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Abstract: With the development of AI, the intelligence level of vehicles is increasing. Structured
roads, as common and important traffic scenes, are the most typical application scenarios for realizing
autonomous driving. The driving behavior decision-making of intelligent vehicles has always been
a controversial and difficult research topic. Currently, the mainstream decision-making methods,
which are mainly based on rules, lack adaptability and generalization to the environment. Aimed at
the particularity of intelligent vehicle behavior decisions and the complexity of the environment, this
thesis proposes an intelligent vehicle driving behavior decision method based on DQN generative
adversarial imitation learning (DGAIL) in the structured road traffic environment, in which the DQN
algorithm is utilized as a GAIL generator. The results show that the DGAIL method can preserve
the design of the reward value function, ensure the effectiveness of training, and achieve safe and
efficient driving on structured roads. The experimental results show that, compared with A3C, DQN
and GAIL, the model based on DGAIL spends less average training time to achieve a 95% success
rate in the straight road scene and merging road scene, respectively. Apparently, this algorithm can
effectively accelerate the selection of actions, reduce the randomness of actions during the exploration,
and improve the effect of the decision-making model.

Keywords: intelligent driving; driving decision; imitation learning; generative adversarial imitation
learning

1. Introduction

Smart cars are listed as one of the key development objects in the Made in China
2025 Plan and are defined as a new generation of vehicles with Internet of Vehicles com-
munication and intelligent driving ability. The main task is to improve the safety, comfort,
energy savings, and efficiency of driving and to promote the development of compre-
hensive transportation [1]. An intelligent driving system is generally composed of an
environment perception layer, decision planning layer, and action control layer [2]. As
shown in Figure 1, the environment perception layer is the “eye” of the intelligent vehicle;
the decision-making and planning layer is the “brain” of the intelligent vehicle. After receiv-
ing the data from the environment perception layer, the independent data information in
time and space is converted to the behavior decision and planning path of the vehicle. The
action control layer is the “hand and foot” of the intelligent vehicle. The decision-making
and planning layer is the core of the smart car. In an automatic driving system with high
requirements in terms of safety, real-time, rapidity, and predictability, the rationality of
behavioral decision-making will directly affect the safety and comfort of the vehicle and its
economy. The driving decision-making algorithm directly reflects the technical level of the
decision-making and planning layer. Therefore, the development of autonomous driving
technology is important for investigating the driving behavior decision-making algorithm
of intelligent vehicles and for improving the intelligence level of vehicles.
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Figure 1. Intelligent driving system block diagram. 
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Presently, there are three main decision-making methods for intelligent vehicles,
namely, rule-based decision-making methods, “end-to-end” decision-making methods,
and decision-making methods based on deep reinforcement learning. Deep reinforcement
learning is similar to the process of humans learning new knowledge. In continuous
interaction with the environment, the agent uses the rewards or punishments that are
obtained to continuously optimize the strategy until it learns the optimal strategy. In
2017, Hyunmin Chae proposed a vehicle braking system based on the DQN algorithm and
applied the algorithm to the control of the vehicle braking system [3]. In 2018, Maximilian
proposed an intelligent vehicle decision-making system based on the A3C algorithm. The
input layer is the image information obtained by a convolutional neural network (CNN).
The A3C algorithm is used to train the vehicle in the simulation environment, and good
results have been achieved [4]. In 2018, Alex Kendall of Wayve, a self-driving car company,
proposed a DDPG-based lane-keeping method. The image information obtained by the
monocular camera is input into the CNN, and the DDPG algorithm is used to output the
vehicle’s decision-making actions and carry them out; this method has been verified by
real vehicles and achieved a better lane tracking effect [5]. In 2018, Fang Chuan proposed
the DDPG algorithm, which added a teaching data part to the loss function of DDPG and
achieved better results than the DDPG algorithm in the lane-keeping test in the CARLA
environment [6]. In 2018, Hoel proposed a self-vehicle overtaking control method based on
deep reinforcement learning in dynamic uncertain environments, which can realize lane
keeping and autonomous overtaking behaviors in high-speed dynamic scenarios [7]. In
2020, Luo proposed a DQN-based decision-making method in high-speed scenarios, com-
bining the DQN algorithm with expert knowledge, which greatly shortened the training
time [8]. Although deep reinforcement learning has performed well in some application
scenarios, it still faces the problem of low learning efficiency, and it is difficult to achieve the
efficiency shown by humans when solving problems. Imitation learning can learn existing
expert knowledge, convert the expert knowledge into learning samples, and use the expert
knowledge to guide the training of the agent, which reduces the number of ineffective
exploration problems encountered by the agent in the training process and reduces the
training time cost and computing cost, effectively improving the learning performance
of deep reinforcement learning [9]. There are three commonly used imitation learning
methods, namely, behavior cloning, inverse reinforcement learning, and generative adver-
sarial imitation learning. Generative adversarial imitation learning (GAIL) is an imitation
learning framework based on a generative adversarial network (GAN), which consists of a
generator and a discriminator. The discriminator provides a reward value to the generator
by identifying the difference between the expert strategy and the learned strategy. Similarly
to the generator training method in the GAN, after obtaining the reward value given by
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the discriminator, GAIL uses the TRPO and PPO algorithms to carry out strategy training.
Generative adversarial imitation learning learns policies from a small number of expert
trajectories and uses the discriminator to generate a reward value function, which reduces
the demand for training samples and the computational complexity. In 2016, Jonathan
Ho [10] proposed generative adversarial imitation learning (GAIL) based on a GAN net-
work. In 2017, Hausman K [11] proposed a multimodal biomimetic learning framework,
using a GAN network to establish a multimodal biomimetic learning framework from
unstructured and unlabeled teaching samples. In 2017, Merel J [12] proposed a hierarchical
strategy framework based on reinforcement learning, using generative adversarial imita-
tion learning to train low-level controllers in the acquired action dataset and reinforcement
learning to train high-level controllers. In 2017, Yun Zhu Li [13] proposed infogenerative
adversarial imitation learning (Info-Gail), which combined the Info-Gan network with the
Gail algorithm so that the agent can better understand the meaning of expert data. In 2018,
Jiaming Song [14] proposed multigenerative adversarial imitation learning (Multi-Gail),
which combined a multiagent system and the Gail algorithm to extend the Gail algorithm
to the multiagent field.

