network (CNN) [19] is a classifier that contains multiple layers
and adapts the filters by learning the information of the signal. The ability of CNN for
image object detection has been verified in many aspects, such as fabric defect detection [20],
wood defect detection [21], surface scratch defect detection during sheet metal forming [22],
and surface defect detection of engine parts [23]. Therefore, in recent years, CNN has also
been introduced into ultrasonic testing signal classification. Research by Munir et al. [24]
showed that CNN successfully classified ultrasonic weldment flaw A-scan signals while
maintaining good performance in the presence of noise. Virupakshappa et al. [25] proposed
a CNN architecture to detect defects in ultrasonic signals. They first decomposed the
A-scan signal using discrete wavelet transform with four-level decomposition and then
reorganized the wavelet coefficients as a two-dimensional input for the model. In addition,
Sonski et al. [26] applied a pre-trained neural network to detect flaws in concrete from
images of the ultrasonic B-scan. Yan et al. [27] proposed a CNN structure that integrated a
support vector machine to identify cracking-related A-scan signals obtained from pipeline
girth welds. Alavijeh et al. [28] conducted a study to compare the effectiveness of machine
learning techniques, specifically deep learning, for automating the assessment of ultrasonic
A-scan signals from butt-fused joints in PE pipes. Their findings suggest that CNN was
the most performant machine learning approach. Zhao et al. [29] proposed an intelligent
recognition method based on wavelet packet transform (WPT) and CNN for concrete
ultrasonic detection, which resulted in outstanding recognition performance. Shi et al. [30]
obtained a classification accuracy rate of up to 0.982 using CNN and ultrasonic A-scan to
evaluate circumferential welds composed of austenitic and martensitic stainless steel with
internal slots. These studies illustrate the capability of deep learning, specifically CNN, for
identifying different types of ultrasonic defect signals. As the defect signal in the blind zone
is not easy to distinguish in the time domain, converting the signal to the time-frequency
domain can provide more abundant information. On this basis, CNN can potentially be
applied to the classification of near-surface defects by learning the key information of
signals in the time-frequency domain.
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This paper proposes a new approach to detect and locate near-surface defects by
leveraging SST while also designing a lightweight CNN model to identify the types of
defects. Through the integration of these two techniques, our approach accomplishes
near-surface defect detection, localization, and identification with high accuracy. The
proposed model employs DenseNet [31] as the backbone to reuse model features, employs
depthwise separable convolution (DSC) [32] instead of ordinary convolution to reduce the
model parameters, and incorporates the convolutional block attention module (CBAM) [33]
to highlight key information with high weights in the final decision. The subsequent
sections are structured as follows: Section 2 presents the theory of SST. Section 3 outlines
the equipment used and the preparation of the dataset. Section 4 provides details on
the near-surface defect detection method based on SST and the architecture of the defect
identification model, which includes DenseNet structure, DSC, and CBAM. Section 5
illustrates the results of the experiments on the proposed model. Finally, Section 6 concludes
the paper and presents a summary.

2. The Theory of SST

Commonly used time-frequency analysis methods, such as short-time Fourier trans-
form [34], wavelet transform [35,36], Wigner—Ville distribution [37,38], and s-transform [39],
are limited by the Heisenberg uncertainty principle [40].To improve the precision of the
time-frequency plane, researchers have combined the rearrangement algorithm [41] with
these methods [18,42—44]. One such transformation that has shown good time-frequency
resolution is the SST [18], which recalculates a position near the real coordinates of the
time-frequency energy spectrum from continuous wavelet transform (CWT) and rearranges
the energy accordingly.

The CWT of the signal s(t) is defined by

Wi(a,b) = /s(t)\}alp*(t_ab>dt, (1)

where 1p*(t) is the complex conjugate of the mother wavelet (), and b is a time shift
factor, which is scaled by a. However, the energy of wavelet coefficients often diffuses
along the scale in a direction, which generates the smearing effect in the time-frequency
representation. Previous research [45] revealed that smearing has an insignificant effect
along the time b-axis. Therefore, it is possible to estimate the instantaneous frequency
ws(a, b) by calculating partial derivatives for all W;(a, b) # 0, as indicated below.

wa,b) = ~i(W(a,b) ' o Wi (a, ) @

Notably, each point (g, b) can be mapped to (b, ws(a, b)) using this equation. To improve

the smearing problem, we can convert the sum of every wavelet coefficient at the point

(b, a) to (b, ws(a, b)). As a and b are discrete values, we can define a scale step Agj =a;—a;_4

and frequency step Aw; = w; — w;_1. As a result, the time-frequency spectrum after SST
can be expressed as follows:

Te(w;, b) = Aw™? Y W (aj, b)af/zmj. (3)
aji|w(a;b) —w;| <Aw/2

In essence, SST redistributes the energy of the time-scale plane to the time-frequency
plane, where it is rearranged to concentrate the energy. For ultrasonic signals, SST allows
for better visualization of instantaneous energy changes when defects appear, which can be
very helpful in resolving the defect signal overlapping with blind zone signals.
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3. Dataset Preparation and Training Environment
3.1. Dataset Preparation

