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Abstract: Fake news detection has become a significant topic based on the fast-spreading and
detrimental effects of such news. Many methods based on deep neural networks learn clues from
claim content and message propagation structure or temporal information, which have been widely
recognized. However, firstly, such models ignore the fact that information quality is uneven in
propagation, which makes semantic representations unreliable. Additionally, most models do not
fully leverage spatial and temporal structures in combination. Finally, internal decision-making
processes and results are non-transparent and unexplained. In this study, we developed a trust-
aware evidence reasoning and spatiotemporal feature aggregation model for more interpretable and
accurate fake news detection. Specifically, we first designed a trust-aware evidence reasoning module
to calculate the credibility of posts based on a random walk model to discover high-quality evidence.
Next, from the perspective of spatiotemporal structure, we designed an evidence-representation
module to capture the semantic interactions granularly and enhance the reliable representation of
evidence. Finally, a two-layer capsule network was designed to aggregate the implicit bias in evidence
while capturing the false portions of source information in a transparent and interpretable manner.
Extensive experiments on two benchmark datasets indicate that the proposed model can provide
explanations for fake news detection results, and can also achieve better performance, boosting the
F1-score 3.5% on average.

Keywords: fake news detection; explainable machine learning; spatiotemporal structure; social
network

1. Introduction

Social media has become a significant platform for users to exchange and share
messages, based on its openness and anonymity. However, based on its low barrier of
entry and rapid provision and dissemination of online news, it also provides a hotbed for
the rapid dissemination of disinformation, such as fake news. Fake news threatens the
security of cyberspace, and also affects public opinion regarding major social events [1].
This can seriously interfere with personal cognition, causing people to make incorrect
decisions, and even exert a serious negative influence on political order and the economy
in the real world. For instance, during the 2016 US presidential election, various types
of fake news were more popular and widespread on Facebook than sources of accurate
news, which affected voter cognition, even changing the proportion of people supporting
different parties and having a significant impact on the fairness of the election [2]. In the
“information plague” accompanying the COVID-19 pandemic in 2020, many news reports
with misleading content spread through social media, leading to socioeconomic disorder
and the reduced effectiveness of national epidemic prevention measures [3–5]. Therefore,
constructing a detection model to curb fake news on social media has important theoretical
value and practical significance for maintaining national security and social stability [6].

Existing fake news detection methods have two main classes, namely content-based
and social context-based methods [4]. Specifically, content-based methods are dedicated to
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modeling the text content of news. For instance, early approaches considered linguistic
features [5–7], topics [8] and emotional features [9,10] in a manual way, and more recent
methods have extracted higher-level and implicit semantic information from news’ text
content using neural networks [11–14]. These methods have achieved huge success in regu-
lar fake news detection. However, compared to news articles, the information published on
social media is short and non-standard in format, and contains less effective information
with more noise, leading to the issue of sparse semantics [15]. Therefore, it is difficult for
previous models which process long and standard text content of regular news to extract
key semantic features for detection from the short news posted on social media, due to
the semantic sparsity. To alleviate the semantic sparsity issue, recent studies have tried to
introduce additional information sources (e.g., social context information). Social context in-
formation (e.g., interactions between users and a news story), providing abundant reference
information, boasts great potential in alleviating the task, leading to social context-based
methods. Concretely, they can be further divided into posts-based and propagation-based
methods. Posts-based methods utilize user opinions regarding relevant content to help
fake news detection, by modeling the semantic interactions between source information
and user comments [16–18]. Motivated by the posts-based methods, propagation-based
methods further consider the local characteristics of semantic interactions in message prop-
agation to capture and distinguish user views regarding source information and comments
in a fine-grained manner. Specifically, they model the information propagation process
as a graph structure and use graph neural networks to aggregate spatial neighborhood
information and learn high-level spatial structure semantic representations [19–26].

Although the methods discussed above have improved detection performance, they
still have some limitations. First, based on the openness and low barrier of entry of social
media, there may be artificial accounts [27] attempting to publish incorrect information
to affect public opinion during message propagation. When aggregating neighborhood
information, existing models treat all information equally, which may introduce noise and
render semantic representations unreliable [28]. Therefore, it is necessary to mitigate the
impact of noise on model detection by calculating the credibility of comments. Second,
existing propagation-based research methods mainly model spatial propagating structure
characteristics without considering the dynamic evolution of posts over time. As shown
in Figure 1, both comments T8 and T9 are replying to comment T6 with the same spatial
structure characteristics, but from the perspective of time there are clear differences between
them (T8 is released earlier than T9, meaning users may already be affected by T8 when T9
is released). Recent studies [29–31] have demonstrated that temporal structure features can
capture the dynamic evolution of information in a more fine-grained manner and promote
early detection performance. Spatial and temporal structures depict the evolution of news
messages from the perspectives of information interaction networks and temporal message
propagation, respectively, which are complementary. Therefore, it is necessary to consider
both the temporal neighborhood structure characteristics and spatial neighborhood struc-
ture characteristics of information. Additionally, existing methods focus on using deep
learning models to integrate more external information and automatically mine hidden
features to improve fake news detection performance, while with the model complexity in-
creasing, the decision-making process within a model has become more difficult to explain
and verify. A psychological research work [32] has shown that the spreading power of false
information is closely related to the importance and fuzziness of events. Therefore, it is
typically insufficient to simply mark information as false. A model must also automatically
provide a judgment basis to enhance interpretability.
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and false information. Potthast et al. [10] used different writing styles to identify false 

Figure 1. Schematic diagram of the spatiotemporal structure of information dissemination.

To alleviate the problems discussed above, we designed a novel model (Trust-aware
evidence Reasoning and Spatiotemporal feature Aggregation (TRSA)) to discover evidence
for interpretable fake news detection. Specifically, we first designed a trust-aware evidence
reasoning module to calculate the credibility of posts based on a random walk model to
discover high-quality posts as evidence. Then, considering the credibility of evidence, we
designed an evidence representation module based on spatiotemporal structure to aggre-
gate the spatiotemporal neighborhood characteristics of message propagation and enhance
the reliable representation of evidence. Finally, we detected fake news by aggregating the
implicit bias of evidence in source information based on a capsule network. Specifically,
we first modeled the semantic interactions between evidence and source information to
capture the controversial points (false portions) of source information, and formed an
evidence capsule. We then aggregated the implicit bias of each evidence capsule from the
source information through a dynamic routing mechanism. This study makes the following
contributions and innovations.

