
Citation: Zhang, Q.; Yuan, J.

Semantic-Aligned Cross-Modal

Visual Grounding Network with

Transformers. Appl. Sci. 2023, 13,

5649. https://doi.org/10.3390/

app13095649

Academic Editor: Habib Hamam

Received: 7 March 2023

Revised: 28 April 2023

Accepted: 28 April 2023

Published: 4 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Semantic-Aligned Cross-Modal Visual Grounding Network
with Transformers
Qianjun Zhang 1 and Jin Yuan 2,*

1 The Tenth Research Institute of China Electronics Technology Group Corporation, Chengdu 610036 , China
2 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
* Correspondence: yuanjin@hnu.edu.cn

Abstract: Multi-modal deep learning methods have achieved great improvements in visual ground-
ing; their objective is to localize text-specified objects in images. Most of the existing methods can
localize and classify objects with significant appearance differences but suffer from the misclassifica-
tion problem for extremely similar objects, due to inadequate exploration of multi-modal features. To
address this problem, we propose a novel semantic-aligned cross-modal visual grounding network
with transformers (SAC-VGNet). SAC-VGNet integrates visual and textual features with semantic
alignment to highlight important feature cues for capturing tiny differences between similar objects.
Technically, SAC-VGNet incorporates a multi-modal fusion module to effectively fuse visual and
textual descriptions. It also introduces contrastive learning to align linguistic and visual features
on the text-to-pixel level, enabling the capture of subtle differences between objects. The overall
architecture is end-to-end without the need for extra parameter settings. To evaluate our approach, we
manually annotate text descriptions for images in two fine-grained visual grounding datasets. The ex-
perimental results demonstrate that SAC-VGNet significantly improves performance in fine-grained
visual grounding.

Keywords: fine-grained visual grounding; contrastive learning; multi-modal feature; cross-modal fusion

1. Introduction

Visual grounding aims to locate the most relevant object or region in an image based
on a natural language query. The recent advancements in deep neural networks have
greatly contributed to the progress of visual grounding [1–3]. Technically, most 2D visual
grounding approaches utilize visual representations to search for objects in an image,
and they have shown promising performance in various applications such as automated
driving systems (ADSs) [4], robotics [5], power transmission systems [6,7], and remote
sensing [8–11], among others.

The existing vision-based visual grounding approaches can be categorized into three
paradigms: (1) the two-stage model, which sequentially extracts region proposals followed
by object classification [12–14]; (2) the one-stage model, which simultaneously outputs
the locations and categories of objects [15–18]; and (3) the full end-to-end model, which
directly generates results without manual parameter settings [19,20]. These vision-based
approaches leverage strong feature representations to achieve coarse-grained object discrim-
ination, where visually distinct differences exist between inter-class objects. Coarse-grained
visual grounding, in this context, refers to the differentiation and localization of objects
between superior classes, such as dogs and cats. In contrast, fine-grained visual ground-
ing aims to differentiate and locate subordinate classes within a common superior class,
posing greater challenges in object discrimination. This is because distinguishing between
extremely similar objects from two subordinate classes can sometimes exceed the capa-
bility of vision-based recognition, and even our eyes struggle to differentiate between
them. For instance, the two planes shown in Figure 1a are so similar in visual appearance
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that they cannot be distinguished, leading to detection failure by YOLO and deformable
DETR [21–23].

As a result, vision-based approaches struggle to accurately capture the subtle differ-
ences between two similar objects, leading to incorrect predictions [21–23].

(a) Prediction Errors (b) Visual and Textual Descriptions

Figure 1. An illustration of two examples of fine-grained visual grounding, where subfigure (a) lists
the prediction results by different approaches on two similar aircraft, and subfigure (b) shows the
visual and textual descriptions of two similar aircraft.

To tackle this problem, this paper explores the improvement of fine-grained visual
grounding by integrating both textual and visual representations. As shown in Figure 1b,
with the two passenger planes, they are difficult to distinguish based on visual appearances
alone. However, their text descriptions clearly indicate their differences, such as “narrow-
body” versus “wide body” and “two jet engines” versus “four jet engines”. Textual
descriptions provide more abstract semantic knowledge. Therefore, utilizing this textual
information can effectively complement the limitations of visual representation and provide
valuable cues for distinguishing between similar objects in fine-grained visual grounding
(more details in Section 3).