The original signal used in this study was obtained from the PE80 pipe sample with
a wall thickness of 20 mm. The specimens were deliberately created to include different
sizes of weld defects by cardboard and side drill holes. The imitated cardboard cracks
while the side drill holes represented volumetric defects like porosity and slag inclusion.
To obtain the near-surface defect signal in the blind zone and the general defect signal,
two positions were designated for each defect, located at 1/4 near the outer wall and 1/2
near the inner wall, respectively. The signals were gathered using transducers with a central
frequency of 1 MHz, a refracting angle of 60°, and a chip size of 10 x 10 mm. Other pieces
of equipment for the ultrasonic testing platform include an ultrasonic signal generation
receiver (5072PR), an A/D card (PCI-5114), an industrial computer, and detection software.
By varying the transducer’s position, an original dataset of 719 signals was collected with
each signal having 12,500 sampling points.

Because of uneven proportion in the amount of each type of defect signal, the original
dataset was enhanced by time shifting and adding white Gaussian noise. Each type of
signal was expanded to 200. Physically, time-shifting refers to the change in the distance
between the transducer chip and the defect, while white Gaussian noise represents the
electrical noise of the circuit during signal transmission [24]. Gaussian noise addition is a
feasible method for enhancing all five types of defect signals: data enhancement mainly
relies on this method. Segmenting defect signals in blind zones is challenging, and thus
the time shifting method is only suitable for general defects. Additionally, as the initial
wave pulse in the signal often contains a region consisting solely of electrical noise, the
noise signals are randomly selected and added to the tail of the signals during the data
enhancement process. This technique provides a similar enhancing effect to the time
shifting method. During the actual operation process, we found that it was not easy to
evaluate the accuracy performance of the model on large datasets. Therefore, the decision
was made to expand the number of each signal type to 200. The number of signals for each
weld defect is presented in Table 1. Figure 1 illustrates the different types of defect signals
that were considered, while Figure 2 showcases the impact of applying white Gaussian
noise addition and time shifting techniques to the signal.

Table 1. Number of signals in the original dataset and the enhanced dataset.

Defects Original Dataset Enhanced Dataset
Planar defects in the blind zone (PDBZ) 184 200
Volumetric defects in the blind zone (VDBZ) 166 200
General planar defects (GPD) 157 200
General volumetric defects (GVD) 132 200
No defects (ND) 80 200
Total 719 1000

SST processing was performed on all signals to obtain a 256 x 256 pixel image, which
was then shuffled, and the training dataset and testing dataset were divided into an
8:2 ratio. The training dataset was used for model training and parameter adjustment,
while the testing dataset was used to evaluate the model’s performance.
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Figure 1. Ultrasonic signals of five types of defects (blue dashed line represents the blind zone signal,
and red dashed line represents the defect signal).
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Figure 2. Ultrasonic signals before and after data enhancement.

3.2. Training Environment and Parameter Setting

This study utilized a desktop computer with an Intel Core i7-10700 CPU, RTX 3060Ti GPU
with 8 GB independent video memory, and 32 GB memory capacity as the model training
and testing platform. The software environment comprised Windows 10, CUDA 11.6, and
Pytorch 1.13.1 deep learning framework. During the model training, the initial learning rate
was set at 1.5 x 107, and the batch size was 32 with a total of 100 iterations. The Adaptive
Motion Estimation (Adam) [46] algorithm was uniformly used as the optimization method
to obtain the optimal training model. The cross-entropy loss function was employed to
calculate the loss value, and the dynamic attenuation strategy was used to update the
learning rate, reducing the learning rate by half every 20 iteration cycles.

4. Near-Surface Defect Detection and Identification

Figure 3 depicts the proposed method’s flowchart. Firstly, the signal undergoes
SST to obtain precise time-frequency distribution results. The method then proceeds in
two parts—the signal detection section and the signal identification section. During the
signal detection section, the algorithm analyses blind zone areas in the low-frequency band
of the time-frequency results, and determines the location of defects based on the maximum
value of the SST transformation results. In the signal identification section, the trained
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defect identification model analyzes the time-frequency map without requiring manual
feature extraction. The model outputs the presence of defects and identifies their type
based on the trained parameters.

Original signal

N7 : - S
Dense-DSC-CBAM model SST of blind zol;laenl(ril low-frequency .

] \
1 1
1 1
1 1
1 1
1 Maximum of blind zone SST :
: |
1 1
i !

Output the signal type
Identification ;| Detection and localization
\ ’
4 ~

Figure 3. Flowchart of near-surface defect detection (right) and identification (left).