• We developed a transparent and highly interpretable neural structure reasoning model
that incorporates a random walk model and capsule network structure into the pro-
cesses of evidence reasoning and aggregation, respectively, which not only provides
reliable evidence for fake news detection, but also enhances the transparency of the
model reasoning process;

• Our evidence representation module can capture the semantic interactions between
posts in a fine-grained manner based on the spatiotemporal structure of message propa-
gation to enrich the semantic representation of posts (source information
or comments);

• The designed evidence aggregation module automatically captures the false portions
of source information while aggregating the implicit bias of the evidence in source
information;

• Extensive experiments on public datasets illustrate that TRSA achieves more a promis-
ing performance than previous state-of-the-art approaches, as well as providing inter-
pretations for fake news detection results.

2. Related Work

With the in-depth development of cutting-edge technologies such as big data and
artificial intelligence, many researchers are attempting to apply these technologies to mine
various characteristic signals of fake news, such as text, publishing users, participating
users, and communication networks. Overall, we can classify these intelligent detection
methods into the following categories:

Content-based approaches. Early methods based on content mainly focused on man-
ually extracting various lexical, grammatical, or topical features, and using traditional
machine learning methods to detect fake news. For example, Kwon et al. [12] found that
emotion features are valuable for constructing false information classification models (in-
cluding positive emotion words, negative words, and cognitive behavior words). On this
basis, a time series model was designed to capture the key language differences between
true and false information. Potthast et al. [10] used different writing styles to identify
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false statements. Ito et al. [11] introduced a potential Dirichlet distribution topic model for
Twitter reliability evaluation. To avoid handcrafted feature engineering and automatically
capture the deep hidden semantic features of text, various deep neural network models
have been developed. Ma et al. [33] used recurrent neural networks to mine high-level hid-
den features in information for fake news detection. Wang et al. [34] applied a pre-training
model to detect false information, and achieved good results. Hu et al. [13] constructed
a heterogeneous graph containing topic, sentence, and entity information to represent a
news document, and developed a novel network to distinguish fake news. These methods
were significantly effective for distinguishing false news articles. However, news published
on social media is short, leading to the issue of sparse semantics. Therefore, the detection
performance of these models was significantly reduced.

Social context-based approaches. Social media is essentially a heterogeneous graph
that includes users, posts, and other entities, as well as forwarding, commenting, and
other relationships. Therefore, we can integrate social context information from different
perspectives to perform fake news detection tasks. Social context-based approaches can be
further grouped into posts- and propagation-based methods. Posts-based methods mainly
rely on user reviews on social media, which can provide useful indicators for distinguishing
false information. Therefore, user social responses in terms of emotions, opinions, or
stances can be extracted through comments to optimize model detection performance.
Wu et al. [20,21] used multitask learning and co-attention networks to capture both source
information and comments jointly to improve task performance. Zhang et al. [35,36]
hypothesized that fake news can often attract attention and arouse or activate emotions.
Therefore, news comments (i.e., social emotions) from a crowd should not be ignored.
The shortcoming of such models is that they overlook the obvious local characteristics
of social media information interactions. Propagation-based methods mainly construct
isomorphic or heterogeneous information propagation network modeling interactions
between posts or users, mining the information propagating structural characteristics
for evaluating the authenticity of one claim. Yuan et al. [22] proposed a novel attention
network that jointly encodes local semantic information and global propagation structure
information for false information detection. Bian et al. [23] devised a two-layer graph neural
network (BiGCN) model to capture the bidirectional propagating structure of information.
Although these models optimize performance through mining information dissemination
structure features, they rely too heavily on the feature extraction performance of graph
neural networks and ignore the fact that information quality is uneven in propagation,
which makes semantic representations unreliable. As the complexity of a model increases,
the decision-making process within the model becomes more difficult to explain and verify.

Interpretable machine learning. Our study was also correlated with interpretable
machine learning, which mainly focuses on two aspects: the explanation of models and
the explanation of results. The explanation of models primarily relies on probability graph
models or knowledge graphs technologies. For example, Shi et al. [37] proposed a KG-
based method to verify facts through predicate paths. Ciampaglia et al. [38] hypothesized
that the shortest path between concept nodes could be determined by defining appropriate
semantic proximity indicators on a knowledge graph, which can effectively approximate
human fact checking. Most automatic fact-checking methods require a knowledge base, and
must be updated regularly to ensure that the knowledge base remains current. However, it
is difficult to handle new topics, such as symptoms of COVID-19, at an early stage. The
explanation of results is primarily dedicated to visualizing the attention distribution in the
model decision process. For example, Chen et al. [39] found that words reflecting negative
emotions have higher attention weights than words related to events through visualizing
the attention weights of their model. Wu et al. [21] depicted semantic interactions between
high-quality comments and claims with a co-attention mechanism, and found that the
attention weights of evidence-related words were higher than that of other words.

Compared to previous studies, we detected fake news in more realistic social media
scenarios. To overcome the fact that information quality is uneven in propagation, we calcu-
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lated the credibility of nodes in an information dispersion network from the perspectives of
user authority and communication relationships, and filtered highly informative evidence
from comments. To fully leverage spatial and temporal structures in combination, we de-
signed an evidence representation module based on spatiotemporal structure to aggregate
the spatiotemporal neighborhood characteristics of message propagation. To enhance the
transparency of the model reasoning process, a capsule network was used to model the
implicit bias of evidence relative to the source information in a transparent manner.

3. Problem Statement

Let Ψ = {S1, S2, . . . , Sn} be the source information to be detected and U = {u1, u2, . . . , ul}
be a user collection on social media. Each Si ∈ Ψ consists of a sequence of li tokens
{w1, w2, . . . , wli}, where each token wli ∈ Rd is a d-dimensional vector denoting the token
feature. Each ui ∈ R represents the authority of user i calculated based on multiple meta-
data features, including whether the account is verified, and geolocation information and
homepage introduction exist, and the numbers of fans, friends and favorites. The specific
calculation process is provided in Appendix A.