This paper introduces a novel approach called the semantic-aligned cross-modal visual
grounding network with transformers (SAC-VGNet). SAC-VGNet is built upon the founda-
tion of the state-of-the-art YOLOv7 [24] and combines textual and visual features [1,25,26]
to enhance the discriminative capability of fine-grained visual grounding. In SAC-VGNet,
given the textual and visual inputs, the network first employs a multi-scale cross-modal
fusion module (MCMF) to effectively fuse both visual and textual descriptions. The MCMF
consists of two sequential steps: textual and visual feature encoding, which generate the
initial multi-modal feature, and multi-scale cross-modal feature decoding, which refines
the multi-modal feature using a multi-head cross-attention operation. To further enhance
the discrimination ability, SAC-VGNet adopts text-driven contrastive learning (TCL) to
achieve an accurate feature alignment [27–29] (more details in Section 3.4). TCL uses the dot
product to measure the similarity between the text projection and the related pixel-level pro-
jection while suppressing the response of the unrelated part. As a result, it could effectively
project the original multi-modal feature into a new feature space to better capture the tiny
differences between similar objects, yielding stronger discriminative abilities. Moreover,
our architecture is end-to-end without extra parameter settings, such as NMS [30] and the
anchor size [31], which greatly saves manual setting costs.

To evaluate our approach, we manually annotated a text description for each image
in two fine-grained visual grounding datasets (“Military Aircraft Dataset” and “FGVC
Aircraft Dataset”). The experimental results demonstrate that SAC-VGNet (integrating both
visual and textual features) is effective for fine-grained visual grounding. The contributions
of this paper are three-fold:

1. We propose a novel semantic-aligned cross-modal visual grounding network with
transformers (SAC-VGNet) to integrate both visual and textual features for fine-grained
visual grounding. Correspondingly, we manually annotated the text information of
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two fine-grained visual grounding datasets, providing valuable resources for future
research in this area.

2. We designed a multi-scale cross-modal fusion module to effectively fuse visual and
textual inputs. The module could effectively explore the correlations between them,
and highlight the important areas in the feature map to capture the tiny differences
between similar objects.

3. We adopted text-driven contrastive learning to achieve accurate feature alignment,
which could effectively project the original multi-modal feature into a new feature
space and, thus, the refined feature offers a stronger discrimination ability for fine-
grained visual grounding.

The rest of this paper is organized as follows. We review related work in Section 2.
In Section 3, we elaborate on our model. Experimental results are reported in Section 4,
followed by the conclusion in Section 6.

2. Related Works

The rapid advancement of deep learning has prompted a shift from traditional object
detection methods that rely on handcrafted features to deep learning-based approaches.
These approaches can be categorized into three paradigms: the two-stage method [32,33],
the one-stage methods [30,34], and the full end-to-end methods [19,26,35]. In the two-stage
methods, region proposals are first generated to identify potential objects, followed by
object classification [12,36,37]. For example, Liu et al. [38] proposed a Faster R-CNN-based
underwater target detector that utilizes the Swin Transformer as the backbone to fuse deep
and shallow feature maps, leading to improved accuracy in underwater image detection.
Xiang et al. [31] proposed an adaptive two-stage anchor assignment method to calculate
the overlapping area by using a prediction box instead of a fixed anchor box. With the
high accuracy, the two-stage methods usually suffer from low speeds, which greatly limits
their applications. Comparatively, one-stage approaches could simultaneously predict
both the location and category for each object and usually achieve faster speeds. The most
representative one-stage algorithm is YOLO [15,39], which has undergone continuous
updates in recent years [40,41]. Yang et al. [1] proposed a simple, fast, and accurate one-
stage approach for visual grounding by integrating language queries and spatial features
into the YOLOv3 object detector, creating an end-to-end trainable visual grounding model.
The latest versions of YOLO are YOLOv6 [42] and YOLOv7 [24]. YOLOv6 improves the
backbone architecture by incorporating CSPDarknet with EfficientRep, while YOLOv7
introduces an efficient aggregation network and an auxiliary training module to guide
the label assignment strategy, resulting in reduced computation and improved accuracy.
Benefiting from the fast speed, YOLO has found wide application in various engineering
domains, including forestry detection in urban areas [43], forest fire detection [44], and more.
In contrast to one-stage and two-stage approaches that require manual parameter tuning,
fully end-to-end methods utilize Transformers with multi-head self-attention to directly
generate results, reducing the need for manual adjustment. For example, Carion et al. [19]
proposed an end-to-end framework called DETR, which combines CNNs and Transformers
for object detection. Zhu et al. [35] introduced Deformable DETR, which focuses on a small
set of sampling locations as a pre-filter to identify prominent key elements from the entire
feature map, resulting in faster model training.