4.1. Near-Surface Defect Detection Based on SST

The Complex Morlet wavelet is utilized for CWT and SST. Results for the signal
processing of all five types of defect signals are presented in Figures 4-8, respectively. The
general defect signals are slightly distanced from the blind zone signal, whereas the blind
zone defect signals are overlaps with each other. The maximum curves of CWT and SST of
the defect area were compared.
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Figure 4. CWT and SST results of the ND signal and zoomed view of the blind zone: (a) original
signal; (b) zoomed signal of the blind zone; (c) maximum curves of the blind zone after CWT and
SST; (d) CWT of the signal; (e) zoomed CWT of the blind zone; (f) zoomed CWT-3D of the blind zone;
(g) SST of the signal; (h) zoomed SST of the blind zone; and (i) zoomed SST-3D of the blind zone.
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Figure 5. CWT and SST results of the GPD signal and zoomed view of the defect area: (a) original
signal; (b) zoomed signal of the defect area; (c¢) maximum curves of the defect area after CWT and
SST; (d) CWT of the signal; (e) zoomed CWT of the defect area; (f) zoomed CWT-3D of the defect area;
(g) SST of the signal; (h) zoomed SST of the defect area; and (i) zoomed SST-3D of the defect area.
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Figure 6. CWT and SST results of the GVD signal and zoomed view of the defect area: (a) original
signal; (b) zoomed signal of the defect area; (c) maximum curves of the defect area after CWT and
SST; (d) CWT of the signal; (e) zoomed CWT of the defect area; (f) zoomed CWT-3D of the defect area;
(g) SST of the signal; (h) zoomed SST of the defect area; and (i) zoomed SST-3D of the defect area.
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Figure 7. CWT and SST results of the PDBZ signal and zoomed view of the defect area: (a) original
signal; (b) zoomed signal of the defect area; (¢) maximum curves of the defect area after CWT and
SST; (d) CWT of the signal; (e) zoomed CWT of the defect area; (f) zoomed CWT-3D of the defect area;
(g) SST of the signal; (h) zoomed SST of the defect area; and (i) zoomed SST-3D of the defect area.
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Figure 8. CWT and SST results of the VDBZ signal and zoomed view of the defect area: (a) original
signal; (b) zoomed signal of the defect area; (c) maximum curves of the defect area after CWT and
SST; (d) CWT of the signal; (e) zoomed CWT of the defect area; (f) zoomed CWT-3D of the defect area;
(g) SST of the signal; (h) zoomed SST of the defect area; and (i) zoomed SST-3D of the defect area.

The original signal’s main frequency component is approximately 1.25 MHz, which
is basically consistent with the transducer’s center frequency. In Figure 4c, the maximum
values of SST and CWT near the blind zone both gradually decrease without observable
drastic changes. In Figures 5 and 6, there is a noticeable energy dispersion and convergence
phenomenon between the defect signal and blind zone signal, as shown in the zoomed
CWT and SST results. In Figures 7 and 8, the CWT result shows that the energy is nearly
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smooth and gradually decreases, but the SST result shows that there is an area with high
brightness when the defect signal appears, indicating that the energy has converged in
the defect area. The maximum curves of the defect area show that both CWT and SST can
accurately determine the presence of general defects. However, when analyzing the blind
zone defect signal, the maximum curve of CWT steadily decreases, while SST has more
obvious convex areas. Additionally, the location of the defect can be clearly seen by SST.
Therefore, SST is more suitable for detecting defects, especially blind zone defects, due to
its excellent energy concentration ability.

Another noteworthy point is that CWT transforms the entire signal, resulting in every
time-frequency position having a value, where some values may be close to zero. On
the other hand, SST concentrates the energy along the frequency direction, transforming
some time-frequency points to zero. The results obtained indicate that the ratio of zero
value increases from 0 to 45% of the original time-frequency result after SST processing,
which removes nearly half of the values that are close to zero, ultimately making the
time-frequency distribution more precise.

Although SST can detect and locate near-surface defects, it cannot directly determine
the type of defect. Therefore, this paper proposed a CNN model for identifying the defect
types, which can achieve the identification of general and blind zone defects.

4.2. DenseNet Model

To address the degradation problem in deep neural networks, the DenseNet model
was developed, which promotes better backpropagation of gradients during training by
establishing dense connections between front and back layers. This allows for the creation
of deeper convolutional neural networks that explore the potential of the network through
feature graph reuse, enabling better performance with fewer parameters and computations.
The model’s overall structure is depicted in Figure 9.

Input
7 X7Conv
1X1Conv

Output

2 X 2AvgPool

Figure 9. Structure of the DenseNet model.

The DenseNet architecture comprises two core structures: the dense block and the
transition layer. Each dense block contains several dense layers, where the input of each
layer comprises the output feature maps of all preceding layers. Within the same dense
block, the feature layer’s height and width remain constant, and the number of channels
is increased according to the designated growth rate. The output feature maps of the i-th
dense layer are:

x; = Hilxo,x1,--- ,x;1] (i=0,1,2,--+), 4)

where H is a nonlinear transformation function comprising three operations: batch normal-
ization (BN), activation function (ReLU) [47], and convolution (Conv).