When a news story Si is posted, it causes users to discuss the story and generate
comments or forwarded information. We describe the information propagation process
from the perspective of temporal and spatial structures, as shown Figure 2. The spa-
tial structure reflects user–content interaction (e.g., commenting, forwarding) in mes-
sage propagation, while the temporal structure is associated with a series of posts (e.g.,
comments or forwarded messages) over time. We denote the temporal structure as
P(Si) =

{
(c0, t0), . . . ,

(
cj, tj

)
, . . .

}
where cj is a d-dimensional vector representing the

post (comment or forwarded) content at time j in the propagation of information Si and
tj is the time at which post cj is generated. c0 denotes Si semantic feature. The spatial
structure is denoted as G(Si) = <V, E>, where G(Si) represents the propagation graph of
news Si. V is the node collection of G(Si) denoting posts in source information propagation.
Each node in V is defined as vj =

(
uj, cj

)
∈ V, where uj ∈ R represents the authority of

the user who posted post j, and cj ∈ Rd characterizes the post content. E denotes the edge
collection describing the association relationship between nodes in G(Si). If cj is a comment
or forwarded message to ci, a directed edge from node i to node j eij =

〈
vi, vj

〉
will be

added in E.
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Figure 2. A piece of news on PHEME, and the meta-data of users participating in the discussion,
the relevant comments or forwarded message on social media over time. The unit of time axis is
minutes. “V” represents whether the account is verified or not, and “FL”, “FR” and “F” represent
the numbers of followers, friends and favorites, respectively. The bold words are the false portions
of source information, and some explainable comments can directly confirm the falsehood of these
words in the news.
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The interpretable fake news detection task can be described as learning a decision
function f : f (S, P, G)→ y that maximizes prediction accuracy with reliable evidence and
marks the false portions of source information with explainable evidence-related words.

4. TRSA: Trust-Aware Evidence Reasoning and Spatiotemporal Feature
Aggregation Model

In this section, we describe the details of the TRSA model. Its architecture is presented
in Figure 3 and involves three modules: (1) a trust-aware evidence reasoning module for cal-
culating the credibility of nodes in the information dispersion network based on a random
walk model to discover high-quality evidence; (2) an evidence representation module with
three units (temporal sequence representation unit, spatial structure representation unit,
and fusion gate unit) for capturing the characteristics of high-level spatiotemporal structure
and enhancing the semantic representation of evidence; and (3) an evidence semantic
aggregation module for deepening the semantic interactions between evidence and source
information, and modeling the implicit bias of evidence relative to source information
based on a capsule network.
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4.1. Trust-Aware Evidence Reasoning

Due to the openness and low barrier to entry of social media, erroneous information
may be released by artificial accounts during message propagation, which can introduce
noise into a fake news detection model. To avoid the impact of low-quality posts, we must
calculate the credibility of posts and take highly credible posts as evidence to detect the
truthfulness of source information. From the points of the publisher features and content
of posts, two indicators were considered.

(1) Authority of users who publish comments: the higher the authority of users, the
more reliable their comments [40]. In other words, users tend to receive information
published by users with high authority;

(2) Degree of recognition of other comments in the information propagation process:
comments recognized by other highly credible comments have high credibility.

To comprehensively consider these indicators together, we constructed a random walk
model based on an information dispersion network that considers these indicators as the
jump probabilities of random walkers in the network. The probability that random walkers
will eventually travel to each node can be considered as the credibility of posts.

4.1.1. Information Dispersion Network Construction

The comment credibility ranking was based on an information dispersion network
aimed at one claim (source information). We first constructed an information network
G(S) = 〈V, E〉 based on source information along with its related comments, as well as the
authority of users participating in the discussion, as shown in Figure 4.
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The node at the top level of the network represents the source information, and the
other nodes represent comments. As described in Section 3, each node is represented as
vj = (uj, cj) ∈ V, where uj ∈ R represents the authority of the user who posted comment
j, and cj ∈ Rd is a d-dimensional vector obtained by a pre-trained BERT model that can
be used to characterize the comment content. The initial weight of node i is represented
by the corresponding user’s authority, uj. Each edge eij =

〈
vi, vj; ωij

〉
∈ E represents the

interaction between posts i and j. Edge weights wij indicate the recognition degree of post i
relative to the content of post j. Its calculation process is as follows:

ωij = sign
(
ci, cj

)
∗simlar

(
ci, cj

)
, (1)

where sign
(
ci, cj

)
represents the emotional difference between posts. sign

(
ci, cj

)
= 1

if the emotional polarity of the two posts is the same, and sign
(
ci, cj

)
= 0 otherwise.

simlar
(
contenti, contentj

)
represents the semantic similarity; its value is in [0, 1]. We

adopted the interface provided by the Baidu AI platform for calculating emotional differ-
ence (https://aip.baidubce.com/rpc/2.0/nlp/v1/sentiment_classify (accessed on
8 August 2022)) and adopted the soft cosine measure [41] between embeddings of com-
ments (or the source post and its comments) as semantic similarity. In Equation (1), although
there is interaction between posts I and j (e.g., i is a comment to j), wij may still be 0. This is
because there is no emotional resonance which means sign

(
ci, cj

)
= 0, or the content of the

two posts is irrelevant, which means sign
(
ci, cj

)
) = 0.

4.1.2. Credible Reasoning of Evidence Based on a Random Walk

Based on the information dispersion network, random walkers can walk randomly
in the network in two ways: jumping randomly according to the weights of network
nodes (i.e., considering the authority of users who publish posts) or walking randomly
along to the edges in the network (i.e., considering the information interactions in the
dispersion process).

The probability pij of random walkers jumping from node i to node j according to the
node weight is defined as follows:

pij =
exp(uj)

∑i exp(ui)
, (2)

where ∑n exp(un) represents the summation of weights of all nodes. According to Equation
(2), the probability of random jump is only correlated with the goal node weight and its
value is in (0, 1). If P denotes a jump matrix, the elements in each column are the same and
the sum of elements in each row is 1.