In summary, the depth of the reinforcement learning for the intelligent vehicle behavior
decision model has good adaptability and generalization. This paper is based on related
research projects. An intelligent vehicle is the research object, and the depth is proposed
based on the reinforcement learning method to design an intelligent vehicle frame of
decision-making behavior. To conduct thorough research on the decision-making algorithm,
the proposed DGAIL was used to study the intelligent decision-making system. The
DQN algorithm is proposed to serve as the generation network of GAIL to realize the
transformation of the original GAIL algorithm and to make it more suitable for an intelligent
vehicle decision-making system.

The research in this paper combines theoretical analysis and simulation experiments.
The test platform was built based on the Pygame module. Considering the function of the
decision-making system, the scenarios of straight road and merging road in the structured
road were selected as the simulation scenarios. By setting road and vehicle parameters,
lane keeping, lane changing, on-ramp incorporation, entry and exit roundabouts, and
other functions were verified. The behavior decision model based on the DGAIL algorithm
was designed to realize autonomous decision-making by intelligent vehicles on structured
roads, and the effectiveness and stability of the algorithm in straight and merge scenarios
were verified in the simulation environment.

2. Methods

Previous studies have shown that the intelligent vehicle behavior decision algorithm
based on DQN can satisfy the requirements of safety, efficiency, and stability of the decision-
making system. However, the design of the reward value function is still too cumbersome:
a poor reward value function will reduce the success rate and convergence of training, and
it is difficult to obtain satisfactory results. This paper proposes a DQN-based generative
adversarial imitation learning (DGAIL) method. Using the design structure of GAIL,
through the learning of expert data, the design problem of the reward value function of
the agent in deep reinforcement learning was solved. The DQN was used to replace the
TRPO method to accelerate the training of the model, and the behavior decision model
could be quickly constructed to perform intelligent vehicle decision-making training tasks
in the simulation environment. The vehicle driving behavior decision-making algorithm
designed in this paper is mainly aimed at structured roads and does not involve traffic
signals, traffic signs, and pedestrians.

2.1. Improvement of the DGAIL Algorithm

The improvement of the DGAIL algorithm included two aspects. The first aspect
was to replace the TRPO method with DQN based on a deterministic strategy to improve
the efficiency of sample utilization. The second aspect was to use the the Leaky-ReLU
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function in the discriminator D to replace the ReLU function and improve the stability of
the algorithm.