The transition layer module is employed to connect different dense blocks and reduce
the width and height of the last dense block to integrate the features of previous dense
blocks. The transition layer comprises BN, ReLU, 1x1 Conv, and average pooling (AvgPool).
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4.3. Depthwise Separable Convolution

In traditional convolutional layers, each filter applies at least one single convolution
operation to all values of the input channels to obtain a two-dimensional feature map.
Depending on the number of channels, 7, in the output feature map, means each kernel per-
forms n calculations on this basis. The depthwise separable convolution (DSC) separates the
convolution operation into two parts: depthwise convolution and pointwise convolution.
The depthwise convolution employs only one convolution kernel for each channel in the
input feature map with the number of convolution kernels matching the number of input
channels. This step reduces the number of parameters because each filter only operates
on a single channel without the need to pay attention to other feature channels. Feature
maps of all convolution kernels are then concatenated as the output. Then, pointwise
convolution performs 1 x 1 convolution on the output feature map, allowing for the free
determination of the output channel and fusion of different channel information. Compared
to using a 3 x 3 convolutional kernel, the number of parameters sharply decreases. Each
1 x 1 convolutional kernel generates only one output two-dimension feature map. Based on
the difference in the number of channels in the output feature map, n 1 x 1 convolutional
kernels are used. The structure diagram of DSC is shown in Figure 10.

Depthwise Filters  peature maps Pointwise Feature maps

Filters

Input \

r———Concatenate| \ ‘
" 21> b \ 2>
11/:1:1 X VV“,“ X Cm \ )
IX1XC, .
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PI(J!I{ >< I/V()[ll>< Cin

K, XK, XC, Hy X W X Copy

in out

Figure 10. Structure diagram of DSC.

Assuming that the input feature map’s dimension is H;, x W, x C;, and the output
feature map’s dimension is Hout X Wour X Cout, ordinary convolution has a kernel size
of K}, x Ky and Cyyt output feature maps. If each feature map’s point is convolved once,
a single convolution kernel’s calculation amount is H;;, X W;, x Kj, X Ky x Cj,. The
total computation for Cyy; convolution kernels is Hj, x Wy, X Kj X Ky X Cj, X Cout.
In comparison, DSC employs C;, convolution kernels with a kernel size of Kj, x Ky in
depthwise convolution, where each kernel convolves only one feature map, resulting in
a calculation amount of H;;, x Wj, x Kj, x Ky x Cj,. The pointwise convolution, on the
other hand, employs C,,; convolution kernels with a kernel size of 1 x 1 x C;;,, resulting
in a calculation amount of Hyyr X Wour X 1 X 1 x Cj; X Coye. Consequently, the total
computation amount for DSC is H;;, x Wy, X Ky, X Ky X Ciy + Hour X Wour X Ciyp X Coue. If
the input and output feature maps have the same width and height, a simplified ratio of
DSC to ordinary convolution is

= = + i
Hjy x Wiy, X Ky X Ky X Ciyy X Cout Ky, x Ky X Cout Cout  Kj x Ky

©)

It demonstrates that the computation of DSC is more efficient than that of ordinary
convolution. Thus, this paper replaces 3 x 3 convolution in the dense layer with DSC.
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4.4. Attention Mechanism

After the feature extraction module in the convolution neural network, the attention
mechanism can dynamically weigh the features via autonomous learning and then focus
on more useful information for classification. During feature extraction, the channel
attention mechanism (CAM) assigns the corresponding weight coefficient based on the
importance of the feature channel, while the spatial attention mechanism (SAM) performs
an information space transformation in the image space domain (height, width) to extract
the key feature information for classification. To obtain more useful information in the space
domain and channel simultaneously, the two are serially combined to form a lightweight
CBAM module.

As illustrated in Figure 11, the CAM module is responsible for attention weight on the
feature channel, while SAM is responsible for attention weight on the feature space. In the
CAM module, the input feature map (8 x 8 x 166) is subjected to maximum and average
pooling to obtain two 1 x 1 x 166 feature maps. These feature maps are subsequently
input into a two-layer Multilayer Perceptron (MLP) to add and multiply each element.
After activating the sigmoid function, the channel attention weight Mc is obtained, which
changes the weight of each channel. The channel attention weight is multiplied by the
input feature map to obtain the input of the SAM module.

gs TN "I ERL ED R R emoemowm - - N
— CAM ,/: \
o} o 1
o 1xixi66 1X1X166 1l e M
< MLP 5 - s
X L =
g 1 g concat 8 ;
g:> k=l == | '
=] —] X
1X1X166 —
=3 [=} 1
8X8X 166 no. ! n? - 1 8X8X166
gﬂ : 3" 8X8X2 8X8X1 8><x><||
1X1X166 1X1X166
<] ol J
N e st o o -
% %,
Feature maps Feature maps

Figure 11. Structure diagram of CBAM.