The aforementioned 2D visual grounding algorithms mainly focus on coarse-grained
objects, where there are significant visual differences between inter-class objects. However,
fine-grained visual grounding, which finds applications in real-world scenes, presents
greater challenges due to the extremely high similarity between objects. For instance, Deng
et al. [45] proposed an accumulated attention (A-ATT) mechanism to iteratively accumulate
attention for useful information in images, queries, and objects while gradually ignoring
irrelevant noise. Yang et al. [46] proposed a transformer-based framework for accurate
visual grounding by establishing text-conditioned discriminative features and employing
multi-stage cross-modal reasoning.
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On the other hand, many studies have shown that the use of multi-modal information
can lead to better performances in fine-grained image classification and remote sens-
ing [47–50]. For instance, Andres Mafla et al. [51] used graph convolutional networks to
perform multi-modal inference, obtaining relationally enhanced visual representations by
learning a common semantic space between images and scene text. Their approach yielded
promising performance in fine-grained image classification. Yuan et al. [52] proposed
an asymmetric multi-modal feature matching network (AMFMN) that used a multi-scale
visual self-attentive module to extract salient features from remote sensing images, along
with a text representation. Gao et al. [53] introduced the multichannel feature fusion
lozenge network (MLNet), which employed a three-sided network composed of three
branches to enhance the accuracy of land cover segmentation.

Different from previous studies [1], this paper aims to integrate textual and visual
information for fine-grained visual grounding by incorporating cross-attention and con-
trastive learning. In technical terms, we utilize the advanced one-stage approach YOLOv7
as the baseline and introduce Transformer with contrastive learning to enhance the learn-
ing of discriminative multi-modal features, thus addressing the misclassification issue
encountered in fine-grained visual grounding.

3. Method

To distinguish between similar objects for fine-grained visual grounding, this paper
proposes a semantic-aligned cross-modal visual grounding network with transformers
(SAC-VGNet), which adopts YOLOv7 as the baseline and introduces multi-modal feature
fusion with text-driven contrastive learning to boost performance for fine-grained visual
grounding. YOLOv7 [24] is a highly efficient convolutional neural network (CNN)-based
object detector. As illustrated in Figure 2, SAC-VGNet comprises four key components:
multi-scale cross-modal fusion, multi-scale cross-modal feature decoding, text-driven
contrastive learning, and fine-grained visual grounding head. Firstly, textual and visual
features are extracted using a text encoder and an image encoder, respectively. These
features are then concatenated with spatial features at three different resolutions. Secondly,
the concatenated features are processed by the multi-scale cross-modal feature decoding
module, which utilizes a transformer. The decoding features are subsequently input into
the text-driven contrastive learning module. Finally, fine-grained visual grounding heads
are employed to generate the final prediction results. Each head consists of two branches:
the regression branch and the classification branch. Unlike previous studies, SAC-VGNet
integrates both textual and visual features to address the misclassification issue encountered
in fine-grained visual grounding.

Figure 2. An example to illustrate the framework of our SAC-VGNet.

3.1. Background

Contrastive language-image pretraining (CLIP). CLIP [28] has achieved notable
success in aligning two modalities in the embedding space. Technically, CLIP adopts
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contrastive learning with high-capacity language models and visual feature encoders to
capture compelling visual concepts for image classification. Therefore, CLIP could offer
priori knowledge to capture the complex correlations between visual and textual modalities.

Transformer. Transformer [25] uses stacked self-attention and fully connected layers
for both the encoder and decoder. The core component of the Transformer encoder is the
attention module, which is described as mapping a query and a set of key-value pairs to an
output. The cross-attention operation could efficiently explore the correlations between
two different modalities and, thus, it could help mine the complex correlations between
visual and textual modalities in our approach.

Byte pair encoding (BPE). BPE [54] is a practical middle ground between character-
level and word-level language modeling, which could effectively interpolate between
word-level inputs for frequent symbol sequences and character-level inputs for infrequent
symbols. Compared to other text-encoding approaches, BPE could better explain the
semantic meanings of words.

3.2. Multi-Scale Cross-Modal Fusion

Multi-scale cross-modal fusion first encodes textual and visual features for a given
image, respectively, and then fuses them at a multi-scale level to offer robust fusion features
for visual grounding. Next, we will elaborate on them.

Textual and visual feature encoding. Given an image I ∈ R3×H×W and a corre-
sponding referring text T ∈ RB, where H and W are the height and width of I, respectively,
and B represents the word length of T, we first adopt the backbone in YOLOv7 [24] as

the image encoder to extract multi-scale visual features {Fvl}L
l=1 ∈ RCl× H

sl
×W

sl , where Cl is
the feature dimension in the l-th layer and sl is the scale factor. YOLOv7 uses extended
efficient layer aggregation networks (E-ELAN), RepConv [55], and auxiliary head modules
to improve the accuracy of real-time visual grounding without increasing the reasoning
cost. The multi-scale visual features could provide global abstract representation as well
as local discriminative representation to support fine-grained classification. Meanwhile,
the text sequence is encoded by lower-cased byte pair encoding (BPE), and is bracketed
with [sos] and [eos] tokens, which represent the start and end of a sequence, respectively.
We utilize the text encoder of CLIP [28] to extract the semantic information of T to obtain
a representative textual feature Ft ∈ RCt×B, which is further flattened Fs ∈ RCs . CLIP has
an exceptional ability to align text and images. It is trained on a wide variety of images
with abundant natural language supervision available on the internet. This training en-
ables CLIP to effectively locate visual pixels through textual semantics during subsequent
multi-modal fusion.