2.1.1. Generator G Is DQN

The original GAIL method was designed for a continuous state space and continuous
action space, and the generator G adopted TRPO [15] or PPO [16] methods based on
stochastic policies. For the method based on a random strategy, the action strategy taken
by the agent when the state is s obeys a normal distribution, whose mean is ξ and whose
variance is σ. The action strategy function can be expressed as:

πθ(a, s) =
1√
2πδ

exp

(
− (a− ξ)2

2δ2

)
(1)

where s is the state space of the agent, a is the action space of the agent, πθ(a, s) is the
probability density of the action policy function when the agent adopts the action, and the
parameters of normal distribution are ξ (mean value) and σ (variance).

For the method based on the random action policy, the gradient can be expressed as:

∇θJ(πθ) = E(s,a)∼πθ
[∇θlogπθ(a|s)Qπθ(s, a)] (2)

where s is the state space of the agent, a is the action space of the agent, πθ(a, s) is the
probability density of the action policy function when the agent adopts the action, and in
the states, Qπθ(s, a) refers to the expected reward value when the action policy function is
πθ(a, s).

Equations (1) and (2) show that when the agent faces the same state s, the output of
the action policy function obeys a normal distribution, and the output value a is different
each time. When updating the gradient, the random action strategy fully samples the envi-
ronment and then calculates the real expected value according to the state distribution and
action distribution, which increases the time cost of sampling and reduces the utilization
of samples.

If the action space of the agent is discrete, TRPO needs to discretize the output action
policy function and then use the softmax function to select the maximum Q value, while
the DQN method is based on the deterministic policy acting in the same states. The choice
of a is deterministic, and the maximum Q value can be directly and accurately output,
which saves the invalid exploration time in the training process. Therefore, in the discrete
space scenario set in this paper, the DQN algorithm samples less of the environment during
the training process, and the utilization rate of the samples is high, especially for complex
discrete systems such as the intelligent vehicle decision model. The DQN algorithm has a
low sampling rate. The learning efficiency will be greatly improved.

2.1.2. Activation Function of the Discriminator D

Commonly used activation functions include sigmoid, tanh, ReLU, and leaky-ReLU.
The sigmoid function and tanh function are more traditional activation functions, but
they may encounter the problem of regional saturation when transmitting information in
the neural network, resulting in the phenomenon of gradient disappearance. The ReLU
function solves the problem of vanishing gradients, but there is a “dead zone” when the
input is negative. The leaky-ReLU function optimizes this zone by assigning a nonzero
slope to all negative values of the input, solving the “dead zone” problem of the ReLU
function. The ReLU activation function used by the discriminator D in the original GAIL
method reduces the influence of the “dead zone” on the training results, as shown in
Figure 2. This paper selects leaky ReLU as the activation function between the input layer
and the hidden layer.
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2.2. GAN Network

In 2014, Goodfellow proposed a generative adversarial network (GAN) [17]. The GAN
network consists of generator G and discriminator D. Generator G is used to generate fake
samples, its input is noise data Z, and the output is fake sample data. The discriminant
Model D is a binary classifier; its input is the expert sample and fake sample, and the output
is the true and false probability of the sample data, which is used to distinguish the fake
sample data from the expert sample data. The objective function of the generator G is:

G = ∇θg

1
n

n

∑
i=1

log(1− D(G(zi))) (3)

where Z = {z1, z2..., zm} is the noise data that generates false samples, and n is the number of
samples. Discriminator D guides the training of generator G by identifying the difference
between the fake samples and the expert samples of generator G. The objective function of
discriminator V(G, D) is:

V = ∇θd

1
n

n

∑
i=1

[log D(xi) + log(1− D(G(zi)))] (4)

where n is the number of sample data and X = {x1, x2..., xn} is the sample data. In the process
of model training, the training of generator G and discriminator D is alternately carried out,
and the two update their own training parameters through the gradient descent method to
reduce the value of the loss function. In continuous training, generator G and discriminator
D through the dynamic game form a Nash equilibrium.

2.3. DGAIL Algorithm

The structural model of generative adversarial imitation learning (GAIL) is similar to
the GAN. Deep reinforcement learning is utilized as generator G to create fake samples,
and a generative adversarial network is employed as discriminator D to identify expert
samples and fake samples. In the constant game between generator G and discriminator
D, the two reach Nash equilibrium so that generator G obtains the optimal strategy of the
model and completes the optimization of the learning model.