In the SAM module, the multiplied feature map is first pooled by maximum and
average, resulting in two 8 x 8 x 1 feature maps. A 3 x 3 convolution is then used to
further reduce the dimension of the feature map channel, resulting in an 8 x 8 x 1 feature
map. The spatial attention weight Mg is obtained after activation of the sigmoid function.
Finally, the spatial attention weight is multiplied by the initial input feature map to obtain
the feature map strengthened by the CBAM module.

4.5. Near-Surface Defect Identification Model Based on DenseNet-DSC-CBAM

DenseNet is a well-designed structure that incorporates continuous backward trans-
mission of shallow features allowing for feature reuse, and thereby improving image
classification accuracy. Despite this, its parameter count remains high at approximately
seven million, presenting significant complexities for hardware deployment. Further op-
timization is therefore required. To address this issue, this paper proposes replacing the
3 x 3 convolution used in each dense layer with DSC, resulting in reduced computation.
Moreover, as the dense layer at the lower end of the network relies on the features of
all previous layers, an attention mechanism is introduced to mitigate the interference of
non-critical information and enable the network to focus on key information. In particular,
a lightweight and effective attention mechanism module, CBAM, is integrated into the
classification network, ultimately resulting in an improved blind zone defect recognition
model, DenseNet-DSC-CBAM, as illustrated in Figure 12.
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Figure 12. Structure of near-surface defect identification model.

The present study utilized a convolutional neural network designed in Pytorch. The
network’s input layer accepts an RGB three-channel signal SST diagram with an input pixel
size of 256 x 256. Shallow feature extraction involves the application of a7 x 7 convolution
layer and a 3 X 3 maximum pooling layer, resulting in feature maps with 64 channels
(64 x 64 x 64) and a reduction in input image dimensions. To enhance the extraction of
image information and improve the reusability of features, the DenseNet structure was
employed, consisting of four dense block modules and three transition layer modules. The
number of dense layers in each of the four dense blocks was 3, 6, 8, and 4, respectively.
The dense layer utilized single-point convolution and DSC for feature extraction with a
growth rate of 16, leading to the output of 16-channel feature maps per dense layer. The
transition layer performs channel dimensionality reduction with a compression ratio of 0.5.
This implies that the number of channels transmitted into the next dense block is half of the
input, resulting in a change in feature map size from 64 x 64 to 32 x 32,16 x 16,and 8 x 8,
through three layers. To reinforce the feature extraction component’s channel and space
attention, CBAM is incorporated before they are sent to the classification network, which
consists of the activation function, global average pooling, and full connection processing.
The softmax function is employed to determine the probabilities of an image belonging to
a specific defect type with the number of nodes in the output layer equaling the number of
possible defects for classification.

Figure 13 illustrates the impact of different network structures and learning rates on
model accuracy.
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Figure 13. Impact of different network structures (left) and learning rates (right) on model accuracy.

The structure of the original DenseNet121 model was adjusted by reducing the number
of layers in each denseblock. The denseblocks in the original model had 6, 12, 24, and
16 layers. However, it was observed that reducing the number of layers beyond 3, 6, §,
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and 4 resulted in decreased accuracy. This suggested that decreasing parameters beyond a
certain threshold would lead to a loss in accuracy. Therefore, the model was settled with
3, 6,8, and 4 dense layers. Multiple comparisons were conducted when making learning
rate choices, and the model achieved the highest accuracy at a learning rate of 0.00015.
Any value higher or lower than this level led to a decrease in accuracy; hence, 0.00015 was
selected as the preferred learning rate.

4.6. Evaluation Indexes

This paper utilizes various evaluation metrics such as accuracy, loss, recall, precision,
Fl-score, Floating Point Operations (FLOPs), parameters, and model size to assess the
efficacy of the model. Accuracy measures the proportion of accurately predicted samples
among all the samples. The recall evaluates the proportion of positively predicted samples
out of all the samples. On the other hand, precision reflects the proportion of accurately
predicted real samples among all accurately predicted samples. The Fl-score considers
both precision and recall to find a balance between the two. FLOPs is a crucial index used
to assess the computational complexity held by the model. The smaller the FLOPs, the
simpler the model’s calculations. The parameters signify the total number of parameters in
the model and is used to assess the size of the model.

Table 2 showcases the confusion matrix for a classification problem, where true positive
(TP) denotes the correct identification of a positive sample, true negative (TN) reflects
the correct identification of a negative sample, false positive (FP) indicates the negative
sample being falsely identified as positive, and false negative (FN) implies the inaccurate
identification of a positive sample as negative.

Table 2. Confusion matrix.