Walking according to edge weights means that random walkers select a node to reach
an adjacent node directly with a certain probability along the edges of the network. If the
probabilities of moving along edges are expressed by an edge transfer matrix S, then the

https://aip.baidubce.com/rpc/2.0/nlp/v1/sentiment_classify
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probability sij of a random walker moving from node i to node j along an edge is expressed
as follows:

sij =

{
0, eij /∈ E
wij, eij ∈ E

(3)

We let α represent the probability of random walkers walking along an edge, which
is called the damping coefficient, and 1− α is the probability of random walkers jumping
according to node weight. The walking process of random walkers in the information
dispersion network is described as follows:

r(t+1) = r(t)(αS + (1− α)P) (4)

Here, r(t) and r(t+1) ∈ R n are n-dimensional vectors denoting the visiting probability
distribution of random walkers to all nodes in the information dispersion network before
and after the update, respectively. Their elements are in [0, 1]. Initially, r(0) = (1, 0, . . . , 0).
Langville et al. [42] pointed out that this type of random walk algorithm converges to
a unique vector when the transition matrix satisfies the irreducible and periodic proper-
ties. We prove that the transfer matrix constructed in this paper satisfies this property in
Appendix B. Therefore, Equation (4) eventually converges to a stable vector after multiple
iterations, which can be considered as the credibility of comments.

4.2. Evidence Representation Based on Spatiotemporal Structure

As shown in Figure 2, the propagation process of source information can be expressed
by a spatiotemporal structure graph. The temporal sequence can reflect the dynamic evo-
lution of comments’ (evidence) content over time, while the spatial structure can reflect
the real semantic interactions between evidence items. To alleviate the semantic sparsity
issue, we enriched the semantic representation of evidence by aggregating the temporal
neighborhood and spatial neighborhood information of evidence based upon the infor-
mation propagating spatiotemporal structure. Additionally, considering the difference in
evidence quality, evidence credibility should be integrated into the evidence representation
module to enhance the reliability of the evidence’s semantic representation. Specifically, we
considered three types of units: a temporal sequence representation unit, a spatial structure
representation unit, and a fusion gate unit.

4.2.1. Evidence Temporal Sequence Representation Unit

The evolution of source information is triggered by a sequence of forwards or com-
ments over time, as shown in Figure 2. We aimed to exploit the initial semantic representa-
tion of source information and related evidence posts (comments or forwarded content)
in combination with the temporal structure P(S) =

{
(c0, t0), . . . ,

(
cj, tj

)
, . . .

}
to learn ev-

idence representation regarding temporal sequence. To obtain a more reliable sequence
representation, we integrated the reliability of temporal neighborhood information into the
sequence modeling process and used bidirectional long short-term memory (Bi-LSTM) [43]
to model the temporal dependency of the information.

→
hi =

−−−→
LSTM(exp(ri)ci) (5)

←
hi =

←−−−
LSTM(exp(ri)ci) (6)

hi =

[→
hi;
←
hi

]
(7)

The above equations demonstrate how to model the temporal sequence representation
of evidence i. Specifically, we applied the corresponding credibility weights (calculated in
Section 4.1.2 upon each piece of posts in P) and captured reliable context from temporal
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neighbor posts around evidence i. In the equations,
→
hi ∈ Rl and

←
hi ∈ Rl denote the hidden

state of the forward LSTM
−−−→
LSTM and backward LSTM

←−−−
LSTM . l is the number of hidden

units in the LSTM and [:] denotes a concatenation operation. ri ∈ [0, 1] represents the
credibility of information. To avoid the vanishing gradient problem when ri is too small, we
used exp(ri) instead of ri. hi ∈ R2l is a semantic representation of the temporal structure of
evidence i (when i = 0, it represents source information).

4.2.2. Evidence Spatial Structure Representation Unit

To capture the local spatial structure characteristics of evidence posts’ interactions
in message propagation, inspired by graph attention networks (GATs) [44], we adopted
attention mechanisms on the information dispersion network. Although GATs can au-
tomatically capture the contributions (attention weights) of different nodes to the target
node when aggregating neighboring nodes, it ignores the credibility of neighborhood
information. Therefore, such an aggregation may result in excessive noise. We introduced
the credibility of posts in the process of spatial neighborhood aggregation to enhance the
reliable representation of evidences, which can be formulated as

βij = softmax(Leaky ReLU(αT [exp(ri)ci; exp(rj)cj])), (8)

mi =
K
||

k=1
σ( ∑

j∈Ni

βk
ijW

kcj). (9)

Equation (8) demonstrates how to model the semantic contribution of neighborhood
posts to target posts (evidence). Specifically, we used a feed forward network as an attention
function, which contained a single hidden layer with a LeakyReLU, and used the global
credibility weights to optimize the local semantic contribution of information. In the
equation, α ∈ R 2d is a learnable parameter weight vector and βij denotes the semantic
contribution of neighborhood node j to target node i. Equation (9) demonstrates how
to aggregate spatial neighborhood information according to the calculated contributions.
The spatial neighborhood representation of a piece of evidence is obtained by a weighted
summation over all spatial neighborhood semantic representations. To capture diversified
representations of spatial structure relationships, attention is expanded to multi-head
attention. Specifically, Equation (8) (i.e., the attention operation) is repeated K times,
then the learned representations are concatenated. || denotes a concatenation operation,
σ(·) denotes the exponential linear activation function, Ni denotes the collection of posts
directly connected with evidence i in the information dispersion network, Wk ∈ R q×2d is a
learnable shared parameter matrix that acts on each node in the network, and mi ∈ R Kq is
the semantic representation of the spatial structure of evidence i (when i = 0, it represents
source information).