This chapter combines the GAIL method and DQN method to propose a DQN-based
generative adversarial imitation learning (DGAIL) method. The structural model of DGAIL,
which consists of generator G and discriminator D, is shown in Figure 3. The DQN
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algorithm is used by generator G, and the two-class neural network is used by discriminator
D. In the training process of the smart car decision model, generator G uses the DQN
algorithm to generate fake samples, and discriminator D judges the authenticity of the
expert samples and fake samples and outputs the judgment result as the reward value
function of generator G. Through continuous training, generator G and discriminator D
play against each other in the training process until the Nash equilibrium state is reached
and generator G can generate fake samples.

min
ψ

max
θ

V(θ, φ) = E(s,a)∈χE

[
log Dψ(s, a)

]
+ E(s,a)∈χθ

[
log(1− Dψ(s, a))

]
(5)

χθ = {(s1 , a1), (s2, a2), . . . , (sT , aT)} (6)

where si represents the state at time i, ai represents the action at time i, χθ represents the
“realistic sample” generated by generator G, χE represents the expert sample data, and Dψ

represents the discriminator. The structure is shown in Figure 4.
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The reward value function output by discriminator D is:

∼
r (st, at; ψ) = − log(1− Dψ(st, at)) (7)

The Dψ(st, at) output by discriminator D represents the authenticity of the sample
generated by generator G, and the discrimination result is output as the reward value
function of generator G. Formula (8) is obtained:

Q(st, at)← Q(st, at) + α
⌊

r(st, at, st+1) + γmax
a

Q(st+1, at+1)−Q(st, at)
⌋

(8)
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2.4. Building Expert Samples

Expert samples are a class of intelligent decision-making rule bases that contain
knowledge and reasoning. Based on the knowledge obtained from human experts, expert
samples can solve many problems that usually require human experts and can express and
reason in some knowledge domains. The complex expert knowledge base can meet the
needs of many complex scenarios, but its design is too cumbersome, requires numerous
data and practical verification, and cannot effectively cope with changes in the surrounding
environment. This paper is aimed at achieving compliance with traffic laws and human
driving habits by formulating a series of simple and effective rules. Accurate and efficient
expert samples are an important part of the DGAIL algorithm.

2.4.1. Minimum Safe Distance for Vehicles

The minimum safe distance of a vehicle directly affects the traffic efficiency and driving
safety of the vehicle in a high-speed environment. If the minimum safe distance is set too
large, it is beneficial to ensure the safety of the vehicle but will reduce the traffic efficiency of
the road. Conversely, if the minimum safe distance is set too small, it can improve the traffic
efficiency of the road but will increase the risk of rear-end collision. Therefore, this paper
adopts the variable headway distance as the minimum safe distance of the vehicle, which
considers not only the minimum critical distance of the collision between two vehicles but
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also the change in the front and rear vehicle speeds and dynamically adjusts the distance in
real time according to the vehicle speed. The formula for calculating the minimum safe
distance D between two vehicles is expressed as follows:

D = V1τ + (V1 −V2)T + L (9)

where T is the sampling period, V1 is the speed of the vehicle, V2 is the speed of the
preceding vehicle, τ is the headway, generally τ = 0.5–1.5 s, and L is the minimum critical
distance between the two vehicles before and after safely stopping, taking L = 2–5 m.

2.4.2. Determination of Dangerous Vehicles

Dangerous vehicles are defined as vehicles that have the risk of collision with a vehicle
within the period when the vehicle executes the decision-making process and adjusts to a
safe speed after the decision. The judgment of a dangerous vehicle can be determined by
the dynamic data information in the state concentration. The vehicle to be judged should be
in the same lane as the judging vehicle. When the vehicle meets the following conditions, it
is judged as a dangerous vehicle. {

H < D
V > 0

(10)

where H is the straight-line distance between the vehicle and the vehicle to be determined,
V is the relative speed between the vehicle and the vehicle to be determined, and D is the
minimum safe distance between the two vehicles.

2.4.3. Standardization of Impact Factors

In the decision-making problem of vehicle driving behavior, the main influencing
factors affecting decision-making are lane position, dangerous vehicles in the left lane,
dangerous vehicles in the middle lane, and dangerous vehicles in the right lane. To facilitate
the expression of expert rules, this paper standardized the values of the influencing factors.