Predicted Class
True Class . .
Positive Negative
Positive TP FN
Negative FP N

The calculation formula for each index is as follows:

TP+ TN
A - 100%, 6
Uy = TP TN+ FP+ FN ©)
TP
Recall = ——— 7
ccall = 75 TN @
.. TP
Precision = TP+ EP’ (8)

Precision - Recall o
F1 = score = 2Precision ¥ Recall © 100%. ©)

The FLOPs calculation formula for models in ordinary convolution layer, DSC layer,
and fully connected layer are as follows:

FLOPsordinary = ZHoutWoutKthCincoutz (10)

FLOPspsc = 2HputWoutCiyy (Kth + Cout)/ (11)

FLOPspc = 2CinCout, (12)
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where H,,; represents the height of the output feature maps, W,; represents the width
of the output feature maps, K, represents the height of the kernel size, Ky, represents the
width of the kernel size, C;, represents the number of input channels, and C,,s represents
the number of output channels.

5. Results and Discussion

The training process and evaluation metrics are compared to demonstrate the fea-
sibility of employing DSC instead of ordinary convolution and the effectiveness of the
attention module, and furthermore, we also compared the visual results of the output
feature maps obtained from several typical models’ last layer to illustrate the model’s
decision-making basis.

5.1. Comparison of Training Processes and Evaluation Indexes

To evaluate the potential impact of replacing the 3 x 3 convolution kernel with DSC
on the performance of network models, we trained ResNet18, ResNet50 [48], VGG16 [49],
Inception-v3 [50], DenseNet121 [31], and DenseNet121 using DSC under the same dataset
and experimental setup. The values of accuracy and loss on the testing dataset were
recorded after each iteration of each model during the training process, as shown in
Figure 14.
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2 DenseNet121
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3 40t
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Figure 14. Curves of accuracy and loss during training of different models.

The results demonstrate that the accuracy of the five models increases as the num-
ber of iterations grows. Most models achieve stability after several iterations, typically
about 20 epochs, except VGG16, which gradually reaches stability after approximately
80 iterations. DenseNet121 exhibited the fastest rise and attained stability after several
iterations. Interestingly, the rising trend and convergence of accuracy of DenseNet121 using
DSC were essentially the same as that of DenseNet121 itself. These findings indicate that
replacing the convolution kernel with DSC did not negatively impact the performance of
the model.

Although ResNet50 contains more parameters than ResNet18, the accuracy of ResNet18
after convergence remains stable at 100%, whereas that of ResNet50 stabilizes at 98.50%.
This suggests that a higher number of parameters do not guarantee better model perfor-
mance. Moreover, a larger model may contain redundant parameters. This is one of the
reasons we opted to modify the model. The accuracy of VGG16 and Inception-v3 also
stabilizes at 98.5%, demonstrating that an increase in parameter quantity is not necessarily
the only way to enhance model performance.

Table 3 illustrates that after implementing DSC, the parameter quantity, model size,
and FLOPs of DenseNet121 reduced to 73.78%, 74.54%, and 63.30%, respectively. This
reduction did not affect the model’s performance, indicating that the use of DSC can effec-
tively reduce the number of parameters and computational complexity without sacrificing
the accuracy of the original model. Although DenseNet is a dense connection model that
achieves ResNet’s performance with fewer parameters through feature reuse, its million-
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parameters quantity and 1 x 10%-FLOPs remain high. Therefore, a modified DenseNet was
developed for identifying blind zone defects.

Table 3. Evaluation metrics of common models.

Models Accuracy/% Loss/1 x 1073 F1-Score/% Parameters Model Size/MB FLOPs
ResNet18 100.00 1.12 100.00 11,179,077 42.70 2.38 G
ResNet50 98.50 0.29 98.50 23,518,277 90.00 538G

VGG16 98.50 44.73 98.49 138,357,544 527.81 2021 G

Inception-v3 98.50 1.23 98.50 21,795,813 93.29 3.86 G
DenseNet121 100.00 0.83 100.00 6,958,981 27.17 3.76 G
Dense121-DSC 100.00 1.75 100.00 5,134,538 20.30 2.38G

After conducting numerous experiments, it was determined that constructing Dense-
DSC-0 with four dense blocks, each containing 3, 6, 8, and 4 dense layers, provides optimal
results. To minimize the impact of model modification, an attention module was added
before the classification network of Dense-DSC-0. The effects of five attention mechanisms:
efficient channel attention (ECA) [51], squeeze and extraction (SE) [52], CAM, SAM, and
CBAM, and additionally, three lightweight models: SqueezeNet [53], ShuffleNet-v2 [54],
and MobileNet-v3-small [55], were compared. Figure 15 shows the accuracy and loss curve
of the testing dataset after each iteration of the model with different attention mechanisms
during the training process. As the performances of the lightweight models were signifi-
cantly weaker than that of the model with an attention mechanism, they are not shown in
Figure 15.
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Figure 15. Curves of accuracy and loss during training of models with different attention mechanisms.