4.2.3. Spatiotemporal Feature Fusion Unit

To represent the semantic features of information from multiple perspectives, the
temporal semantic representations and spatial structural representations of evidence are
selected and combined through a fusion gate to obtain a semantic representation of the
spatiotemporal structure of evidence. Because the temporal semantic representation and
spatial structural semantic representation of evidence are not in the same semantic space
(2l 6= Kq), it is necessary to convert them into the same semantic space (i.e., h′, m′ ∈ R h).

h′i = tan h(Whhi)

m′i = tan h(Wmmi)
(10)

Here, Wh ∈ R h×2l and Wm ∈ R h×Kq denote the transformation matrixes from the
different feature spaces of evidence i to an implied common space.
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Next, we used a fully connected layer with a sigmoid activation function to learn the
importance of temporal sequence semantic representation and spatial structure semantic
representation, as shown in Equation (11):

z = σ
(
Wz
[
h′i; m′i

])
, (11)

where Wz ∈ Rh×2h is a learnable weight matrix. z ∈ R h is a weight vector to trade off the
semantic representation from spatial and temporal structures. Its elements are in (0, 1).
Finally, the two semantic representations are fused using different weights.

xi = z� h′i + (1− z)�m′i (12)

Here, � denotes elementwise multiplication. xi ∈ Rh is the information representation
obtained through the fusion gate, and h is the dimension of the fusion gate output repre-
sentation.

4.3. Semantic Aggregation of Evidence Based on a Capsule Network

Based on the spatiotemporal semantic representation of evidence, fake information
can be detected by aggregating the implicit bias of evidence to evaluate the truthfulness
of source information. We incorporated a capsule network [45] into our model to model
the implicit bias of evidence toward claims. This process is illustrated in Figure 3, where
we first modeled the semantic interactions between evidence and source information to
capture the controversial points (false portions) of source information and form evidence
capsules (low-level capsule). We then aggregated the implicit bias of each evidence capsule
regarding the source information through a dynamic routing mechanism.

4.3.1. Semantic Interactions between Evidence and Source Information Based on
Multi-Head Attention

Although the fusion gate can efficiently aggregate the spatiotemporal neighborhood
information of evidence to obtain a reliable evidence representation, it cannot model the
fine-grained semantic interactions between evidence and source information. To capture the
focus of evidence on source information, we adopted a multi-head attention mechanism [46]
to model the semantic interactions between evidence and source information. Specifically,
we considered the evidence representation set X = {x0, x1, . . . , xm} ∈ R (m+1)×h obtained
in Section 4.2 as query vectors Q and considered the semantic representation of source
information S = {w1, w2, . . . , wl} ∈ Rl×d as keys (K) and values (V). We used each piece
of evidence in X to assign attention to each word in S through scaled dot-product attention,
and then applied the resulting attention weights to the source information as follows:

Attention(Q, K, V) = softmax
([

XKT
√

d

]
V
)

(13)

To prevent the model from focusing too heavily on a particular location, we first
mapped queries, keys, and values to different spaces through different types of linear
transformations. We then performed attention calculations in different spaces in parallel to
obtain representations of each comment (evidence) in different subspaces.

Headi = Attention
(

XWQ
i , SWK

i , SWV
i

)
E = MultiHeadAttention(X, S, S)

= ReLU([Head1||Head2||Head3 . . . Headn])

(14)

Here, WQ
i ∈ R h×p, Wk

i , Wv
i ∈ R d×p and E = {e0, e1, . . . , em} ∈ R (m+1)×np represent

collections of underlying evidence capsules.
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4.3.2. Evidence Aggregation Based on a Dynamic Routing Mechanism

In the fake news detection task, high-level capsules are regarded as the representations
of news (source information) authenticity, namely, category capsules. Specifically, there are
two types of category capsules, namely, fake or true, in our capsule network. Each category
capsule is assembled from the underlying evidence capsules using a weighted summation
over all corresponding vectors. It can be described as follows:

vj = squash(
m

∑
i=0

Oj|iWjiei), j ∈ (0, 1), (15)

where vj ∈ R dv is a category capsule. Oj|i is the probability that evidence ei supports
that source information belongs to category j, which can be calculated by a dynamic
routing mechanism on original logits bji. The specifics of this process are provided in
Algorithm 1. Wji ∈ R dv×np is a learned parameter matrix. To enable the module of the
category capsule to determine the probability that information belongs to this category and
increase nonlinear characteristics, a squash operation is applied to compress the module
length of the capsule to [0, 1].

vj = squash
(
vj
)
=

‖vj‖2

1 + ‖vj‖2

vj

‖vj‖
(16)

Algorithm 1 Dynamic Routing Mechanism

Input: Wji, ei
Output: vj
1: Init the coupling parameter bji == 0
2: for each iteration do
3: Update Oj|i = so f tmax(bji)
4: Update all the class capsules based on Equation (15)
5: Update bji = Wjiei·vj
6: end for
7: return vj

4.3.3. Detection

After category capsules have been obtained through the dynamic routing mechanism,
the category capsule with the largest module length is chosen as the representation of news
(source information) truthfulness.

ŷ = max(‖v0‖, ‖v1‖) (17)

Finally, the cross-entropy loss is used to capture the error between forecast results and
factual value:

L(θ) = −∑
i

yilog(ŷi), (18)

where θ denotes the model parametric set and yi ∈ {0, 1} is the ground-truth label of the
i-th instance.

5. Experiments and Discussion

In this section, we present experiments conducted on public datasets to evaluate the
effectiveness of the TRSA model. Particularly, we aim at answering the four evaluation
issues, as follows:

• EI1: Can TRSA achieve better performance than the state-of-the-art models?
• EI2: How effective is each component of TRSA in improving detection performance?
• EI3: Can TRSA make detection results easy to understand using the evidence reasoning

and evidence aggregation modules?
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• EI4: What is the performance of the model for the early detection of fake news?

5.1. Experimental Datasets and Settings
5.1.1. Datasets

We evaluated our model on two real datasets: PHEME (English dataset, mainly
from international Twitter) [47] and CED (Chinese dataset, mainly from the domestic
Sina platform) [48]. The PHEME dataset contains three types of labels: true, fake, and
uncertain. The CED dataset contains only true and fake labels. Because CED lacks the
basic information of the users participating in a discussion, we collected basic information
on the users participating in discussions by designing a web crawler (since some of the
participating accounts have been cancelled, we only collected nine types of meta-features
of about 460 thousand related accounts, including gender, location, description, message,
followers, friends, etc. The values of the cancelled accounts’ multiple meta-features are
given as 0). Table 1 provides the detailed statistics of datasets.

Table 1. Statistics of datasets.