2.4.4. Using the ID3 Decision Tree to Build Expert Samples

The driving behavior decision-making expert rule base is constructed by an ID3
decision tree algorithm based on traffic rules, driving safety, and human driving habits.
As shown in Table 1, A has four associated linguistic values: Acceleration(0), Left Lane
Change(1), Right Lane Change(2) and Follow ahead(3); C has three associated linguistic
values: Left Lane(0), Middle Lane(1) and Right Lane(2), W0 has two associated linguistic
values: No Dangerous Vehicle In Left Lane(0),Dangerous Vehicle In Left Lane(1); W1 has
two associated linguistic values: No Dangerous Vehicle In Middle Lane(0), Dangerous
Vehicle In Middle Lane(1); W2 has two associated linguistic values: No Dangerous Vehicle
In Right Lane(0), Dangerous Vehicle In Right Lane(1).The C, W0, W1, and W2 in the
influencing factors are quantified as the expert sample state S* of the vehicle, and the
action selection determined by the expert rule base for driving behavior decision is A*. The
mapping relationship S*→A* between the expert sample state and the action selection is
established, and the rule formed by this relationship is referred to expert knowledge.
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Table 1. Driving behavior decision expert rule base.

Serial Driving Behavior Decision Expert Rule Base

1 If (C = 0) and (W0 = 0) and (W1 = 0) Then A = 0
2 If (C = 0) and (W0 = 0) and (W1 = 1) Then A = 0
3 If (C = 1) and (W1 = 0) Then A = 0
4 If (C = 2) and (W1 = 0) and (W2 = 0) Then A = 0
5 If (C = 2) and (W0 = 0) and (W1 = 1) and (W2 = 0) Then A = 0
6 If (C = 2) and (W0 = 1) and (W1 = 1) and (W2 = 0) Then A = 0
7 If (C = 1) and (W0 = 0) and (W1 = 1) Then A = 1
8 If (C = 2) and (W1 = 0) and (W2 = 1) Then A = 1
9 If (C = 0) and (W0 = 1) and (W1 = 0) Then A = 2
10 If (C = 1) and (W0 = 1) and (W1 = 1) and (W2 = 0) Then A = 2
11 If (W1 = 1) and (W0 = 1) and (W2 = 1) Then A = 3
12 If (C = 0) and (W0 = 1) and (W1 = 1) and (W2 = 0) Then A = 3
13 If (C = 2) and (W0 = 0) and (W1 = 1) and (W2 = 1) Then A = 3

2.4.5. Sample Build Process

Based on the above expert rule base, the vehicle decision-making model is trained in
the simulation scene, and the expert sample base is constructed. As shown in Figure 5, a
total of 1500 pieces of sample data are collected for the straight lane scene, and 1000 pieces
of sample data are collected for the merge lane scene.
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2.5. The Pseudo-Code of Algorithm

The pseudo-code of DGAIL algorithm is shown in Table 2.
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Table 2. DGAIL algorithm pseudo-code.

Serial DGAIL Algorithm Pseudo-Code
1: Initialize replay memory D to capacity N;
2: Initialize the network weight η of discriminator D;
3: For i = 1, N do(i is the total number of training rounds):
4: For j = 1, M do(j is the number of iterations for each training round):
5: The input state is st at time t, Action at is selected by the ε-greedy strategy;
6: The agent performs action a and obtains state st+1 at time t + 1;
7: END For
8: The false sample set (st, at) of the agent is obtained;
9: Discretize the expert sample χ to obtain the expert sample set (expert_st, expert_at);

10: Input the fake sample set (st, at) and expert sample set (expert_st, expert_at) into the discriminator D;
11: Discriminator D receives expert sample data and fake sample data;
12: REPEAT (5 times):
13: Discriminator D uses the gradient descent method to train the loss function, updates the weight η of the neural

network, judges the authenticity of the sample, and outputs the reward value function rt;
14: Recombine (st, at, rt, and st+1) and store it in the experience pool D of generator G;
15: Update the weights θ of the generator G estimation network and target network to complete one round of training;
16: END For

3. Simulation Test and Results

Several numerical simulations are conducted to demonstrate the efficacy of our pro-
posed algorithm. The straight road scene and merging road scene are selected to verify the
algorithm in the simulation. The purpose is to test whether the algorithm has the ability
to complete safe driving within the specified time and compare the effects of different
algorithms. The experimental simulation environment is as follows: operating system is
WIN10 operating system, CPU is Inter Core i7-7700 processor, memory is 8 GB, GPU is
NVIDIA GeForce GTX 1060, programming language is Python, and deep learning tool
is Pytorch.