According to Figure 15, it is evident that the modified DenseNet model, along with the
added attention module, faces initial difficulty as it struggles to determine the appropriate
direction. However, the accuracy rate gradually improves after ten epochs, indicating
a better understanding of crucial feature information. The model’s accuracy eventually
stabilizes after approximately 30 to 40 iterations. It is worth noting that these models’
convergence speed is relatively weaker than common models due to the simplified model,
which impacts the feature information’s learning speed. Nevertheless, the loss curve
demonstrates that the model’s maximum amplitude of oscillation decreases after the model
is modified. Ultimately, the models with various attention mechanisms maintain stable
accuracy rates of approximately 98.5% with losses remaining relatively constant at 0.05.
Table 4 shows the model’s evaluation metrics.
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Table 4. Evaluation metrics of lightweight models and models with different structures.
Models Accuracy/% Loss F1-Score/% Parameters Model Size/MB FLOPs
ShuffleNet_v2 91.50 0.10 91.64 2,483,749 9.70 3953 M
SqueezeNet 74.50 0.97 75.11 737,989 2.82 979.95M
MobileNet_v3_small 90.00 1.22 90.03 1,522,981 5.96 76.64 M
Dense-DSC-0 97.00 0.03 97.00 245,055 111 368.01M
Dense-DSC-SE 98.50 0.13 98.51 248,551 1.13 368.01 M
Dense-DSC-ECA 97.00 0.05 96.99 245,060 1.12 368.01 M
Dense-DSC-SAM 99.00 0.04 99.00 245,074 1.11 368.01M
Dense-DSC-CAM 97.50 0.04 97.51 252,047 1.14 368.02M
Dense-DSC-CBAM 99.50 0.05 99.50 252,066 1.14 368.02M
K nearest neighbors [28] 76.50 - 74.40 - - -
SVM [28] 79.40 - 77.70 - - -
Random forest [28] 82.60 - 79.40 - - -
CNN [28] 87.00 - 87.40 - - -
LSTM [28] 81.70 - 81.00 - - -
BiLSTM [28] 80.10 - 79.70 - - -
WPT-CNN [29] 99.78 - 99.76 - - -
CNN [30] 98.20 - - - - -

Table 4 reveals that after the model is modified, its performance deteriorates due
to the reduced ability to learn key information. The implemented attention mechanism,
furthermore, showed a 2% improvement in accuracy under the addition of the CAM, a
0.5% improvement under the addition of the SAM, and a 1.5% improvement under the
addition of the SE, revealing the potential for attention modules to enhance the model’s
learning ability. The Dense-DSC-CBAM model has only 3.6% of the parameter quantity of
the DenseNet121 model, yet the accuracy is only 0.5% lower. Additionally, the FLOPs and
model size have greatly reduced, being only 1/10 and 4.2%, respectively.

Moreover, in comparison to other lightweight models, the Dense-DSC-CBAM model
has similar FLOPs but fewer parameters and a smaller model size. The evaluation indexes
such as model accuracy, loss, and F1-score remain nearly unchanged, making the Dense-
DSC-CBAM model a more favorable option. Due to these advantages, the model could be
readily deployed on hardware terminal devices with weaker performance.

The comparison with other models indicates that the performance of the model
designed in this paper is superior to traditional machine learning algorithms, indicating
that the feature value constructed by deep learning is better than traditional machine
learning algorithms.

5.2. Comparison of Visualization Effects

One of the primary reasons why machine learning, especially deep learning, has not
gained widespread trust is due to the fact that the inner workings of the model are often
deemed an “invisible black box.” To address this concern, researchers have proposed a
range of class activation mapping methods to analyze the decision-making criteria of the
model. In this paper, the gradient-weighted class activation mapping (Grad-CAM) [56]
method is employed to visually compare multiple models. Specifically, five samples from
each category are randomly selected from the testing dataset and input into the model.
The feature information after the last convolution is visualized. The darker the color of the
red area within the activation map, the more important that area is deemed for decision-
making. Firstly, we focus on visualizing the DenseNet121-DSC model, which is compared
to ResNet18 and DenseNet121: two commonly used models with the best performance.
Figure 16 shows the comparison.
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Figure 16 shows that the concentration of focus areas for all three models is within
the lower left corner of the SST image, an area with low-frequency where both the blind
zone and defect signals are present in the time domain. However, these models’ red areas
are slightly focused toward the upper right with only a partially yellow-green area near
the lower boundary. This area is the primary area of concentration for the blind zone and
defect signal, indicating that it is important for these models but not weighted heavily. Out
of the three models, only ResNet18 focuses on PDBZ and GPD located in the lower left
corner and are physically significant near the lower boundary.

Finally, the same five pictures are utilized to visualize three models with different
attention mechanisms, and the results are presented accordingly.