Multi-modal feature fusion. In order to incorporate positional information into the
fused features, we generate a coordinate map of the size H

sl
× W

sl
× Dspatial as the spatial

features, where Dspatial indicates the channel of the spatial features. Following the modality
fusion approach in [1], we first map the visual and text features to the same scale and
then use the concatenate operation to fuse the visual, text, and spatial features. Finally, we
supply Fvl , Fs, and Fcoord to generate an initial multi-modal feature Fml as follows:

Fml = Conv([Relu(Fvl Wvl ), Relu(FsWs), Fcoord]), (1)

where [,] is the concatenation operation, Conv() denotes a 2D 1× 1 convolution, and Wvl

and Ws are the learnable matrices to eliminate the scale difference between Fvl and Fs. We
refer readers to [56] for more details about the ReLu activation function. Since the initial
multi-modal feature Fml is generated by concatenating both visual and textual features
with the convolution operation, it cannot exceptionally align visual and textual features.
Therefore, we pass it to the following modules for further refinement.
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3.3. Multi-Scale Cross-Modal Feature Decoding

The multi-scale cross-modal feature decoder aims to generate discriminative multi-
scale multi-modal features, which consist of a multi-head self-attention layer, a multi-head
cross-modal attention layer, and a feed-forward neural layer (see Figure 3). Concretely,
given the encoding feature Fml and the textual feature Ft, we first concatenate the fixed
positional encoding [1,25] with the input to accurately capture the positional text-to-pixel
information. Then, Fml is sent into the multi-head self-attention layer for global attention to
highlight the important areas in I as follows:

Fml
′ = MHSA(LN(Fml )) + Fml , (2)

MHSA(Q, K, V) = So f tmax(
QKT
√

dk
)V , (3)

where Fml
′ represents the attention features, MHSA(·) and LN(·) represent multi-head self-

attention and layer normalization [57] respectively. Q ∈ RN×dq , K ∈ RN×dk , V ∈ RN×dv

denote the query, key, and value, respectively, which are obtained by three point-wise linear
layers mapped Fml to intermediate representations. The Softmax function can convert a
vector of dk real numbers into a dk-dimensional probability distribution. On this basis, the
multi-head cross-modal attention layer executes the cross-modal attention on Fml

′ and Ft
to generate the cross-attention multi-modal feature Fcl

′, as follows:

Fcl
′ = MHCA(LN(Fml

′), Ft) + Fml
′. (4)

Since Ft provides salient text descriptions of objects, it can assist in identifying the
corresponding features that distinguish different objects. Based on this assumption, cross-
modal attention enables the exploration of correlations between Fml

′ and Ft, resulting in a
highlighted multi-modal feature that effectively captures the subtle differences between
similar objects. Finally, we input Fcl

′ into an MLP in the form of layer normalization and
residual connection, as follows:

Fcl = MLP(LN(Fcl
′)) + Fcl

′, (5)

where Fcl ∈ RC× H
sl
×W

sl is the transformed multi-modal feature in the l-th layer, and each
pixel in Fcl is represented as a C-dimensional multi-modal feature vector for the follow-
ing alignment.

Figure 3. The detailed implementation of multi-scale cross-modal feature decoding.

3.4. Text-Driven Contrastive Learning

The text feature Ft of a given image only represents the objects in that image, and there
are still background features in the multi-modal feature Fcl . Therefore, there is an accurate
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alignment between the text feature Ft and the multi-modal feature Fcl , with the expectation
that Ft is similar to the object features in Fcl , and dissimilar to the background features
in Fcl .

We introduce the text-to-pixel contrastive learning loss [29] to implement it. Concretely,
we first project Fcl and Ft into the feature spaces zcl ∈ RD×Nl and zt ∈ RD, respectively:

zcl = Fcl Wc + bc, (6)

zt = FtWt + bt, (7)

where Wc and Wt are learnable matrices that are responsible for mapping Fc and Ft to the
same dimension D, and bc and bt are learnable biases.