3.1. Simulation Parameter Settings
3.1.1. Straight Road Scene

The straight road scene is a one-way three-lane scene with a total lane length of
1000 m. The state space S includes the location information and motion information of
the surrounding five vehicles. The vehicles in this scenario are available for free, random
actions. The parameters of the specific environment model are shown in Table 3.

Table 3. Straight road scene environmental model parameters.

Parameter Description Value

Lane_length Road length/m 1200
Lane_width Single lane width/m 3.6

Lane_number Number of lanes 3
Length Vehicle length/m 5
Width Vehicle width/m 2

Acc Max acceleration/(m/s2) 6
Dec Max deceleration/(m/s2) 5

V_max Maximum lane speed limit/(m/s) 30
V_min Minimum lane speed limit/(m/s) 20

Vehice_number Number of vehicles 10
Frequency Environment refresh cycle/s 0.1

3.1.2. Merging Road Scene

The merging road scene is a one-way two-lane scene that includes an outer ramp, and
the total length is 400 m. The state space S includes the location information and motion
information of the surrounding five vehicles. The vehicles in this scenario are available for
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free, random actions. The parameters of the specific environmental model are shown in
Table 4.

Table 4. Merging road scene environmental model parameters.

Parameter Description Value

Lane_length Road length/m 500
Lane_width Single lane width/m 3.6

Lane_number Number of lanes 3
Length Vehicle length/m 5
Width Vehicle width/m 2

Acc Max acceleration/(m/s2) 6
Dec Max deceleration/(m/s2) 5

V_max Maximum lane speed limit/(m/s) 30
V_min Minimum lane speed limit/(m/s) 20

Vehice_number Number of vehicles 7
Frequency Environment refresh cycle/s 0.1

3.1.3. Action Space Settings

Vehicle action space includes acceleration, left lane change, right lane change and
follow ahead.

3.1.4. Neural Network Parameter Settings

The value network and target network are structured by BP neural network, in which
the hidden layer consists of 600 neurons. The Leaky-Relu activation function is used
between the input and hidden layers and between the hidden and output layers. The
specific structure is shown in Figure 6.
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3.2. DGAIL Algorithm Simulation Results Analysis

In order to test the simulation effect in two scenarios, we train the decision-making
model in the traffic simulation platform with the DGAIL algorithm. When the model
converges to stability, the motion of the vehicle is as shown in Figure 7, in which the green
square represents the main vehicle and the blue square represents the environment vehicles.

Straight Road Scene
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Figure 7. The driving state of vehicle on the straight road.

As shown in Figure 7a is the environmental state at the initial moment, including
one ego-vehicle and 10 environmental vehicles, and (b–h) is the vehicle driving process.
At the initial moment (a), the ego-vehicle is located in the middle lane, the longitudinal
displacement is 0 m, and the initial speed is 25 m/s; at the moment (b), as the vehicle
ahead enters the minimum safe distance, the ego-vehicle changes lane left to overtake at a
speed of 25 m/s; at the moment (c), the ego-vehicle keeps going straight and accelerates
to 30 m/s; at the moment (d), due to two obstacle vehicles ahead and no space for lane
change, the ego-vehicle slows down to follow the vehicle ahead and decelerates to 20 m/s;
at the moment (e), the ego-vehicle changes lane right to overtake and maintains its speed
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at 20 m/s; at the moment (f), the ego-vehicle continues going straight and accelerates to
25 m/s; at the moment (g), as the vehicle ahead enters the minimum safe distance, the
ego-vehicle changes lane left to overtake at a speed of 25 m/s; at the moment (h), the
ego-vehicle keeps going straight and accelerates to 30 m/s until the end of this trip.