Statistical Indicators PHEME CED

Source Tweets 2402 3387
Comments/rep 30,723 1,275,179

Users 20,538 1,064,970
Fake 638 1538
True 1067 1849

Uncertain 697 -

5.1.2. Comparison Methods

We compared TRSA to the following baselines:

• DTC [8]: This method utilizes multi-dimensional statistical features from the four per-
spectives of text content, user characteristics, forwarding behavior, and communication
mode, and implements decision trees to determine the truthfulness of information;

• HSA-BLSTM [49]: HSA-BLSTM is a hierarchical neural network model used to de-
scribe the semantic features of different levels of rumor events (a rumor event is
composed of source information and multiple forwarded or commented posts, and
each post is composed of words);

• SVM-TS [50]: This method utilizes SVMs with linear kernel function to model tempo-
ral features for false information;

• DTCA [21]: This model considers user comments as an evidence source for the truth-
fulness judgment of a claim and uses a co-attention network to enhance the semantic
interactions between evidence and source information;

• BERT-Emo [35]: BERT-Emo uses a pretrained language model to obtain the text
semantic representation and the emotions difference between an information publisher
and their audience;

• GLAN [22]: GLAN is a novel neural network model that can corporately model local
semantic features and global propagating features;

• BiGCN [23]: BiGCN is a two-layer graph convolutional network model used to
capture the bidirectional propagating structure of information. It also integrates
source post information into each layer of the GCN to enhance the impact of source
information;

• DDGCN [31]: DDGCN is a dynamic graph convolution neural network model used
to capture the characteristics of the information propagation structure and knowledge
entity structure at each point in time. Since our model only concentrates on the
contents and social contexts, we do not introduce a dynamic knowledge structure.
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5.1.3. Experimental Setup

The environmental configurations of all experiments in this study were as follows:
Intel Core i9 CPU, 64 GB of RAM, GTX-3090 GPU.

The experimental environments and parameters of all compared methods in this study
were set according to the original reports. We used the PyTorch framework to implement
our models. The model parameters were optimized and updated using the Adam optimizer.
In our model, we used pre-trained BERT models (bert-base-uncased for English and bert-
base-Chinese for Chinese) to initialize the vector representations of text information. We
employed accuracy (A), precision (P), recall (R), and F1 as assessment indicators. Model
hyperparameter details are provided in Table A2 in Appendix C.

5.2. Performance Comparison

To answer EI1, we contrasted TRSA with baseline models on two real datasets. The
experimental results are reported in Table 2. The bold values represent the best results, and
the underlined values represent the second-best results.

Table 2. Results contrasted between different methods.

Methods
PHEME CED

A P R F A P R F1

DTC 0.669 0.678 0.678 0.667 0.731 0.731 0.719 0.725
SVM-TS 0.722 0.788 0.758 0.721 0.857 0.859 0.858 0.859

HSA_BLSTM 0.757 0.772 0.731 0.745 0.878 0.877 0.876 0.876
DTCA 0.823 0.861 0.791 0.825 0.901 0.921 0.891 0.902

BERT-Emo 0.800 0.795 0.795 0.793 0.905 0.916 0.913 0.914

GLAN 0.828 0.824 0.822 0.823 0.918 0.917 0.914 0.915
BiGCN 0.847 0.840 0.834 0.835 0.919 0.918 0.916 0.917

DDGCN 0.855 0.846 0.841 0.844 0.922 0.920 0.931 0.925

TRSA 0.885 0.896 0.871 0.881 0.953 0.950 0.954 0.952

We can obtain several observations, as follows:

• The deep neural network models are superior to the models based on feature engi-
neering (DTC, SVM-TS). The most fundamental reason is that deep neural network
models can automatically learn implicit high-level semantic representations, whereas
traditional machine learning methods that rely on feature engineering can only capture
obvious false information in the presentation layer, which leads to various limitations;

• The models that add semantic interactions between claims and comments (DTCA,
BERT-Emo) perform better than the models that work with text and hierarchical
time-series structure (HSA\_BLSTM). DTCA automatically captures controversial
portions of source information through a co-attention mechanism. The BERT-Emo
model constructs a dual emotional feature set by measuring the difference between the
emotions of an information publisher and their audience to improve false information
detection performance;

• The models based on information propagation structure are superior to the mod-
els based on text semantics (DTCA, BERT-Emo, HAS-BLSTM). For example, GLAN,
BiGCN, and DDGCN achieved improvements of approximately 0.5% to 3.2% in terms
of accuracy on the two datasets compared to DTCA. This indicates that mining the
hidden structural features of information propagation is very helpful for improving
detection performance. However, in terms of precision, because DTCA uses deci-
sion trees to filter out some low-credibility noise comments, its performance was
approximately 1.5% higher than that of the aforementioned models on PHEME. More-
over, it can be observed that DDGCN showed better performance than BiGCN and
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GLAN, indicating that spatiotemporal structure features can finely depict the semantic
interaction in message propagation and thus improve performance;

• The proposed model outperformed most post-based models and propagation-based
models in terms of most indicators on the two real datasets. Compared to DTCA,
the proposed model enriched the claim and comment semantic information from the
perspective of time and space propagation structures. Its performance was 5.7%, 3.2%,
7.15%, and 5.3% higher than that of DTCA in terms of accuracy, precision, recall, and
F1, respectively. Compared to DDGCN, these four indicators were 3%, 4%, 2.65%, and
3.5% higher on average. This is because DDGCN treated all comments equally, which
introduces noise. In contrast, our model reduced noise by calculating the credibility
of comments.

5.3. Ablation Study

To answer EI2, we investigated how effective the key components were on TRSA
by designing five variations: (1) TRSA\T removes the trust-aware evidence reason-
ing module. (2) TRSA\Sp removes the spatial characteristics of information propaga-
tion. (3) TRSA\Tm removes the temporal characteristics of information propagation.
(4) TRSA\Sp&Tm removes the spatiotemporal characteristics of information propaga-
tion. (5) TRSA\EA replaces evidence aggregation with a max-pooling layer and a fully
connected layer.