The core of text-to-pixel contrastive learning is to improve the similarity between
the text projection zt and the related pixel-level projection in zcl , while suppressing the
response of the unrelated part in zcl . Motivated by this, we use the dot product to measure
the similarity, and express the text-to-pixel contrastive learning loss as follows:

Lj
con(zt, zj

cl ) =

{
−log(σ(zt · zj

cl )), j ∈ P,
−log(1− σ(zt · zj

cl )), j ∈ N ,
(8)

where zj
cl represents the feature vector of the j-th pixel in zcl . Moreover, P and N record

the positive and negative pixel sets in the ground truth, respectively. The sigmoid function
σ is applied to output a probability value between 0 and 1. A large similarity between zt

and zj
cl indicates a high alignment between the text feature and the multi-modal feature

for the positive pixel, while a small similarity indicates a low alignment for the negative
pixel. During the optimization process, the contrastive learning loss gradually converges to
encourage zt to be similar to the positive features in zcl and dissimilar to the negative ones.
This encourages the model to capture more discriminative features. Finally, our contrastive
learning loss on multi-scale features can be expressed as follows:

Lcon(zt, zc) =
1

|P ∪ N |
L

∑
l=1

∑
j∈P∪N

Lj
con(zt, zj

cl ), (9)

The contrastive learning loss could nicely align the pixel-level projection zcl with the
text projection zt to pay more attention to the key areas and distinctive features. As a
result, the projected multi-modal feature could provide more fine-grained information for
distinguishing similar objects in our task.

3.5. Training

Given the multi-modal feature Fcl , we employ the YOLOv7’s predictor for fine-grained
visual grounding. The predictor is composed of two branches: the regression branch and the
classification branch. The regression branch adopts the regression loss Lreg to measure the
localization of error, and the classification branch uses the classification loss Lcls to calculate
the classification error between prediction and ground truth. In our task, it is necessary
to distinguish the tiny differences in similar categories, and the previous approaches lack
sufficient capacity in discriminative feature extraction, yielding unsatisfactory classification
accuracy. Comparatively, our model introduces the third branch, called “contrastive
learning branch”, to learn more discriminative multi-modal features. As aforementioned,
the contrastive learning branch adopts the text-to-pixel contrastive learning loss, and the
final loss function could be expressed as

L = Lreg + Lcls + βLcon, (10)
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where β denotes the balance weight. Different from the previous approaches, our approach
propagates three estimation errors (position error, classification error, and feature alignment
error) to update our model through joint training. Benefiting from the text features, as well
as the feature alignment by contrastive learning, our model could learn more discriminative
multi-modal features to support fine-grained visual grounding.

4. Experiments

In this section, we first introduce our datasets and experimental settings, followed by
the illustration of the experimental results with a detailed analysis.

4.1. Datasets

We conducted experiments on two challenging datasets: the Military Aircraft Dataset [58]
(https://www.kaggle.com/datasets/a2015003713/militaryaircraftdetectiondataset, ( ac-
cessed on 27 April 2023)) and the FGVC Aircraft Dataset [59] (https://www.robots.ox.
ac.uk/vgg/data/fGVCAircraft/, ( accessed on 27 April 2023)), which are widely used to
evaluate fine-grained object detection and visual grounding.

The Military Aircraft Dataset (MAD) is one of the commonly used fine-grained object
detection datasets with 40 aircraft types with bounding boxes recorded in the PASCAL
VOC format (xmin, ymin, xmax, ymax). It consists of 7177 JPEG images with two resolutions
(1280× 1280, 640× 640) for 12, 337 objects collected from the website via a ‘Google Images’
search, which are manually split into 5365 for training, 1330 for validation, and 482 for
testing, respectively. We invited 10 people to manually annotate textual expressions. Before
annotation, we selected four discriminative properties (“engine”, “propeller”, “wing”, and
“tail”), and told the annotators that the text descriptions should include all four properties.
Then, the annotators followed the instructions to give detailed descriptions to each object
in an image, as Figure 4a shows, where two different aircraft may have different—or the
same—text descriptions. As a result, there are a total of 8137 referring expressions, and
each image contains one or more expressions with an average length of 30 words for
visual grounding.

The FGVC Aircraft Dataset (FAD) organizes aircraft into a four-level hierarchy:
model, variant, family, and manufacturer. We use ’variant’ as the category label. It contains
10, 000 JPEG images with two kinds of resolutions (1280× 1280, 640× 640) for 100 different
aircraft variants; each variant contains 100 images. The train/test set split ratio is around
2:1, resulting in 6667 samples for training, and 3333 samples for testing. For text annota-
tion, we describe the following aircraft features, “fuselage”, “wing”, “tail”, and “engine”,
respectively, as Figure 4b shows. There are a total of 10, 200 referring expressions, and each
expression has an average length of 30 words.

To support future research, we uploaded our datasets with text annotations to the following
website: (https://github.com/XuZhang1211/SAC-VGNet, (accessed on 27 April 2023)).