Merging Road Scene

As shown in Figure 8a is the environmental state at the initial moment, including
one ego-vehicle and seven environmental vehicles, and (b–f) is the vehicle driving process.
At the initial moment (a), the ego-vehicle is located in the middle lane, the longitudinal
displacement is 0 m, and the initial speed is 25 m/s; at the moment (b), the ego-vehicle
keeps a safe distance to follow the vehicle ahead at a speed of 25 m/s; at the moment (c), the
ego-vehicle keeps going straight and slows down to wait for the left lane to be vacated, and
the speed of the ego-vehicle drops to 20 m/s; at the moment (d), as the left lane is vacant,
the ego-vehicle changes lane left at a speed of 20 m/s; at the moment (e), as the vehicle
ahead enters the minimum safe distance, the ego-vehicle changes lane left to overtake at a
speed of 25 m/s; at the moment (f), the ego-vehicle keeps going straight and accelerates to
30 m/s until the end of this trip.
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4. Discussion
4.1. Straight Road Scene
4.1.1. Training Convergence

As shown in Figure 9, according to the established training parameters, in the
0–750 rounds, the decision-making model had high randomness in the selection of ac-
tions, and the neural network had not yet converged. In the 750–1600 rounds, the vehicle
driving time and reward value gradually increased as the loss function of the value network
began to converge. In the 1600–2000 rounds, the driving time of the vehicle was reached
and stabilized at 40 s, the training task of the straight road scene was completed, and the
reward value gradually converged and stabilized at 35.5.
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4.1.2. Training Time Cost

The training time cost refers to the number of training rounds used by the learning
model to achieve convergence in training. Combined with the training process of the
driving behavior decision-making model, the round duration, reward value, and training
times were selected as the training time cost indicators of the decision-making model, and
the DQN, GAIL, A3C and DGAIL methods were applied to complete the test of the straight
road scene. The results are shown in Table 5. The DGAIL method only used 1470 times
to achieve convergence, with the fewest training times and the highest reward value. The
A3C method achieved convergence after 1853 iterations, with the same training time and
2nd reward value. The DQN method achieved convergence after 2231 iterations, with the
same training time and 3rd reward value. The GAIL could not complete the training in
3000 training times.

Table 5. Training time cost for straight road.

Algorithm Reward Value Round Duration Training Times

DQN 30.8 24 2231
GAIL 5.2 24 3000
A3C 32.3 40 1853

DGAIL 35.5 40 1651

4.1.3. Effectiveness of Driving Strategies

Comparison of decision-making model based on DGAIL and A3C in the same simu-
lation scenes and parameter settings. The training results and vehicle motion parameter
curves of the two different algorithms for the vehicle in the straight road scene during
simulation progress are shown in Figures 10 and 11.
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As shown in Figure 10, in the 1000 rounds, both algorithms were in the initial learning
stage, and the decision-making model had high randomness in the selection of actions. In
the 1000–1600 rounds, the DGAIL algorithm started to make correct decisions based on
expert knowledge, and the success rate increased rapidly to 94% and the reward value
increased to 32.25. In contrast, the A3C algorithm was still in the exploration stage, during
which the randomness of the action selection strategy was larger, and the success rate and
reward value were lower. In the 1600–1800 rounds, the DGAIL algorithm continued to learn
the empirical knowledge that was generated from the interaction with the environment, the
decision-making model was approaching the expert level, and the success rate and reward
value were in the stable rising stage. At this time, the A3C algorithm also began to learn
the correct action decision, the randomness of the action selection strategy was reduced,
and the success rate and reward value continued to rise. In the 1800–2000 rounds, both
algorithms had learned the optimal strategy, the decision-making model entered a stable
period, and the driving decision obtained was able to meet the needs of the straight road
scene. As shown in Figure 11, compared with the A3C algorithm, the DGAIL algorithm
had a slightly higher average vehicle speed, fewer lane changes, more frequent acceleration
and deceleration, and higher total rewards value considering the influence of the reward
guidance factor.

4.2. Merging Road Scene
4.2.1. Training Convergence

As shown in Figure 12, according to the established training parameters, in the
0–400 rounds, the decision-making model had high randomness in the selection of ac-
tions, and the neural network had not yet converged. In the 400–750 rounds, the vehicle
driving time and reward value gradually increased as the loss function of the network
began to converge. In the 750–2000 rounds, the ego-vehicle’s travel time was stable at 15 s,
reward value gradually converged at 13.8, and the training task of the merging road scene
was completed.
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4.2.2. Training Time Cost

Combined with the training process of the driving behavior decision-making model,
the round duration, reward value, and training times were selected as the training time cost
indicators of the decision-making model, and the DQN, GAIL, A3C and DGAIL methods
were applied to complete the test of the merging road scene. The results are shown in
Table 6. The DGAIL method only used 1075 times to achieve convergence, with the fewest
training times and the highest reward value. The A3C method achieved convergence after
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1312 iterations, with the same training time and second-highest reward value. The DQN
method achieved convergence after 1782 iterations, with the same training time and third-
highest reward value. The GAIL could not complete the training in 2000 training times.