In Figure 5, one can see that all variations performed less well than the complete TRSA
model on both datasets. Specifically, when removing the spatiotemporal characteristics of
information propagation, the F1 dropped by 5.5% on the PHEME dataset and 6.7% on the
CED dataset. This indicates the necessity of the temporal and spatial propagation structure
information to improve model performance. Furthermore, the results demonstrate that
removing spatial structure caused a larger decrease in model performance compared to
removing the temporal structure. This indicates that the spatial structure was more effective
than the temporal structure. When removing the trust-aware evidence reasoning module,
the decrease in terms of F1 on PHEME was 3.6% and that on CED was 2.9%. This demon-
strates that the impact of low-quality comments on the performance of the model could be
mitigated by the evidence credibility index. The replacement of the evidence aggregation
module led to a decrease in F1 of 4.8% on PHEME and 3.8% on CED. This demonstrates
the necessity of aggregating evidence semantics to achieve better performance.
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5.4. Explainable Analysis

The trust-aware evidence reasoning and evidence aggregation modules made the
decision-making process of TRSA more transparent and the results more interpretable.
To answer EI3, we visualized the evidence credibility, attention weight distribution, and
implicit biases of evidence when predicting fake news. Figure 6 presents the results for a
specific sample in the PHEME testing set.
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• First, we focused on each token in the source information by accumulating the atten-
tion values of the interactions between evidence (high-quality comments) and claims
(source information) in the information propagation process, which is represented
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by the size and color of each word. The larger the font, the darker the color of the
word, indicating that more attention is assigned to the word in the process of informa-
tion propagation and the word is more controversial. One can see that “Emergency”,
“distress”, and “# 4U9525” have been widely discussed by users in the process of infor-
mation propagation, which further demonstrates that our model can automatically
capture controversial content;

• Second, we used Gephi to draw the information dispersion network, where the sizes
of nodes were determined by their credibility (the higher the credibility of the node,
the larger the node). One can see that the black nodes represented source information,
and the other nodes represented related forwarding or comment posts. Comments
endowed with high credibility weights could be used as evidence to prove that the
source information is fake. Consider the following comments. “I doubt that any pilot
would not say ‘Emergency,’ but rather ‘Mayday’.” “No, then you would say ‘PANPAN’. Trust
me, I’m a pilot! Besides, ‘Mayday’ is a time when life is in danger.” “By the way: Cabin
pressure loss in an airliner is a classic case for Mayday! \# 4u9525?”. The “PANPAN”
and “Mayday” terms appearing in these comments are internationally used radio
crisis call signals, indicating that the “Emergency” term in the source information is
incorrect. This indicates that the trust-aware evidence reasoning module can provide
highly reliable evidence to explain the model results. To measure the support of
evidence for results objectively, we examined the implicit bias distribution of evidence
by visualizing the aggregation probabilities of the underlying evidence capsules into
the high-level category capsule in the evidence aggregation module. One can see that
most of the highly credible evidence refutes the source information content;

• To unfold user attention distribution differences between fake and true news content,
we randomly selected three fake (0–2) and three true (3–5) news stories, and plotted
their token weight distributions based on the attention of the interactions between
the evidence and claims. As shown in Figure 7, the horizontal direction from left to
right represented the word sequence. In the vertical direction, the first three entries
represented fake information (0–2) and the last three represented true information
(3–5). One can see that some parts of fake news had attracted widespread attention,
while the attention to various components of real news was relatively uniform. The
results show that to determine whether a piece of news is fake, one should first
examine the distribution of users’ attention to news content. The evidence of fake
news in terms of users’ attention may be unevenly concentrated on certain parts of
news content.
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5.5. Early Fake News Detection Performance

• To answer EI4, we sorted all comments (or forwarded posts) according to their pub-
lishing time and evaluated the changes in TRSA’s detection performance by changing
the number of posts received (0%, 20%, 40%, 60%, 80%, 100%). Figure 8 presents
the early detection results of the model for both datasets. One can see that when
only the first 40% of comments were considered, the accuracy of the proposed model
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could reach 85.2% and 91.2% on the two datasets, which was superior to the results of
the baseline models. This indicates that our model performed well in terms of early
detection. Additionally, we observed that the accuracies of the GLAN, BiGCN, and
DDGCN models increased slowly over time, whereas the proposed model exhibited
significantly improved performance over time. This is because the dispersion network
structure of information becomes more complex and the types of posts become more
diversified over time. The proposed model has a module for filtering noise posts.
Therefore, they had good robustness.
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5.6. Limitations Analysis of TRSA

In Figure 8, one can see that our model’s performance was not outstanding when the
number of posts received by the model was between 0 and 20%. To further analyze the
performance of the model in scenarios with few posts (low resources), we finely divided
the test set into three parts based on the number of posts in the news (Source Information).
The details are shown in Table 3. One can see that TRSA gave an outstanding performance
on the test set for any test sample with more than 10 posts, while on the test set in which
there were samples with fewer than three posts, TRSA did not perform well. This indicates
that TRSA can capture valuable semantics from multiple posts, but its performance can be
limited by samples with fewer posts.

Table 3. Performance analysis of TRSA on test sets with different numbers of posts.

News A 1 on PEHEM A on CED

News with posts ∈ [0, 3] 0.826 0.879
News with posts ∈ [3, 10] 0.845 0.898
News with posts ∈ [10, ∞] 0.885 0.959

1 A is the abbreviation for accuracy indicator.

6. Conclusions

Fake news detection has become a significant topic based on the fast-spreading and
detrimental effects of such news. In this study, we proposed an interpretable fake news
detection method called TRSA based on trust-aware evidence reasoning and spatiotemporal
feature aggregation, which aimed to: (1) discover some reliable evidence and the false
portions of source information to understand why news pieces are identified as fake;
and (2) capture the characteristics of high-level spatiotemporal structures and enhance
the semantic representation of evidence to improve detection performance. Extensive
experiments on two benchmark datasets indicated that the proposed model could provide
explanations for fake news detection results, as well as achieving better performance,
boosting 3.5% in the F1-score on average. We believe that TRSA can be applied to other
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short-text classification tasks on social media, such as stance detection and hate speech
detection. Based on the limitations analysis in Section 5.6, we plan to optimize our work
from two perspectives to improve the performance of the model under zero or few-shot
posts, by (1) introducing background knowledge to enrich the semantic information of
news and (2) considering more meta data, such as the reliability of news sources, to enhance
our model detection performance.
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Appendix A. User Authority Calculation Method Based on Multidimensional
Attribute Weighted Fusion

To represent authority, principal component analysis (PCA) was used to fuse multiple
metadata features of users as

wi = λ1VFi + λ2FLi + λ3FRi + λ4Di + λ5GEOi + λ6Fi (A1)

where λi represents the weight coefficient of the user’s ith meta-feature. VFi, Di, and
GEOi represent whether the elements of “verified,” “geo,” and “homepage introduc-
tion” exist, respectively. FLi, FRi, and Fi represent the numbers of followers, friends,
and favorites, respectively.