4.2. Implementation Details

The initial YOLOv7 model was pre-trained on the COCO dataset [60] with K-means
clustering, and we removed the last layer in YOLOv7 as the visual encoder. For the textual
encoder, we employed the pre-trained model on CLIP. Given an input image, we kept the
original image ratio and resized it to 640× 640 by padding. To expand training data, we
adopted data augmentation as [24], including adding randomization to the color space
(saturation and intensity), horizontal flipping, and random affine transformations. For the
textual input, we set the max size of a sentence as 30 for both datasets. The multi-scale
cross-decoding adopted Transformer with 4 heads, and the feed-forward hidden dimension
was set to 1024. Following the same evaluation protocol in prior works [24], we adopted
mean average precision (mAP) to verify the effectiveness of the Military Aircraft detection
and FGVC Aircraft datasets. Moreover, Lreg uses the L1 loss, and Lcls uses focal loss [61].
We used PyTorch to implement our algorithm and trained the model with a batch size
of 32 on 4 NVIDIA RTX A6000 with 48 GPU VRAM. The model was trained by SGD

https://www.kaggle.com/datasets/a2015003713/militaryaircraftdetectiondataset
https://www.robots.ox.ac.uk/ vgg/data/fGVC Aircraft/
https://www.robots.ox.ac.uk/ vgg/data/fGVC Aircraft/
https://github.com/XuZhang1211/SAC-VGNet
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optimization with a momentum coefficient of 0.9. The initial learning rate was set to 0.005,
and the coefficient of weight decay was set to 0.0001 for every 20 epochs. We executed
300 epochs to generate the final detection model.

(a)

(b)

Figure 4. Several examples to illustrate the visual and textual representations of the MAD (subfigure
(a)) and FAD (subfigure (b)) datasets.

4.3. Experimental Results
4.3.1. Parameter Analysis

In this experiment, we try different weights (β = {0, 0.25, 0.4, 0.55, 0.7, 0.85, 1}) in
Equation (10) to observe the performance change. Figure 5 demonstrates the performance
trends with respect to different β on MAD and FAD datasets, respectively. It is demon-
strated that the best performance arises when β = 0.85. This result proves the effectiveness
of our text-driven contrastive learning because the contrastive learning loss could nicely
align the pixel-level projection with the text projection, and pay more attention to the
key areas and distinctive features. As a result, the projected multi-modal feature could
provide more fine-grained information for distinguishing between similar objects in our
task. Moreover, the further decrease of β leads to a performance drop because the utility of
text-driven contrastive learning is overshadowed. Comparably, the too-large value of β
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also leads to a performance drop since the detection head is weakened, yielding unreliable
prediction results.

(a) mAP on MAD (b) mAP on FAD

Figure 5. The performance change with respect to different β in Equation (10) on MAD and FAD
datasets.

4.3.2. Ablation Study

This experiment verifies the utilities of multi-scale cross-modal feature decoding
(MCFD) and text-driven contrastive learning (TCL). Tables 1 and 2 demonstrate the com-
parison results on MAD and FAD datasets, respectively, where MCFD “-” indicates that
the initial multi-modal feature in Equation (1) is used for the following detection without
MCFD, and TCL “-” means that text-driven contrastive learning is not trained in our model.
From the tables, we can draw the following conclusions:

1. The introduction of multi-scale cross-modal feature decoding significantly improves
the performance, increasing the mAP from 0.758 to 0.768 on MAD, and from 0.862 to
0.873 on FAD. As aforementioned, the cross-modal attention in MCFD could nicely
explore the correlations between the text feature and the multi-modal feature and,
thus, the highlighted multi-modal feature could nicely capture the tiny differences
between similar objects.

2. The text-driven contrastive learning boosts the performance by about 1 percent in both
datasets. This improvement stems from the effective feature alignment by contrastive
learning, which could help the model learn discriminative features to distinguish tiny
differences between similar objects.

3. Our SAC-VGNet (incorporating both components) achieves the best performance,
with an mAP of 0.781 on MAD, and 0.885 on FAD. These remarkable results indicate
the effectiveness of SAC-VGNet in fine-grained visual grounding because it could
effectively fuse textual and visual features.

Table 1. The performance comparison by SAC-VGNet without different components on MAD.

MCFD TCL mAP@0.5 mAP@0.75 mAP@0.5:0.95

- - 0.869 0.825 0.758
X - 0.877 0.830 0.768
- X 0.873 0.828 0.764
X X 0.887 0.840 0.781

Table 2. The performance comparison by SAC-VGNet without different components on FAD.

MCFD TCL mAP@0.5 mAP@0.75 mAP@0.5:0.95

- - 0.909 0.887 0.862
X - 0.918 0.911 0.873
- X 0.920 0.917 0.879
X X 0.926 0.922 0.885
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Figure 6 lists three examples to illustrate the heatmap results by SAC-VGNet. With-
out MCFD or TCL, the heat maps are more decentralized, and cannot nicely capture
key objects. As a result, the extracted features often contain noisy information, result-
ing in detection errors. Comparably, SAC-VGNet could focus on key objects to extract
discriminative features.

Figure 6. Three examples to illustrate the heatmap results by SAC-VGNet without
different components.