Figure 17 reveals that the focus areas for Dense-DSC-0 and Dense-DSC-SE are similar
to that of DenseNet121. While the area of the blind zone signal and defect signal is also
observed, they are depicted only in yellow and green with the overall red area leaning
towards the upper right. Notably, the focus area for Dense-DSC-CBAM lies close to
the lower boundary, signifying its emphasis on low-frequency regions. The red range
encompasses the entire area from the blind zone signal to the defect signal outside the blind
zone. Furthermore, the yellow-green transition area for Dense-DSC-CBAM is narrower
than that seen in other models, which highlights the effectiveness of the CBAM module
in enhancing the model’s focus on critical time-frequency feature information of SST and
refining the model’s focus area.
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Figure 18 shows the focus areas of the Dense-DSC-CBAM model in each module.
From front to back, the resolution of the thermal map gradually decreases from 64 x 64 to
32 x 32,16 x 16, and 8 x §, so the red area becomes larger and larger. Our area of

interest is in the low-frequency region in the lower left corner where near-surface defects
often appear.
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Figure 18. Focus areas of the Dense-DSC-CBAM model in each module.
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As can be seen from Figure 18, the shallow convolution layer for feature extraction is
focused on the key information of low-frequency positions. With the continuous backward
transmission of features, the focus area of the convolution layer of the third dense block
gradually expands. As for the fourth dense block, its focus area has deviated from the
feature area containing critical information about the defect signal, which is due to the
feature reusability of the DenseNet structure. However, the CBAM module redistributes
the weight of space and channels, returning the focus area of the entire model to true key
feature areas.

The results indicate that the defect detection method based on SST can accurately
detect and locate the defects, and the proposed Dense-DSC-CBAM model is lightweight
and accurate in identifying the defect type. The Dense-DSC-CBAM model is very effective
in capturing key time-frequency information. Compared with VGG and ResNet, it is evi-
dent that a high level of accuracy does not necessarily guarantee its effectiveness in image
classification tasks with physical significance. Achieving optimal results in such tasks
requires consideration of a range of indexes beyond conventional metrics like accuracy,
F1-score, and FLOPs. It is equally important to assess the model’s decision-making ba-
sis, which involves analyzing the focus area and whether it appropriately targets the
most critical information. Evaluating a model’s interpretability is essential for assessing
its performance.

6. Conclusions

This paper investigated the ultrasonic testing of near-surface defects in the polyethy-
lene pipeline hot-melt butt welds. Firstly, a novel method for detecting and locating
near-surface defects through SST was proposed. Then, a lightweight CNN model was
designed for identifying the type of near-surface defects, employing the DenseNet struc-
ture as the backbone network and combining DSC and CBAM. The combination of these
two techniques has facilitated the detection, localization, and identification of both near-
surface defects and general defects. Here are three conclusions that can be drawn:

1.  The SST, which combines CWT and rearrangement algorithms, achieves a more
refined time-frequency distribution of the near-surface defect signal through energy
concentration. By extracting the maximum of time-frequency distribution of the near-
surface defect area, clearer instantaneous energy changes can be obtained for locating
the defect. Significantly, the SST’s notable benefits extend beyond the detection of
near-surface defects and can be applied to a broader range of similar overlapping
signal analysis problems.

2. The proposed model is capable of achieving accurate identification of defects regard-
less of whether they overlap with blind zone signals. Moreover, the model features
significantly lower parameter quantity, computational complexity, and model size
than classical models, including ResNet18, VGG16, and Inception-v3. Additionally, it
also outperforms lightweight models like SqueezeNet, ShuffleNet-v2, and MobileNet-
v3-small in terms of accuracy. This suggests that many large models contain an array
of redundant parameters.

3. The visualization results have demonstrated that the model excels in capturing the
essential time-frequency information compared to other models, making it a reliable
choice. Meanwhile, the visualization has also revealed that even models showcasing
excellent performance may miss out on vital information areas. Therefore, researchers
must conduct an interpretable analysis of the model in addition to traditional evalu-
ation indices, particularly when analyzing images with physical significance. Such
analysis will help them investigate the reliability of the model’s underlying judgment-
making process.

This study conducted the detection and identification of typical volumetric defects and
planar defects within and outside the transducer’s blind zone, but further consideration of
defect size, other defect types and other pipeline materials could yield valuable insights
into this field. For example, the focus area is becoming broader than the low-frequency
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range in deep dense layers (0-5MHz), which already encompasses a frequency of 10MHz.
This prompts the question of whether there are any changes occurring near 10MHz that are
related to the presence of defects, but are currently unknown to us. This is also a necessary
area of investigation for future studies. The error of the model mainly comes from pure
manual operation when collecting signals. In this case, if there is a change in the handheld
posture, the waveform will be inconsistent, so the defect position can only be obtained from
the post-processing or defect positioning method, resulting in deviation. If mechanical
devices, such as stepper motors, can be used to control the distance of each movement, then
it is easier to achieve the accurate labeling of defect positions. Finally, dataset expansion,
movement step control and model performance improvement still need to be carried out.
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