Table A1 lists the metadata and other information of users participating in discussion.
For Boolean features, when the value was true we converted it to a value of one, and when
the value was false we converted it to a value of zero. Because the value ranges of each
feature were very different, we applied the min-max normalization method to make the
values of the metadata features of the six-dimensional users dimensionless while keeping
their feature distribution characteristics unchanged.

Table A1. Metadata characteristics of users participating in discussion.

Data Type Multidimensional Metadata
Weights

PHEME CED

BOOL

verified(V) 1.20 × 10−6 2.19 × 10−7

whether there is homepage introduction (D) 1.00 × 10−5 2.25 × 10−4

whether geo-spatial positioning is allowed
(GEO) 1.26 × 10−5 8.08 × 10−6

Long Int
fans (FL) 2.11 × 10−1 1.26 × 10−1

friends (FR) 9.58 × 10−1 1.06 × 10−2

favorites (F)(PHEME)/message (M)(CED) 1.91 × 10−1 9.91 × 10−1

The PCA method was adopted to convert six-dimensional metadata user features into
multiple comprehensive indicators to calculate user authority while minimizing the loss of

https://figshare.com/articles/dataset/PHEME_rumour_scheme_dataset_journalism_use_case/2068650
https://figshare.com/articles/dataset/PHEME_rumour_scheme_dataset_journalism_use_case/2068650
https://github.com/thunlp/Chinese_Rumor_Dataset
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metadata information. Figure A1 presents the relationship between the number of principal
components and the variance contribution rate. 

 
Figure A1. Variance contribution rate of different principal components on two data sets.

One can see that the variance contribution rate of the first principal component on
both datasets exceeded 0.8. Therefore, to simplify our calculations, we directly represented
the authority of users involved in a discussion. For the two datasets, the weights of the
six-dimensional features in the first principal component are presented in the third column
of Table A1.

Appendix B. A Proof of the Irreducible and Aperiodic Property of the Transfer Matrix

Let B = αS + (1− α)P.
First, we proved that matrix B was irreducible: since all elements in S were greater

than or equal to 0 and all elements in P were greater than 0, all elements in B were greater
than 0. Therefore, the directed graph G(B) corresponding to matrix B must be strongly
connected. According to Theorem A1.

Theorem A1. Complex matrix B of order n (n > 1) is irreducible if and only if the directed graph
G(B) corresponding to matrix B is strongly connected, matrix B was irreducible.

Then, we proved that matrix B had aperiodic property: according to the previous
analysis, the elements on the diagonal of matrix B were all greater than 0, so there were
self-cyclic edges in its corresponding strongly connected graph. Therefore, matrix B also
had aperiodic property.

Appendix C. Optimal Parameter Configuration of the TRSA Model on Two Datasets

For easy understanding, Table A2 shows the important mathematical notations used
throughout the paper.
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Table A2. Important notations and descriptions.

Notations Descriptions

Si the news (source information) to be detected

wli
a d-dimensional vector denoting the semantic feature of token in
Si

ul the authority of user i

P(Si) ={
(c0, t0), . . . ,

(
cj, tj

)
, . . .

} the temporal structure of Si, where cj is a d-dimensional vector
representing the post (comment or forwarded) content at time j in
the propagation of information Si and tj is the time at which post
cj is generated

G(Si) = <V, E>

the propagation graph of news Si, V is the node collection of
G(Si), denoting posts in source information propagation. E
denotes the edge collection, describing the association
relationship between nodes in G(Si)

ωij the recognition degree of post i relative to the content of post j

r(t+1)
n-dimensional vectors denoting the visiting probability
distribution of random walkers to all nodes in the information
dispersion.

hi the semantic representation of the temporal structure of evidence i

mi the semantic representation of the spatial structure of evidence i

xi
the semantic representation of the spatiotemporal structure of
evidence i

E = {e0, e1, . . . , em}
the collections of underlying evidence capsules; em is the
semantic representation of an underlying evidence capsule

vj the semantic representation of a category capsule

Table A3 presents the optimal configuration of the proposed model for the two datasets.

Table A3. Detailed configuration of model hyperparameters.

Hyperparameters Descriptions Values

LEARNING_RATE the initial learning rate of the model 2 × 10−5

BATCH_SIZE num. of training samples in one session 8

EPOCH num. of iterations 15

MAX_SEQUENCE_LENGTH the maximum number of tokens contained in the
news required by model 70

LEN_COM the maximum number of posts associated with
the news required by model 50

NHEADS number of heads with multi-head attention 8

LSTM_hidden size the number of hidden units in the LSTM, which
are used to control the dimensions of hi

384

GAT_hidden size the number of hidden units in the GAT, which
are used to control the dimensions of mi

96

Multi_Head Attention_outsize
the number of hidden units in Multi_Head
Attention, which are used to control the
dimensions of ei

200

Capsule_out_dim the number of hidden units in category capsule,
which are used to control the dimensions of vj

200
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Further, we analyzed the changes in model performance under different damping
coefficients α (described in Section 4.1.2 and the optimal damping parameter determined.
The value range of the damping coefficient is [0, 1]). For α = 0, random walkers only jump
according to user authority, regardless of the actual dispersion network (i.e., the credibility
of the obtained evidence is only determined by user own authority). For α→ 1 , random
walkers largely ignore user authority and jump along the actual dispersion network. In
Figure A2, one can see that on the PHEME dataset, when α = 0.8 is used, the model per-
formance is optimal, and on the CED dataset the optimal value of the damping coefficient
is 0.7.
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