4.3.3. Comparison with the State-of-the-Art Approaches

Finally, we compare our approach with several state-of-art approaches; Tables 3 and 4
show the comparison results. It is demonstrated that our model substantially and consis-
tently outperforms the state-of-the-art methods on both datasets, with about 1 to 3 percentage
improvements. First, DETR and Deformable DETR demonstrate poorer performances as com-
pared to YOLO and R-CNN, this is because DETR adopts query point features to discriminate
extremely similar objects, and these discriminative query points are difficult to be found some-
times. Second, YOLO and R-CNN only employ visual features to discriminate between different
objects, and the performance significantly depends on the feature extraction network. When
the network cannot explore the discriminative features, the prediction is wrong. In compar-
ison, this impressive performance of our approach stems from two aspects: (1) SAC-VGNet
introduces text descriptions that incorporate visual representations, and the proposed multi-
scale cross-modal fusion module could effectively fuse them to capture the tiny differences
between similar categories. (2) SAC-VGNet adopts text-driven contrastive learning to align
both text and multi-modal features. As a result, the learned feature could better distinguish
different categories.

Table 5 demonstrates the detailed results in each category between YOLOv7 and SAC-
VGNet. Among the 40 categories, our approach outperforms YOLOv7 in 37 categories,
and is worse in 3 categories. For instance, the mAP on “Su34” is increased by 7.5% by our
approach since the introduction of text information on “Su34” could help our model better
distinguish from other categories. On the other hand, we also discover that SAC-VGNet
results in a slight performance drop in “B1”, “Be200”, and “Rafale”. We assume that these
three categories have similar text descriptions with other visually similar categories and,
thus, the introduction of text information cannot well distinguish them.
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Table 3. The performance comparison between SAC-VGNet and the advanced approaches on MAD.

Method Resolution mAP@0.5 mAP@0.75 mAP

DETR [19] 0.831 0.776 0.739
YOLOv5 [41] 0.840 0.789 0.750

Deformable DETR [35] 640× 0.835 0.787 0.742
Sparse R-CNN [36] 640 0.851 0.792 0.758

YOLOv7 [24] 0.856 0.815 0.762
SAC-VGNet 0.887 0.840 0.782

DETR [19] 0.871 0.835 0.783
YOLOv5 [41] 0.883 0.846 0.811

Deformable DETR [35] 1280× 0.878 0.838 0.801
Sparse R-CNN [36] 1280 0.887 0.852 0.816

YOLOv7 [24] 0.892 0.856 0.823
SAC-VGNet 0.905 0.859 0.840

Table 4. The performance comparison between SAC-VGNet and the advanced approaches on FAD.

Method Resolution mAP@0.5 mAP@0.75 mAP

DETR [19] 0.850 0.847 0.831
YOLOv5 [41] 0.862 0.854 0.836

Deformable DETR [35] 640× 0.859 0.857 0.838
Sparse R-CNN [36] 640 0.873 0.865 0.842

YOLOv7 [24] 0.881 0.877 0.851
SAC-VGNet 0.926 0.922 0.885

DETR [19] 0.875 0.869 0.841
YOLOv5 [41] 0.898 0.882 0.856

Deformable DETR [35] 1280× 0.889 0.880 0.849
Sparse R-CNN [36] 1280 0.903 0.892 0.870

YOLOv7 [24] 0.911 0.903 0.875
SAC-VGNet 0.935 0.927 0.902

Table 5. The performance comparison on each category between SAC-VGNet and YOLOv7 on the
MAD dataset.

Category
YOLOv7 SAC-VGNet

mAP@0.5 mAP@0.75 mAP mAP@0.5 mAP@0.75 mAP

All 0.856 0.815 0.762 0.887 0.840 0.782
A10 0.939 0.888 0.822 0.931 0.89 0.829
A400M 0.957 0.918 0.844 0.952 0.911 0.86
AG600 0.929 0.929 0.873 0.967 0.967 0.892
AV8B 0.944 0.939 0.88 0.938 0.935 0.882
B1 0.889 0.862 0.802 0.88 0.842 0.79
B2 0.881 0.831 0.749 0.908 0.847 0.774
B52 0.943 0.943 0.867 0.951 0.951 0.87
Be200 0.989 0.989 0.929 0.987 0.987 0.926
C130 0.826 0.72 0.674 0.83 0.728 0.682
C17 0.86 0.791 0.73 0.905 0.825 0.747
C5 0.913 0.913 0.836 0.955 0.936 0.877
E2 0.902 0.879 0.815 0.906 0.906 0.844
EF2000 0.786 0.764 0.738 0.843 0.843 0.798
F117 0.711 0.597 0.552 0.794 0.663 0.613
F14 0.842 0.842 0.808 0.902 0.874 0.808
F15 0.869 0.828 0.775 0.878 0.84 0.776
F16 0.725 0.645 0.603 0.745 0.698 0.632
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Table 5. Cont.