Table 6. Training time cost for merging road.

Algorithm Reward Value Round Duration Training Times

DQN 9.5 11 1782
GAIL 4.8 11 2000
A3C 11.76 15 1189

DGAIL 12.9 15 855

4.2.3. Effectiveness of Driving Strategies

Comparison of decision-making model was based on DGAIL and A3C in the same
simulation scenes and parameter settings. The training results and vehicle motion parame-
ter curves of the two different algorithms for the vehicle in the merging road scene during
simulation progress are shown in Figures 13 and 14.
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As show in Figure 13, in the 300 rounds, both algorithms were in the initial learning
stage, and the decision-making model had high randomness in the selection of actions. In
the 300–800 rounds, the DGAIL algorithm started to make correct decisions based on expert
knowledge, the success rate increased rapidly to 96%, and the reward value increased to
12.76. In contrast, the A3C algorithm was still in the exploration stage; the randomness of
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the action selection strategy was larger, and the success rate and reward value were lower.
In the 800–1200 rounds, the DGAIL algorithm continued to learn the empirical knowledge
that was generated from the interaction with the environment, the decision-making model
was approaching the expert level, and the success rate and reward value were in the stable
rising stage. At this time, the A3C algorithm also began to learn the correct action decision,
the randomness of the action selection strategy was reduced, and the success rate and
reward value continued to rise. In the 1200–1600 rounds, both algorithms had learned
the optimal strategy, the decision-making model entered a stable period, and the driving
decision obtained was able to meet the needs of the straight road scene. As shown in
Figure 14, compared with the A3C algorithm, the DGAIL algorithm had a slightly higher
average vehicle speed, fewer lane changes, more frequent acceleration and deceleration,
and higher total rewards value considering the influence of the reward guidance factor.
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5. Conclusions

Relying on relevant scientific research projects, this paper treated intelligent vehicles as
the research object and analyzed the decision-making method for vehicle driving behavior.
First, the development and related algorithms of intelligent vehicle behavior decision-
making were introduced. Second, the DQN algorithm was used to optimize the GAIL
algorithm, and the DGAIL algorithm was proposed. In addition, a vehicle decision-making
model based on DGAIL was constructed, including the design of the state space, design
of the network structure and design of the training parameters. Last, in a typical scenario,
the training and verification in the simulation scenario were completed according to the
vehicle decision model. The results show that the algorithm meets the requirements of
intelligent vehicles for decision-making systems. Core innovations include the following:
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1. A DGAIL-based intelligent vehicle driving behavior decision-making method, which
can realize real-time, reliable, and stable decision-making in traffic scenarios based
on structured roads, is proposed. Compared with the deep reinforcement learning
DQN method, the tedious design of the reward value function is omitted. Compared
with the traditional GAIL method, the DGAIL method is more suitable for scenes
where the action space is discrete, the training convergence is faster, and the stability
is higher.

2. Presently, most research on intelligent vehicle driving behavior decision-making is
mainly aimed at straight roads and intersections. In this paper, by constructing merg-
ing and roundabout scenarios in the simulation environment, the research scenarios
of intelligent vehicles are enriched, and the decision-making of intelligent vehicle
driving behavior can be more comprehensively verified. The applicability of the
method accelerates the research process of a deep reinforcement learning algorithm in
driving behavior decision-making.

3. By proposing the DGAIL method, the effectiveness of generative adversarial imi-
tation learning in structured scenarios is evaluated and then trained and validated
in traffic simulation scenarios. However, there are still some deficiencies in this pa-
per in some aspects. Further research and exploration can be carried out from the
following aspects:

4. The complexity of the scene: Although the scene in this paper included straight road
and merging scenes, there were still certain constraints on the environmental vehicles
in it, and the complexity was relatively simple. The driving behavior of smart cars in
more free scenes can be explored in future studies.

5. Optimization of the DGAIL algorithm: Although the DGAIL algorithm omits the
design process of the reward value function, its training results have no obvious
advantages over the traditional DQN algorithm. In follow-up research, the structure
of the DGAIL algorithm can be optimized to improve the effectiveness and stability
of the algorithm.

6. Real vehicle test: The research in this paper was completely based on simulation and
is still far from real practical use. In future studies, the algorithm in the simulation
can be extended to real scenes through transfer learning, and the effectiveness of the
method can be further demonstrated from an actual environment.
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