Category
YOLOv7 SAC-VGNet

mAP@0.5 mAP@0.75 mAP mAP@0.5 mAP@0.75 mAP

F18 0.837 0.791 0.713 0.855 0.833 0.741
F22 0.798 0.798 0.74 0.822 0.822 0.757
F35 0.857 0.775 0.729 0.894 0.814 0.765
F4 0.78 0.704 0.7 0.847 0.756 0.744
JAS39 0.726 0.689 0.661 0.769 0.718 0.672
MQ9 0.84 0.84 0.775 0.901 0.881 0.784
Mig31 0.914 0.914 0.835 0.935 0.904 0.852
Mirage2000 0.958 0.912 0.839 0.975 0.952 0.882
RQ4 0.82 0.603 0.597 0.836 0.625 0.608
Rafale 0.888 0.862 0.817 0.873 0.847 0.803
SR71 0.861 0.67 0.681 0.927 0.737 0.716
Su34 0.818 0.792 0.752 0.904 0.867 0.827
Su57 0.754 0.747 0.714 0.81 0.793 0.749
Tu160 0.904 0.884 0.847 0.956 0.888 0.862
Tu95 0.859 0.833 0.815 0.888 0.888 0.823
Tornado 0.675 0.623 0.62 0.762 0.687 0.675
U2 0.861 0.787 0.774 0.932 0.827 0.824
US2 0.935 0.916 0.866 0.953 0.931 0.884
V22 0.918 0.857 0.766 0.921 0.871 0.768
XB70 0.887 0.878 0.733 0.908 0.893 0.742
YF23 0.977 0.977 0.909 0.991 0.991 0.915
Vulcan 0.709 0.649 0.637 0.798 0.711 0.672
J20 0.754 0.723 0.681 0.752 0.737 0.69

Table 6 lists the resource requirement results. Since our SAC-VGNet is built on
YOLOv7, by adding the multi-modal fusion module, it requires more resources and achieves
a lower testing speed as compared to YOLOv7 with 21 FPS. Compared to Deformable
DETR/DERT, our approach consumes fewer computations and achieves a faster speed to
yield better detection accuracy for fine-grained visual grounding.

Table 6. Resource requirements as compared with the state-of-the-art approaches.

Model #Param. FLOPs Size FPS

Sparse R-CNN 77.8 M 23.3 G 1333 23
YOLOv5 86.7 M 205.7 G 1280 15
YOLOv7 36.9 M 104.7 G 1280 26
DETR 41 M 187 G 1333 12
Deformable DETR 40 M 173 G 1333 19

SAC-VGNet 45 M 113 G 1280 21

Figure 7 shows the detection results of 12 testing images from both datasets. We can
see that our method can correctly detect the aircraft types, while YOLOv7 generates some
detection errors. For instance, “Su34” is misclassified as “Mig31” in the first example.
Even in the case of small targets and complex surroundings (see the fourth example), our
method could correctly recognize the category, and YOLOv7 may generate detection errors.
We also discovered the detection error in our approach in the bottom left example of the
third row, with several small, dense objects in different categories in an image. In such a
case, the corresponding text descriptions are mixed, which would confuse the model in
discriminating between these different objects.
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Figure 7. Several examples to illustrate the detection results by SAC-VGNet, where the first and third
rows are collected from MAD, and the second row is from FAD.

5. Limitations

There are some limitations to our approach: First, when our approach is applied to
large-scale datasets, data annotation is a potential limitation, which not only requires a lot
of manpower and time but also involves specialized knowledge for description generation.
Second, the comparisons between our approach and the state-of-the-art methods are
not strictly conducted on the same datasets, which requires further exploration of the
effectiveness of the proposed approach on existing visual grounding datasets.

6. Conclusions

In this paper, we a proposed semantic-aligned cross-modal visual grounding network
with transformers (SAC-VGNet) to learn discriminative multi-modal features for fine-
grained visual grounding. Our approach is different from the previous studies in that it
integrates both visual and textual inputs, and exploits the effective multi-modal feature
generation to exceptionally capture the tiny differences between similar objects. Technically,
we designed a multi-scale cross-modal fusion module to effectively fuse both visual and
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textual features, and text-driven contrastive learning was employed to provide accurate
feature alignment at the pixel level. We manually annotated text descriptions on two
fine-grained visual grounding datasets, and the experimental results demonstrated that
SAC-VGNet yields promising performance for fine-grained visual grounding. The SAC-
VGNet visual grounding framework can be applied to many specific fields, such as visual
grounding in medical images.

In the future, it will be possible to train several attribute detectors to automatically
predict object attributes to replace text descriptions for labeling savings. In addition, several
subclasses may have a few samples for the model’s training; thus, how to solve the few-
shot problem may be an interesting topic. Moreover, the input quality, such as noisy or
low-resolution images, may affect the model’s performance. In such a case, introducing a
denoising AI algorithm with multi-task learning may be a potential solution.
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